Jones modes in Lipschitz domains

 ${\sf Sebastian \ Domínguez^1 \ \ Nilima \ Nigam^1 \ \ Jiguang \ Sun^2}$

Spectral Geometry: Theory, Numerical Analysis and Applications BIRS, Canada

July 6, 2018

¹Department of Mathematics, Simon Fraser University, Canada.

²Department of Mathematical Sciences, Michigan Technological University, USA. 🔊 < 👁

Sebastian Domínguez

Jones modes

July 6, 2018 1 / 20

Fluid-solid interaction

Hemholtz equation for p:

$$\Delta p + (w/c)^2 p = 0,$$

Linear elasticity: $\mu_s > 0$, $\lambda_s + \left(\frac{2}{d}\right) \mu_s > 0$

$$\operatorname{div} \boldsymbol{\sigma}(\mathbf{u}_s) + w^2 \rho_s \tilde{\mathbf{u}}_s = \mathbf{0}.$$

BC's on the interface:

$$\sigma(\mathbf{u}_s)\mathbf{n} = -(p + p_{inc})\mathbf{n},$$

$$w^2 \rho_f \mathbf{u}_s \cdot \mathbf{n} = \nabla(p + p_{inc}) \cdot \mathbf{n}.$$

Condition at infinity:

$$\frac{\partial p}{\partial r} - i(w/c)p = o(1/r), \qquad r := \|\mathbf{x}\|.$$

²Hsiao, Kleinman and Roach 2000; Hsiao, Xu and Yin 2017 (B > (E >

Non-uniqueness

Lemma

If (\mathbf{u}_s, p) solves the time harmonic fluid-solid interaction problem then $(\mathbf{u}_s + \mathbf{u}_0, p)$ also solves this problem, with \mathbf{u}_0 a non-zero solution of

 $\operatorname{div} \boldsymbol{\sigma}(\mathbf{u}_0) + \rho_s w^2 \mathbf{u}_0 = \mathbf{0}, \text{ in } \Omega_s, \quad \boldsymbol{\sigma}(\mathbf{u}_0)\mathbf{n} = \mathbf{0}, \quad \mathbf{u}_0 \cdot \mathbf{n} = 0, \text{ on } \Gamma.$

Note

- Condition on shear along the interface;
- Robin condition in an "artificial" boundary away from the solid;
- no eigenpairs for C^{∞} domains in \mathbb{R}^3 .

HKR, 2000; Gatica et al., 2009; Barucq et al., 2014; T. Hargé, 1990

The EV problem: Jones modes

This problem is not uniquely solvable when $w^2 \rho_s$ is an eigenvalue of

$$\begin{aligned} &\operatorname{div} \boldsymbol{\sigma}(\mathbf{u}_s) + w^2 \rho_s \mathbf{u}_s = \mathbf{0}, & \operatorname{in} \, \Omega_s, \\ & \boldsymbol{\sigma}(\mathbf{u}_s)\mathbf{n} = \mathbf{0}, & \mathbf{u}_s \cdot \mathbf{n} = \mathbf{0}, & \operatorname{on} \, \partial \Omega_s. \end{aligned}$$

A non-trivial solution \mathbf{u}_s for some w^2 is called a *Jones mode*.

Note

Over-determined EV:

Elasticity equation + Traction condition + extra constraint on \mathbf{u}_s .

² Jones et al.,	1983	and	1984
----------------------------	------	-----	------

< ロ > < 同 > < 三 > < 三

shear and compression modes

s-waves: div
$$\mathbf{u}_s = \mathbf{0}$$
 p-waves: rot $\mathbf{u}_s = \mathbf{0}$

On $[0, a] \times [0, b]$,

$$w_{mn}^{2} := \begin{cases} \left(\frac{\pi^{2}\mu}{\rho}\right) \left(\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right), \\ \left(\frac{\pi^{2}(\lambda+2\mu)}{\rho}\right) \left(\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right), \end{cases}$$

with eigenfunctions:

$$\mathbf{u}_{mn} := \begin{cases} an\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)\hat{i} - bm\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\hat{j},\\ bm\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)\hat{i} + an\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\hat{j}, \end{cases}$$

Sebastian Domínguez

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ July 6, 2018 5 / 20

• • • • • • • • • • • •

Weak formulation (on Ω_s)

Consider $\mathbf{H}^1(\Omega) := H^1(\Omega) \times H^1(\Omega)$ and define

$$\mathbf{H} := \Big\{ \mathbf{u} \in \mathbf{H}^1(\Omega) : \ \mathbf{u} \cdot \mathbf{n} = 0 \quad \text{on } \partial \Omega \Big\}.$$

FORMULATION: find $(w^2, \mathbf{u}) \in \mathbb{C} \times \mathbf{H}$ such that

$$\mathbf{a}(\mathbf{u},\mathbf{v})=
ho w^2(\mathbf{u},\mathbf{v}) \qquad orall \mathbf{v}\in \mathbf{H},$$

where $a(\mathbf{u}, \mathbf{v}) := \mu(\nabla \mathbf{u}, \nabla \mathbf{v}) + (\lambda + \mu)(\operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{v})$ or $(\sigma(\mathbf{u}), \epsilon(\mathbf{v}))$.

Note

•
$$a(\mathbf{u},\mathbf{v}) \leq (\lambda+\mu) \|\mathbf{u}\|_1 \|\mathbf{v}\|_1;$$

• Rayleigh quotient + properties of $a(\cdot, \cdot)$ and $(\cdot, \cdot) \Rightarrow w^2 \ge 0$.

Sebastian Domínguez

Ellipticity of a

We can get

$m{a}(\mathbf{u},\mathbf{u})\geq\minig\{2\mu,d(\lambda+(2/d)\mu)ig\}\|m{\epsilon}(\mathbf{u})\|_0^2,\quadorall\,\mathbf{u}\in\mathbf{H}^1(\Omega).$

(日) (周) (三) (三)

Ellipticity of a

We can get

$$m{a}(\mathbf{u},\mathbf{u})\geq\minig\{2\mu,d(\lambda+(2/d)\mu)ig\}\|m{\epsilon}(\mathbf{u})\|_0^2,\quadorall\,\mathbf{u}\in\mathbf{H}^1(\Omega).$$

Theorem (Bauer 2016, Domínguez 2018)

Let Ω be a non-axisymmetric bounded and Lipschitz domain in \mathbb{R}^d . Then, there is a positive constant C > 0 such that

 $\|\boldsymbol{\epsilon}(\mathbf{u})\|_0 \geq C \|\mathbf{u}\|_1, \quad \forall \, \mathbf{u} \in \mathbf{H}.$

Sebastian	Domi	nguez
-----------	------	-------

→ ∃ →

Lemma

Under the same assumptions for Ω , there is a constant C > 0 such that

 $a(\mathbf{u},\mathbf{u}) \geq c \|\mathbf{u}\|_1^2, \quad \forall \, \mathbf{u} \in \mathbf{H}.$

The corresponding solution operator T is then

- linear and bounded with $||T||_{\mathbf{H}'} = \frac{\rho}{C}$;
- compact from **H** to itself;
- self-adjoint w.r.t. $a(\cdot, \cdot)$.
- Spectral Theorem \Rightarrow eigenpairs $\{w_n\}$ and $\{u_n\}$ with $w_n \rightarrow +\infty$.

(日) (同) (三) (三)

Rigid motions

Lemma

- $w^2 = 0$ is an eigenvalue with:
 - (i) a pure translation as eigenfunction if $\partial \Omega$ consists of two parallel planes;
- (ii) a pure rotation \mathbf{u}_0 as eigenfunction if Ω is axisymmetric about the axis of rotation of \mathbf{u}_0 .

Shifted formulation: find $(\mathbf{u}, w^2) \in \mathbf{H} imes \mathbb{R}$ such that

$$\widetilde{a}(\mathbf{u},\mathbf{v}):=a(\mathbf{u},\mathbf{v})+
ho(\mathbf{u},\mathbf{v})=
ho(w^2+1)(\mathbf{u},\mathbf{v})\qquadorall\mathbf{v}\in\mathbf{H},$$

- $\tilde{a}(\mathbf{u},\mathbf{u}) \geq \min\{\mu,\rho\} \|\mathbf{u}\|_{1}^{2};$
- the corresponding solution operator $\tilde{\mathcal{T}}$ is well-defined, compact and self-adjoint;

(日) (同) (三) (三)

Discrete scheme

Let $\mathbf{H}_h \subseteq \mathbf{H}$ (Lagrange elements): find $\mathbf{u}_h \in \mathbf{H}_h$ such that

$$a(\mathbf{u}_h,\mathbf{v}_h) = \rho \kappa_h(\mathbf{u}_h,\mathbf{v}_h), \quad \forall \, \mathbf{v}_h \in \mathbf{H}_h,$$

with $\kappa_h := w_h^2$ or $w_h^2 + 1$.

- a is H_h-elliptic;
- a discrete solution operator T_h (cf. \tilde{T}_h) is well defined;
- error bound for evs:

$$\frac{|\kappa-\kappa_h|}{\kappa} \leq Ch^{2(t-1)}, \quad t>1.$$

operator approximation:

$$\|T-T_h\|\leq ch^{t-1}.$$

²Babuška and Osborn, 1991.

Square ($\mu = \lambda = 1$)

Sebastian Domínguez

Jones modes

July 6, 2018 11 / 20

Square (contd.)

j	w ²	w^2/π^2	$\ \operatorname{div} \mathbf{u}\ _0^2$	$\ \operatorname{rot} \mathbf{u}\ _0^2$	x-component	y-component
1	19.74	2.000	9.870	0.0002633		
2	19.74	2.000	9.870	0.0001704		
3	19.74	2.000	5.883e-05	19.72		
4	39.48	4.000	19.74	0.0005061		

Table: Unit square with parameters $\mu = \rho = 1$, $\lambda = 0$.

Sebastian Domínguez

July 6, 2018 12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

12 / 20

Square (contd.)

j	ν_j	ν_j/π^2	$\ \operatorname{div} \mathbf{u}\ _0^2$	$\ \operatorname{rot} \mathbf{u}\ _0^2$	x-component	y-component
1	12.34	1.250	1.231e-07	12.27		
2	19.74	2.000	9.515e-07	19.69	estina 🗐	
3	29.61	3.000	2.467	2.271e-05		
4	32.08	3.250	2.74e-06	32.05		
5	41.95	4.250	2.223e-06	41.62		

Table: 2X1 rectangle with parameters $\mu = \rho = 1, \lambda = 10$.

July 6, 2018 13 / 20

Square (contd.)

j	ν_j	ν_j/π^2	$\ \operatorname{div} \mathbf{u}\ _0^2$	$\ \operatorname{rot} \mathbf{u}\ _0^2$	x-component	y-component
1	51.82	5.25	2.467	2.271e-05		
2	123.4	12.5	2.271e-07	12.27		
3	197.4	20	1.757e-06	19.69		
4	207.3	21	9.869	0.0004004		
5	207.3	21	9.87	0.000243		

Table: 2X1 rectangle with parameters $\mu = 10, \lambda = \rho = 1$.

Sebastian Domingue	z
--------------------	---

불 ▶ ◀ 불 ▶ 불 ∽ ९... July 6, 2018 14 / 20

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Triangle

j	w ²	w^2/π^2	$\ \operatorname{div} \mathbf{u}\ _0^2$	$\ \operatorname{rot} \mathbf{u}\ _0^2$	x-component	y-component
1	4.6563	0.4718	0.7007	24.36		
2	8.3125	0.8422	0.4333	14.42		
3	11.84674	1.200	2.527	4.15		
4	21.0647	2.134	1.640	75.96		

Table: Isosceles triangle of vertices (0,0), (2,0) and (1,2) with parameters $\lambda = \mu = \rho = 1$.

L-shape, $\rho = \mu = \lambda = 1$

Sebastian Domínguez

Jones modes

July 6, 2018 16 / 20

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CV properties on polyhedron

July 6, 2018 17 / 20

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Conclusions and future work

Conclusions:

- FEM provides a reliable scheme to approximate Jones modes on polyhedral domains;
- the extra constraint makes the problem "domain dependent".

Future work:

- Does this scheme work for more general smooth domains?
- A posteriori error analysis would help to improve the convergence for computations on non-convex domains.

Thanks!

<u> </u>		-	
50	haction	L)om	10000
.) E	Dastiali	DOILI	nighez

・ロト ・聞ト ・ヨト ・ヨト

References

- I. BABUŠKA AND J. OSBORN. EIGENVALUE PROBLEMS. Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part I), P. G. Ciarlet and J. L. Lions (editors). North-Holland Publications, Amsterdam, pp. 641-787, (1991).
- S. DOMÍNGUEZ, N. NIGAM AND H. SUTTON. A first Korn's inequality and the Jones eigenvalue problem on Lipschitz domains. In preparation.

- S. DOMÍNGUEZ, N. NIGAM AND J. SUN. Revisiting the Jones eigenproblem in fluid-structure interaction. arXiv:1807.01359 [math.NA]. Submitted to SIAP.
- P. GRISVARD. *Elliptic problems in nonsmooth domains*. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA, (2011).
- GEORGE C. HSIAO, RALPH E. KLEINMAN AND GARY F. ROACH. Weak solutions of fluid-solid interaction problems. Math. Nachr., 218, 139–163, (2000).
- D.S. JONES. Low-frequency scattering by a body in lubricated contact. Quart. J. Mech. Appl. Mathem., 22, 111–137, (1983).
- D. NATROSHVILI, G. SADUNISHVILI, I. SIGUA. Some Remarks concerning Jones eigenfrequencies and Jones modes. Georgian Mathematical Journal, 12 (2), 337–348, (2005).

< ロ > < 同 > < 三 > < 三