On the existence and regularity of non-flat profiles for a Bernoulli free boundary problem

Giovanni Gravina

Carnegie Mellon University

May 25, 2018

Joint work with Giovanni Leoni

Formulation of the physical problem

Consider a 2-D periodic wave traveling at constant speed c over a flat impermeable bed, in a flow of zero vorticity.

Assume that the fluid is inviscid and incompressible.

Neglect surface tension.

Gravity is the only restoring force.

Passing to a moving frame of reference, the equations of motion can be rewritten as

conservation of momentum

conservation of mass irrotationality

kinetic boundary conditions

dynamic boundary condition

Bernoulli's equation

$$\begin{cases} \rho((u-c)u_x + vu_y) = -P_x\\ \rho((u-c)v_x + vv_y) = -P_y - \rho g\\ \nabla \cdot (\rho(u,v)) = 0\\ v_x = u_y\\ \begin{cases} v = (u-c)\eta' \text{ on } y = \eta(x)\\ v = 0 & \text{ on } y = 0 \end{cases}\\ P = P_{\text{atm}} \text{ on } y = \eta(x)\\ \frac{|(u,v)|^2}{2} + gy + \frac{P}{\rho} = \text{const. on streamlines.} \end{cases}$$

Passing to a moving frame of reference, the equations of motion can be rewritten as

conservation of momentum

conservation of mass

irrotationality

kinetic boundary conditions

dynamic boundary condition

Bernoulli's equation

$$\begin{cases} \rho((u-c)u_x + vu_y) = -P_x\\ \rho((u-c)v_x + vv_y) = -P_y - \rho g\\ \nabla \cdot (\rho(u,v)) = 0\\ v_x = u_y\\ \begin{cases} v = (u-c)\eta' \text{ on } y = \eta(x)\\ v = 0 & \text{ on } y = 0 \end{cases}\\ P = P_{\text{atm}} \text{ on } y = \eta(x)\\ \frac{|(u,v)|^2}{2} + gy + \frac{P}{\rho} = \text{const. on streamlines.} \end{cases}$$

Passing to a moving frame of reference, the equations of motion can be rewritten as

conservation of momentum

conservation of mass irrotationality

kinetic boundary conditions

dynamic boundary condition

Bernoulli's equation

$$\begin{cases} \rho((u-c)u_x + vu_y) = -P_x\\ \rho((u-c)v_x + vv_y) = -P_y - \rho g\\ \nabla \cdot (\rho(u,v)) = 0\\ v_x = u_y\\ \begin{cases} v = (u-c)\eta' \text{ on } y = \eta(x)\\ v = 0 & \text{ on } y = 0 \end{cases}\\ P = P_{\text{atm}} \text{ on } y = \eta(x)\\ \frac{|(u,v)|^2}{2} + gy + \frac{P}{\rho} = \text{const. on streamlines.} \end{cases}$$

Passing to a moving frame of reference, the equations of motion can be rewritten as

conservation of mass $\nabla \cdot (\rho(u, v)) = 0$ irrotationality

kinetic boundary conditions

conservation of momentum $\begin{cases} \rho((u-c)u_x + vu_y) = -P_x \\ \rho((u-c)v_x + vv_y) = -P_y - \rho g \end{cases}$ $v_x = u_y$ $\begin{cases} v = (u - c)\eta' \text{ on } y = \eta(x) \\ v = 0 \text{ on } y = 0 \end{cases}$

Passing to a moving frame of reference, the equations of motion can be rewritten as

conservation of mass $\nabla \cdot (\rho(u, v)) = 0$ irrotationality $v_x = u_y$

kinetic boundary conditions

dynamic boundary condition $P = P_{\text{atm}}$ on $y = \eta(x)$

conservation of momentum $\begin{cases} \rho((u-c)u_x + vu_y) = -P_x \\ \rho((u-c)v_x + vv_y) = -P_y - \rho g \end{cases}$ $\begin{cases} v = (u - c)\eta' \text{ on } y = \eta(x) \\ v = 0 \text{ on } y = 0 \end{cases}$

Passing to a moving frame of reference, the equations of motion can be rewritten as

conservation of mass $\nabla \cdot (\rho(u, v)) = 0$ irrotationality $v_x = u_y$

kinetic boundary conditions

dynamic boundary condition $P = P_{\text{atm}}$ on $y = \eta(x)$

Bernoulli's equation

conservation of momentum $\begin{cases} \rho((u-c)u_x + vu_y) = -P_x \\ \rho((u-c)v_x + vv_y) = -P_y - \rho g \end{cases}$ $\begin{cases} v = (u - c)\eta' \text{ on } y = \eta(x) \\ v = 0 \text{ on } y = 0 \end{cases}$ $\frac{|(u,v)|^2}{2} + gy + \frac{P}{a} = \text{const. on streamlines.}$ Assume that $\rho \equiv 1$, let λ be the length of one wave cycle and set

$$\Omega \coloneqq \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \times (0, \infty).$$

Then we can rewrite the system in terms of a stream function ψ :

$$\begin{cases} \Delta \psi = 0 & \text{in } \Omega \cap \{\psi > 0\}, \\ \psi = 0 & \text{on } \Omega \cap \partial \{\psi > 0\}, \\ |\nabla \psi| = \sqrt{(\text{const.} - 2gy)_+} & \text{on } \Omega \cap \partial \{\psi > 0\}, \\ \psi = m & \text{on } y = 0. \end{cases}$$
(FBP)

Stokes conjecture

Stokes, 1847: conjectured the existence of a wave of greatest height, with a has sharp crests of included angle $\frac{2\pi}{3}$.

Why is 120° the expected Stokes angle?

 \blacktriangleright If v solves

$$\int \Delta v = 0$$
 in S ,
 $v = 0$ on ∂S ,

where S is the sector of opening angle ω , then

$$v \sim r^{\frac{\pi}{\omega}} \sin\left(\frac{\pi\theta}{\omega}\right).$$

(see Dauge, Grisvard, Kondratev & Oleinik, ...)▶ Bernoulli's condition:

$$r^{\frac{\pi}{\omega}-1} \sim |\nabla v| \sim r^{1/2}.$$

Why is 120° the expected Stokes angle?

 \blacktriangleright If v solves

$$\begin{cases} \Delta v = 0 & \text{in } S, \\ v = 0 & \text{on } \partial S, \end{cases}$$

where S is the sector of opening angle ω , then

$$v \sim r^{\frac{\pi}{\omega}} \sin\left(\frac{\pi\theta}{\omega}\right).$$

(see Dauge, Grisvard, Kondratev & Oleinik, ...) Bernoulli's condition:

$$r^{\frac{\pi}{\omega}-1} \sim |\nabla v| \sim r^{1/2}.$$

A little bit of history

Nekrasov '22 mapped the fluid into an annulus by a hodograph transform:

$$\phi(s) = \frac{1}{3\pi} \int_{-\pi}^{\pi} \frac{\sin \phi(t)}{\mu^{-1} + \int_{0}^{t} \sin \phi(u) \, du} \log \left| \frac{\sin(\pi^{-1}K(s+t))}{\sin(\pi^{-1}K(s-t))} \right| \, dt.$$

- Krasovskii '61: for μ > μ̄ there exists φ, a continuous solution of Nekrasov's equation; φ has smooth crest and 0 ≤ φ < π/6.</p>
- Keady & Norbury '78: no solutions for μ ≤ μ. For μ > μ there exist continuous solutions with smooth crest and 0 ≤ φ < π/2.</p>
- ▶ Toland '78 & McLeod '79: $\{\phi_{\mu_n}\}_n$ converges to a solution of the limiting problem ϕ_0 as $\mu_n \to \infty$ (Stokes wave). Moreover, if $\lim_{s\to 0} \phi_0(s)$ exists then it must be $\frac{\pi}{6}$ (Stokes angle).
- ▶ Amick, Fraenkel & Toland '82, Plotnikov '82: $\lim_{s\to 0} \phi_0(s)$ exists.

$$\phi(s) = \frac{1}{3\pi} \int_{-\pi}^{\pi} \frac{\sin \phi(t)}{\mu^{-1} + \int_{0}^{t} \sin \phi(u) \, du} \log \left| \frac{\sin(\pi^{-1}K(s+t))}{\sin(\pi^{-1}K(s-t))} \right| \, dt.$$

- Krasovskii '61: for μ > μ̄ there exists φ, a continuous solution of Nekrasov's equation; φ has smooth crest and 0 ≤ φ < π/6.</p>
- Keady & Norbury '78: no solutions for μ ≤ μ. For μ > μ there exist continuous solutions with smooth crest and 0 ≤ φ < π/2.</p>
- ▶ Toland '78 & McLeod '79: $\{\phi_{\mu_n}\}_n$ converges to a solution of the limiting problem ϕ_0 as $\mu_n \to \infty$ (Stokes wave). Moreover, if $\lim_{s\to 0} \phi_0(s)$ exists then it must be $\frac{\pi}{6}$ (Stokes angle).
- ▶ Amick, Fraenkel & Toland '82, Plotnikov '82: $\lim_{s\to 0} \phi_0(s)$ exists.

$$\phi(s) = \frac{1}{3\pi} \int_{-\pi}^{\pi} \frac{\sin \phi(t)}{\mu^{-1} + \int_{0}^{t} \sin \phi(u) \, du} \log \left| \frac{\sin(\pi^{-1}K(s+t))}{\sin(\pi^{-1}K(s-t))} \right| \, dt.$$

- Krasovskii '61: for μ > μ̄ there exists φ, a continuous solution of Nekrasov's equation; φ has smooth crest and 0 ≤ φ < π/6.</p>
- Keady & Norbury '78: no solutions for μ ≤ μ. For μ > μ there exist continuous solutions with smooth crest and 0 ≤ φ < π/2.</p>
- ► Toland '78 & McLeod '79: $\{\phi_{\mu_n}\}_n$ converges to a solution of the limiting problem ϕ_0 as $\mu_n \to \infty$ (Stokes wave). Moreover, if $\lim_{s\to 0} \phi_0(s)$ exists then it must be $\frac{\pi}{6}$ (Stokes angle).
- ▶ Amick, Fraenkel & Toland '82, Plotnikov '82: $\lim_{s\to 0} \phi_0(s)$ exists.

$$\phi(s) = \frac{1}{3\pi} \int_{-\pi}^{\pi} \frac{\sin \phi(t)}{\mu^{-1} + \int_{0}^{t} \sin \phi(u) \, du} \log \left| \frac{\sin(\pi^{-1}K(s+t))}{\sin(\pi^{-1}K(s-t))} \right| \, dt.$$

- Krasovskii '61: for μ > μ̄ there exists φ, a continuous solution of Nekrasov's equation; φ has smooth crest and 0 ≤ φ < π/6.</p>
- Keady & Norbury '78: no solutions for μ ≤ μ. For μ > μ there exist continuous solutions with smooth crest and 0 ≤ φ < π/2.</p>
- ► Toland '78 & McLeod '79: $\{\phi_{\mu_n}\}_n$ converges to a solution of the limiting problem ϕ_0 as $\mu_n \to \infty$ (Stokes wave). Moreover, if $\lim_{s\to 0} \phi_0(s)$ exists then it must be $\frac{\pi}{6}$ (Stokes angle).
- ▶ Amick, Fraenkel & Toland '82, Plotnikov '82: $\lim_{s\to 0} \phi_0(s)$ exists.

A variational approach for water waves

► Solutions (FBP) ⇐⇒ critical points of the energy functional

$$J_h(u) \coloneqq \int_{\Omega} \left(|\nabla u|^2 + \chi_{\{u>0\}}(h-y)_+ \right) \, d\boldsymbol{x}, \quad h > 0,$$

defined for \boldsymbol{u} in the convex set

$$\mathcal{K} \coloneqq \left\{ u \in H^1_{\mathrm{loc}}(\Omega) : u \text{ is } \lambda \text{-periodic in } x \text{ and } u(\cdot, 0) \equiv m \right\},$$

see Alt & Caffarelli '81.

$$J(u) \coloneqq \int_{\Omega} \left(|\nabla u|^2 + \chi_{\{u>0\}} Q^2 \right) \, d\boldsymbol{x}.$$

Theorem (Alt & Caffarelli '81)

Assume that

- Ω is a domain with Lipschitz boundary,
- $\Gamma \subset \partial \Omega$,
- ▶ *Q* is Hölder continuous and s.t.

 $Q(\boldsymbol{x}) \ge Q_{\min} > 0$

• u_0 is nonnegative and s.t. $J(u_0) < \infty$. Let u be a minimizer of J over $\widetilde{\mathcal{K}} := \{H^1_{\text{loc}}(\Omega) : u = u_0 \text{ on } \Gamma\}$. Then $u \in C^{0,1}_{\text{loc}}(\Omega)$ and $\partial \{u > 0\} \in C^{1,\alpha}_{\text{loc}}(\Omega)$, for some $0 < \alpha < 1$.

Notice that √(h − y)₊ does not satisfy assumption (1), so one cannot expect this regularity for minimizers of J_h.

Giovanni Gravina (CMU)

BIRS workshop

(1)

$$J(u) \coloneqq \int_{\Omega} \left(|\nabla u|^2 + \chi_{\{u>0\}} Q^2 \right) \, d\boldsymbol{x}.$$

Theorem (Alt & Caffarelli '81)

Assume that

- Ω is a domain with Lipschitz boundary,
- $\Gamma \subset \partial \Omega$,
- Q is Hölder continuous and s.t.

 $Q(\boldsymbol{x}) \ge Q_{\min} > 0$

• u_0 is nonnegative and s.t. $J(u_0) < \infty$. Let u be a minimizer of J over $\widetilde{\mathcal{K}} := \{H^1_{\text{loc}}(\Omega) : u = u_0 \text{ on } \Gamma\}$. Then $u \in C^{0,1}_{\text{loc}}(\Omega)$ and $\partial \{u > 0\} \in C^{1,\alpha}_{\text{loc}}(\Omega)$, for some $0 < \alpha < 1$.

► Notice that √(h - y)₊ does not satisfy assumption (1), so one cannot expect this regularity for minimizers of J_h.

Giovanni Gravina (CMU)

BIRS workshop

(1)

The main drawback of the variational approach

Theorem

Every global minimizer of J_h over \mathcal{K} is a one dimensional function of the form u = u(y).

In particular, only flat profiles can be observed among the free boundaries of global minimizers (see Arama & Leoni '12).

$$\partial \{u > 0\}$$

$$\{u > 0\}$$

$$-\frac{\lambda}{2} \qquad u \equiv m \qquad \frac{\lambda}{2}$$

Related works

Arama & Leoni '12: u ≡ m → u = v₀ ∈ C¹_c((−λ/2, λ/2)). This is non-physical. Decay estimates for local minimizers:

$$|\nabla u(\boldsymbol{x})| \leq Cr^{1/2}, \quad \boldsymbol{x} \in B_r(\boldsymbol{x}_0),$$

for $\boldsymbol{x}_0 \in \partial \{u > 0\} \cap \{y = h\}.$

- Varvaruca & Weiss '11, see also Weiss & Zhang '12: If C = 1 ⇒ u is a Stokes wave.
- Fonseca, Leoni, Mora '17: Necessary and sufficient minimality conditions in terms of the second variation of J_h for smooth critical points.

Existence of non-flat profiles

By adding an additional Dirichlet boundary condition on part of the later boundary we can construct global minimizers of J_h that are not one dimensional.

We let

$$u_0(x,y) = \frac{m}{\gamma}(\gamma - y)_+$$

and consider the minimization problem for ${\cal J}_h$ in

$$\mathcal{K}_{\gamma} \coloneqq \left\{ u \in H^1_{\text{loc}}(\Omega) : u \text{ is } \lambda \text{-periodic in } x \text{ and } u = u_0 \text{ on } \Gamma_{\gamma} \right\},$$

where $\Gamma_{\gamma} \coloneqq \left(\left[-\frac{\lambda}{2}, \frac{\lambda}{2} \right] \times \{0\} \right) \cup \left(\left\{ \pm \frac{\lambda}{2} \right\} \times (\gamma, \infty) \right).$

Theorem (G. & Leoni '18: Existence of non-flat minimizers)

Given $m, \lambda, h > 0$, there exists $\overline{\gamma} = \overline{\gamma}(m, \lambda, h) > 0$ such that if $0 < \gamma < \overline{\gamma}$ then every global minimizer $u \in \mathcal{K}_{\gamma}$ of the functional J_h is not of the form u = u(y). We let

$$u_0(x,y) = \frac{m}{\gamma}(\gamma - y)_+$$

and consider the minimization problem for J_h in

$$\mathcal{K}_{\gamma} \coloneqq \left\{ u \in H^1_{\mathrm{loc}}(\Omega) : u \text{ is } \lambda \text{-periodic in } x \text{ and } u = u_0 \text{ on } \Gamma_{\gamma} \right\},$$

where $\Gamma_{\gamma} \coloneqq \left(\left[-\frac{\lambda}{2}, \frac{\lambda}{2} \right] \times \{0\} \right) \cup \left(\left\{ \pm \frac{\lambda}{2} \right\} \times (\gamma, \infty) \right).$

Theorem (G. & Leoni '18: Existence of non-flat minimizers)

Given $m, \lambda, h > 0$, there exists $\overline{\gamma} = \overline{\gamma}(m, \lambda, h) > 0$ such that if $0 < \gamma < \overline{\gamma}$ then every global minimizer $u \in \mathcal{K}_{\gamma}$ of the functional J_h is not of the form u = u(y).

Sketch of proof:

Main observation: for flat profiles, if γ is small, the Dirichlet energy plays a predominant role.

• If $w \in \operatorname{argmin}\{J_h(v) : v \text{ is flat and } \operatorname{supp} v \subset \{y \leq \gamma\}\}$ then

$$J_h(w) \sim \frac{1}{\gamma}$$

• We can construct a competitor u whose energy satisfies

$$J_h(u) \sim \log\left(1 + \frac{1}{\gamma}\right).$$

Main observation: for flat profiles, if γ is small, the Dirichlet energy plays a predominant role.

• If $w \in \operatorname{argmin}\{J_h(v) : v \text{ is flat and } \sup v \subset \{y \leq \gamma\}\}$ then

$$J_h(w) \sim \frac{1}{\gamma}$$

 \blacktriangleright We can construct a competitor u whose energy satisfies

$$J_h(u) \sim \log\left(1 + \frac{1}{\gamma}\right).$$

Existence of a critical height

We now let the parameter h vary and study how this affects the shape of minimizers.

Theorem (G. & Leoni '18: Existence of a critical height)

Let $h \mapsto \gamma_h$ be given as in the previous theorem (i.e. minimizers are not one-dimensional). Then there exists a critical height $0 < h_{\rm cr} < \infty$ with the property that

(i) if h_{cr} < h < ∞ then every global minimizer of J_h in K_{γ_h} has support below the line {y = h};

(ii) if $0 < h < h_{cr}$ then every global minimizer is positive in $\left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \times [h, \infty)$.

Proposition (Monotonicity)

Let u_h, u_δ be global minimizers of J_h and J_δ in \mathcal{K}_{γ_h} and $\mathcal{K}_{\gamma_\delta}$, respectively. Then, if $h < \delta$, $\{u_\delta > 0\} \subset \{u_h > 0\}$ and $u_\delta \le u_h$.

Giovanni Gravina (CMU)

BIRS workshop

Proposition (Monotonicity)

Let u_h, u_δ be global minimizers of J_h and J_δ in \mathcal{K}_{γ_h} and $\mathcal{K}_{\gamma_\delta}$, respectively. Then, if $h < \delta$, $\{u_\delta > 0\} \subset \{u_h > 0\}$ and $u_\delta \le u_h$.

Giovanni Gravina (CMU)

• Stokes waves can only be observed for $h = h_{cr}$.

- ▶ To prove the existence of a Stokes wave we need to show that there is a global minimizer u of $J_{h_{cr}}$ with support contained in $\{y \le h_{cr}\}$ and such that $(x, h_{cr}) \in \partial \{u > 0\}$.
- Idea: Want to find a Stokes wave as the limit of regular waves. (This is reminiscent of the works of Toland and McLeod)

Proposition (Convergence of minimizers)

Let $\{h_n\}_n \subset (0,\infty)$ be s.t. $h_n \nearrow h < \infty$ and for every n let $u_n \in \mathcal{K}_{\gamma_{h_n}}$ be a global minimizer of J_{h_n} . Then there exists a global minimizer u of J_h in \mathcal{K}_{γ_h} such that:

 \blacktriangleright $u_n \rightarrow u$ in $H^1_{\text{loc}}(\Omega)$,

• $u_n \rightarrow u$ uniformly on compact subsets of Ω .

Furthermore, u is independ of the sequences $\{h_n\}_n, \{u_n\}_n$.

- Stokes waves can only be observed for $h = h_{cr}$.
- ▶ To prove the existence of a Stokes wave we need to show that there is a global minimizer u of $J_{h_{\rm cr}}$ with support contained in $\{y \le h_{\rm cr}\}$ and such that $(x, h_{\rm cr}) \in \partial\{u > 0\}$.
- Idea: Want to find a Stokes wave as the limit of regular waves. (This is reminiscent of the works of Toland and McLeod)

Proposition (Convergence of minimizers)

Let $\{h_n\}_n \subset (0,\infty)$ be s.t. $h_n \nearrow h < \infty$ and for every n let $u_n \in \mathcal{K}_{\gamma_{h_n}}$ be a global minimizer of J_{h_n} . Then there exists a global minimizer u of J_h in \mathcal{K}_{γ_h} such that:

► $u_n \to u$ in $H^1_{\text{loc}}(\Omega)$,

• $u_n \rightarrow u$ uniformly on compact subsets of Ω .

Furthermore, u is independ of the sequences $\{h_n\}_n, \{u_n\}_n$.

- Stokes waves can only be observed for $h = h_{cr}$.
- ▶ To prove the existence of a Stokes wave we need to show that there is a global minimizer u of $J_{h_{cr}}$ with support contained in $\{y \le h_{cr}\}$ and such that $(x, h_{cr}) \in \partial \{u > 0\}$.
- Idea: Want to find a Stokes wave as the limit of regular waves. (This is reminiscent of the works of Toland and McLeod)

Proposition (Convergence of minimizers)

Let $\{h_n\}_n \subset (0,\infty)$ be s.t. $h_n \nearrow h < \infty$ and for every n let $u_n \in \mathcal{K}_{\gamma_{h_n}}$ be a global minimizer of J_{h_n} . Then there exists a global minimizer u of J_h in \mathcal{K}_{γ_h} such that:

► $u_n \to u$ in $H^1_{\text{loc}}(\Omega)$,

• $u_n \rightarrow u$ uniformly on compact subsets of Ω .

Furthermore, u is independ of the sequences $\{h_n\}_n, \{u_n\}_n$.

- Stokes waves can only be observed for $h = h_{cr}$.
- ▶ To prove the existence of a Stokes wave we need to show that there is a global minimizer u of $J_{h_{cr}}$ with support contained in $\{y \le h_{cr}\}$ and such that $(x, h_{cr}) \in \partial\{u > 0\}$.
- Idea: Want to find a Stokes wave as the limit of regular waves. (This is reminiscent of the works of Toland and McLeod)

Proposition (Convergence of minimizers)

Let $\{h_n\}_n \subset (0,\infty)$ be s.t. $h_n \nearrow h < \infty$ and for every n let $u_n \in \mathcal{K}_{\gamma_{h_n}}$ be a global minimizer of J_{h_n} . Then there exists a global minimizer u of J_h in \mathcal{K}_{γ_h} such that:

• $u_n \to u$ in $H^1_{\text{loc}}(\Omega)$,

• $u_n \rightarrow u$ uniformly on compact subsets of Ω .

Furthermore, u is independ of the sequences $\{h_n\}_n, \{u_n\}_n$.

For every h > 0 there are two (possibly equal) global minimizers u_h^+, u_h^- of J_h in \mathcal{K}_{γ_h} such that $u_h^- \leq u_h^+$ and if w is another global minimizer then $u_h^- \leq w \leq u_h^+$.

Consider $u_{h_{cr}}^+$ and $u_{h_{cr}}^-$. We can show that:

- ▶ the support of $u_{h_{cr}}^-$ is contained in $\{y \le h_{cr}\}$,
- ▶ the support of $u_{h_{cr}}^+$ cannot be strictly below the line $\{y = h_{cr}\}$.
- ▶ We have not been able to prove that the support of any global minimizer touches the line $\{y = h_{cr}\}$. This would follow if we had uniqueness at this level.

Theorem (G. & Leoni '18)

For every h > 0 there are two (possibly equal) global minimizers u_h^+, u_h^- of J_h in \mathcal{K}_{γ_h} such that $u_h^- \leq u_h^+$ and if w is another global minimizer then $u_h^- \leq w \leq u_h^+$.

Consider $u_{h_{cr}}^+$ and $u_{h_{cr}}^-$. We can show that:

- ▶ the support of $u_{h_{cr}}^-$ is contained in $\{y \le h_{cr}\}$,
- ▶ the support of $u_{h_{cr}}^+$ cannot be strictly below the line $\{y = h_{cr}\}$.
- ▶ We have not been able to prove that the support of any global minimizer touches the line $\{y = h_{cr}\}$. This would follow if we had uniqueness at this level.

Theorem (G. & Leoni '18)

For every h > 0 there are two (possibly equal) global minimizers u_h^+, u_h^- of J_h in \mathcal{K}_{γ_h} such that $u_h^- \leq u_h^+$ and if w is another global minimizer then $u_h^- \leq w \leq u_h^+$.

Consider $u_{h_{cr}}^+$ and $u_{h_{cr}}^-$. We can show that:

- ▶ the support of $u_{h_{cr}}^-$ is contained in $\{y \le h_{cr}\}$,
- ▶ the support of u_{hcr}^+ cannot be strictly below the line $\{y = h_{cr}\}$.
- ▶ We have not been able to prove that the support of any global minimizer touches the line $\{y = h_{cr}\}$. This would follow if we had uniqueness at this level.

Theorem (G. & Leoni '18)

For every h > 0 there are two (possibly equal) global minimizers u_h^+, u_h^- of J_h in \mathcal{K}_{γ_h} such that $u_h^- \leq u_h^+$ and if w is another global minimizer then $u_h^- \leq w \leq u_h^+$.

Consider $u_{h_{cr}}^+$ and $u_{h_{cr}}^-$. We can show that:

- ▶ the support of $u_{h_{\rm cr}}^-$ is contained in $\{y \le h_{\rm cr}\}$,
- ▶ the support of $u_{h_{cr}}^+$ cannot be strictly below the line $\{y = h_{cr}\}$.
- ▶ We have not been able to prove that the support of any global minimizer touches the line $\{y = h_{cr}\}$. This would follow if we had uniqueness at this level.

Theorem (G. & Leoni '18)

For every h > 0 there are two (possibly equal) global minimizers u_h^+, u_h^- of J_h in \mathcal{K}_{γ_h} such that $u_h^- \leq u_h^+$ and if w is another global minimizer then $u_h^- \leq w \leq u_h^+$.

Consider $u_{h_{cr}}^+$ and $u_{h_{cr}}^-$. We can show that:

- ▶ the support of $u_{h_{\rm cr}}^-$ is contained in $\{y \le h_{\rm cr}\}$,
- ▶ the support of $u_{h_{cr}}^+$ cannot be strictly below the line $\{y = h_{cr}\}$.
- ▶ We have not been able to prove that the support of any global minimizer touches the line $\{y = h_{cr}\}$. This would follow if we had uniqueness at this level.

Theorem (G. & Leoni '18)

Scaling of the critical height

- Recall: $u \equiv m$ on $(-\lambda/2, \lambda/2) \times \{0\}$.
- ► $h_{\rm cr} \le \frac{3}{2^{1/3}} m^{2/3}$.
- If m is small enough then

$$h_{\rm cr} \ge \frac{3k}{2^{2/3}}m^{2/3},$$

where k is the smallest positive root of $27t^3 + 16t - 8 = 0$.

Scaling of the critical height

• Recall:
$$u \equiv m$$
 on $(-\lambda/2, \lambda/2) \times \{0\}$.

•
$$h_{\rm cr} \le \frac{3}{2^{1/3}} m^{2/3}$$
.

• If m is small enough then

$$h_{\rm cr} \ge \frac{3k}{2^{2/3}}m^{2/3},$$

where k is the smallest positive root of $27t^3 + 16t - 8 = 0$.

Scaling of the critical height

- Recall: $u \equiv m$ on $(-\lambda/2, \lambda/2) \times \{0\}$.
- $h_{\rm cr} \le \frac{3}{2^{1/3}} m^{2/3}$.
- If m is small enough then

$$h_{\rm cr} \ge \frac{3k}{2^{2/3}}m^{2/3},$$

where k is the smallest positive root of $27t^3 + 16t - 8 = 0$.

Ongoing work: boundary regularity

- Case 1: regular waves.
- ► Case 2: Chang-Lara & Savin '17: ∂{u > 0} ∈ C^{1,1/2}_{loc}, non-physical behavior.
- WTS: Case 1 occurs by optimizing γ_h and varying λ .

Future work: variational existence of Stokes waves

- Can we improve the uniqueness result?
- Find optimal γ_h .
- Play with the parameters m, λ .

Thank you for your attention!

Additional references

- Free boundary problems: Alt, Caffarelli & Friedman '84, Caffarelli '87, '88, '89, Caffarelli, Jerison & Kenig '04, Raynor '08, Weiss '99, '04.
- Singularly perturbed problems: Berestycki, Caffarelli, & Nirenberg '90, Caffarelli '95, Danielli & Petrosyan '05, Danielli, Petrosyan, & Shahgholian '03, Gurevich '99, Karakhanyan '06, Karakhanyan '18, Lederman & Wolanski '98, Moreira & Texeira '07.
- "Moving parameters": Alt, Caffarelli & Friedman '82, '83, '85, Fusco & Morini '12.
- Water waves: Constantin & Strauss '04, '10, Constantin, Sattinger & Strauss '06, Constantin, Strauss & Varvaruca '16, Chen, Walsh & Wheeler '16, '18, Kinsey & Wu '18, Plotnikov & Toland '04