Guaranteed Lower Bounds for Eigenvalues

Joscha Gedicke (joint work with Carsten Carstensen)

joscha.gedicke@univie.ac.at

Spectral Geometry: Theory, Numerical Analysis and Applications BIRS 6 July 2018

Der Wissenschaftsfonds.

Crouzeix-Raviart Nonconforming FEM

$$CR_0^1(\mathcal{T}) := \{ v \in P_1(\mathcal{T}) \mid v \text{ is continuous at mid}(\mathcal{E}) \text{ and} \\ v = 0 \text{ at mid}(\mathcal{E}(\partial\Omega)) \}$$
$$P_1(\mathcal{T}) := \{ v \in L^2(\Omega) \mid \forall T \in \mathcal{T}, v \mid_{\mathcal{T}} \text{ is affine} \}$$

Nonconforming interpolant $\mathcal{I}_{NC} : H^1_0(\Omega) \to CR^1_0(\mathcal{T})$

$$\mathcal{I}_{NC}v(\mathsf{mid}(E)) := rac{1}{|E|} \int_E v \, ds \quad ext{for all } E \in \mathcal{E}$$

Seek eigenpair $(u, \lambda) \in V \times \mathbb{R}^+ := H^1_0(\Omega) \times \mathbb{R}^+$ with $||u||_{L^2(\Omega)} = 1$ s.t.

$$\begin{aligned} -\Delta u &= \lambda u \quad \text{in } \Omega \subset \mathbb{R}^d \\ u &= 0 \quad \text{on } \partial \Omega \end{aligned}$$

Variational formulation: Seek $(\lambda_{CR}, u_{CR}) \in \mathbb{R} \times CR_0^1(\mathcal{T})$ with $b(u_{CR}, u_{CR}) = 1$ and

$$a_{NC}(u_{CR}, v_{CR}) = \lambda_{CR} b(u_{CR}, v_{CR}) \text{ for all } v_{CR} \in CR_0^1(\mathcal{T})$$

with nonconforming bilinear form

$$a_{NC}(u_{CR}, v_{CR}) := \sum_{T \in \mathcal{T}} \int_{T} \nabla u_{CR} \cdot \nabla v_{CR} \, dx \quad \text{for all } u_{CR}, v_{CR} \in CR_0^1(\mathcal{T})$$

Guaranteed Lower Bounds for Eigenvalues

$$\frac{\lambda_{CR,1}}{1+0.1931\lambda_{CR,1}H^2} \le \lambda_1$$

Example: $\lambda_1 = 2\pi^2 = 19.7392$

Lower Bound for Exact Solve

$$\frac{\lambda_{CR,1}}{1+\kappa^2\lambda_{CR,1}H^2} \le \lambda_1$$

Orthogonality

$$\lambda_{1} = \| u_{1} - \mathcal{I}_{NC} u_{1} \|_{NC}^{2} + \| \mathcal{I}_{NC} u_{1} \|_{NC}^{2}$$

Rayleigh-Ritz principle

$$|||\boldsymbol{u}_1 - \mathcal{I}_{NC}\boldsymbol{u}_1|||_{NC}^2 + \lambda_{CR,1}||\mathcal{I}_{NC}\boldsymbol{u}_1||^2 \le \lambda_1$$

binomial expansion & adding zero

$$1-s^2-2(1-s)\|u_1-\mathcal{I}_{NC}u_1\| \le \|\mathcal{I}_{NC}u_1\|^2$$

Interpolation estimate

$$\|u_1 - \mathcal{I}_{NC} u_1\| \le \sqrt{1/8 + j_{1,1}^{-2}} H \| u_1 - \mathcal{I}_{NC} u_1 \|_{NC}$$

Interpolation for Upper Bound

 $\mathcal{I}_{CM} v_{CR}(z) := \begin{cases} 0 & \text{if } z \text{ lies on the boundary } \partial \Omega \\ v_{CR}(z) & \text{if } z \text{ is the midpoint of an edge } E \in \mathcal{E}(\Omega) \\ v_{min}(z) & \text{if } z \in \mathcal{N}(\Omega) \end{cases}$

$$W_z := \{ w \in P_1(\mathcal{T}^*(z)) \cap C(\overline{\omega}_z^*) \mid w = v_{CR} \text{ on } \partial \omega_z^* \}$$

 $v_{min} \in W_z$ is the unique minimizer of

$$\min_{w \in W_z} \sum_{T \in \mathcal{T}^*(z)} \|\nabla(v_{CR} - w)\|_{L^2(T)}^2$$

Theorem

Let $(\tilde{\lambda}_{CR,1}, \tilde{u}_{CR,1}) \in \mathbb{R} \times CR_0^1(\mathcal{T})$ be an approximation of the eigenpair (λ_1, u_1) of the smallest eigenvalue with $\|\tilde{u}_{CR,1}\|_{L^2(\Omega)} = 1$ and with algebraic residual $\mathbf{r} := \mathbf{A}\tilde{\mathbf{u}}_{CR,1} - \tilde{\lambda}_{CR,1}\mathbf{B}\tilde{\mathbf{u}}_{CR,1}$ and let $\mathcal{I}_{CM}\tilde{u}_{CR,1}$ be the quasi-interpolant of $\tilde{u}_{CR,1}$. Suppose separation of $\tilde{\lambda}_{CR,1}$ from the remaining discrete spectrum in the sense that $\tilde{\lambda}_{CR,1}$ is closer to the smallest discrete eigenvalue $\lambda_{CR,1}$ than to any other discrete eigenvalue and suppose that $\|\mathbf{r}\|_{\mathbf{B}^{-1}} < \tilde{\lambda}_{CR,1}$. Then it holds that

$$\frac{\tilde{\lambda}_{CR,1} - \|\mathbf{r}\|_{\mathbf{B}^{-1}}}{1 + \kappa^2 (\tilde{\lambda}_{CR,1} - \|\mathbf{r}\|_{\mathbf{B}^{-1}}) H^2} \le \lambda_1 \le R(\mathcal{I}_{CM} \tilde{u}_{CR,1})$$

Example: $\lambda_1 = 2\pi^2 = 19.7392$

Guaranteed Bounds for Eigenvalues

Efficiency for the Class of Graded Meshes

$$\eta := R(\mathcal{I}_{CM}\tilde{u}_{CR,1}) - \frac{\tilde{\lambda}_{CR,1} - \|\mathbf{r}\|_{\mathbf{B}^{-1}}}{1 + \kappa^2(\tilde{\lambda}_{CR,1} - \|\mathbf{r}\|_{\mathbf{B}^{-1}})H^2}$$

Theorem

For all graded meshes the eigenvalue bounds are efficient in the sense that the difference η of the upper and lower bounds satisfies

$$\begin{split} \eta &\lesssim (1 + H^{2} \tilde{\lambda}_{CR,1}) \| u_{1} - \tilde{u}_{CR,1} \| \|_{NC}^{2} \\ &+ H^{2} \left((\lambda_{1} - \lambda_{CR,1})^{2} + \lambda_{1} \lambda_{CR,1} \| u_{1} - u_{CR,1} \|^{2} \right) \\ &+ |\lambda_{1} - \tilde{\lambda}_{CR,1}| + \| \mathbf{A} (\mathbf{u}_{CR,1} - \tilde{\mathbf{u}}_{CR,1}) \|_{\mathbf{B}^{-1}} \\ &+ \lambda_{CR,1} \| u_{CR,1} - \tilde{u}_{CR,1} \| + |\lambda_{CR,1} - \tilde{\lambda}_{CR,1}| \end{split}$$

Adaptive Finite Element Method & Error Balancing

$$|\lambda_1 - \tilde{\lambda}_{1,\ell}| \le \eta_1 + \eta_2 + \eta_3$$

with

$$\begin{split} \eta_{1} &:= \frac{\tilde{\lambda}_{1,\ell} \kappa^{2} (\tilde{\lambda}_{1,\ell} - \|\mathbf{r}_{\ell}\|_{\mathbf{B}_{\ell}^{-1}}) H_{\ell}^{2}}{1 - \kappa^{4} (\tilde{\lambda}_{1,\ell} - \|\mathbf{r}_{\ell}\|_{\mathbf{B}_{\ell}^{-1}})^{2} H_{\ell}^{4}} \\ \eta_{2} &:= \frac{\|\mathbf{r}_{\ell}\|_{\mathbf{B}_{\ell}^{-1}}}{1 + \kappa^{2} (\tilde{\lambda}_{1,\ell} - \|\mathbf{r}_{\ell}\|_{\mathbf{B}_{\ell}^{-1}}) H_{\ell}^{2}} \\ \eta_{3} &:= R(\mathcal{I}_{CM} \tilde{u}_{1,\ell}) - \frac{\tilde{\lambda}_{1,\ell}}{1 - \kappa^{4} (\tilde{\lambda}_{1,\ell} - \|\mathbf{r}_{\ell}\|_{\mathbf{B}_{\ell}^{-1}})^{2} H_{\ell}^{4}} \end{split}$$

L-shaped Domain Example

Joscha Gedicke

eigenvalue bounds

Higher Eigenvalues

Theorem

Suppose that the separation condition

$$H < \left(\sqrt{1+1/J} - 1\right)/(\kappa \lambda_J^{1/2})$$

holds for the J-th exact eigenvalue λ_J . Let $(\tilde{\lambda}_{CR,J}, \tilde{u}_{CR,J}) \in \mathbb{R} \times CR_0^1(\mathcal{T})$ with $\|\tilde{u}_{CR,J}\|_{L^2(\Omega)} = 1$ and algebraic residual $\mathbf{r} := \mathbf{A}\tilde{\mathbf{u}}_{CR,J} - \tilde{\lambda}_{CR,J}\mathbf{B}\tilde{\mathbf{u}}_{CR,J}$ approximate the J-th eigenpair (λ_J, u_J) . Suppose separation of $\tilde{\lambda}_{CR,J}$ from the remaining discrete spectrum in the sense that $\tilde{\lambda}_{CR,J}$ is closer to the discrete eigenvalue $\lambda_{CR,J}$ than to any other discrete eigenvalues and that $\|\mathbf{r}\|_{\mathbf{B}^{-1}} < \tilde{\lambda}_{CR,J}$. Then it holds that

$$\frac{\tilde{\lambda}_{CR,J} - \|\mathbf{r}\|_{\mathbf{B}^{-1}}}{1 + \kappa^2 (\tilde{\lambda}_{CR,J} - \|\mathbf{r}\|_{\mathbf{B}^{-1}}) H^2} \le \lambda_J \le \max_{\xi \in \mathbb{R}^J \setminus \{0\}} R\left(\sum_{j=1}^J \xi_j \mathcal{I}_{CM} \tilde{u}_{CR,j}\right)$$

"Can one hear the shape of a drum?" (Kac 1966)

Shape of a Drum Eigenvalue Bounds

$\lambda_{50} = 54.1879356$	lower bounds	
Ν	left domain	right domain
2760	40.1393050426432 <mark>08</mark>	40.1393050426432 <mark>37</mark>
10896	49.8237362491522 <mark>33</mark>	49.8237362491522 <mark>40</mark>
43296	53.022275017108 <mark>896</mark>	53.022275017108 <mark>903</mark>
172608	53.8898704594215 <mark>45</mark>	53.8898704594215 <mark>37</mark>
689280	54.112360562895 <mark>724</mark>	54.112360562895 <mark>560</mark>
2754816	54.1687237968215 <mark>10</mark>	54.1687237968215 <mark>38</mark>
11014656	54.183012990240 <mark>513</mark>	54.183012990240 <mark>186</mark>
) E4 10702E6	upper bounds	
$\lambda_{50} = 54.1079550$	upper	bounds
$\lambda_{50} = 54.1679550$ N	left domain	right domain
$\frac{\lambda_{50} = 54.1879350}{N}$	upper left domain 56.619351329573 <mark>185</mark>	right domain 56.619351329573 <mark>249</mark>
$\frac{N}{100000000000000000000000000000000000$	upper left domain 56.619351329573 <mark>185</mark> 54.8184246845603 <mark>34</mark>	right domain 56.619351329573249 54.8184246845603 <mark>06</mark>
$\frac{N}{100000000000000000000000000000000000$	left domain 56.619351329573185 54.818424684560334 54.352753736838082	right domain 56.619351329573249 54.818424684560306 54.352753736838132
$ \frac{N}{100000000000000000000000000000000000$	left domain 56.619351329573185 54.818424684560334 54.352753736838082 54.231273697990432	right domain 56.619351329573249 54.818424684560306 54.352753736838132 54.231273697990602
$ \frac{N}{100000000000000000000000000000000000$	left domain 56.619351329573185 54.818424684560334 54.352753736838082 54.231273697990432 54.199573365120656	right domain 56.619351329573249 54.818424684560306 54.352753736838132 54.231273697990602 54.199573365121147
$\begin{array}{r} \lambda_{50} = 54.1679350 \\ \hline N \\ \hline 2760 \\ 10896 \\ 43296 \\ 172608 \\ 689280 \\ 2754816 \end{array}$	left domain 56.619351329573185 54.818424684560334 54.352753736838082 54.231273697990432 54.199573365120656 54.191162363149061	right domain 56.619351329573249 54.818424684560306 54.352753736838132 54.231273697990602 54.199573365121147 54.191162363147861

Lehmann-Goerisch, Weinstein and Kato Bounds

- Based on flux approximations
- Allow for higher order FEM
- Need a priori information on λ_{J−1} and λ_{J+1} ⇒ use guaranteed bounds based on CR¹₀(T) FEM on coarse meshes

Left domain with continuous $P_8(\mathcal{T})$ FEM and 'exact' solve:

Ν	lower	upper
14701	53.89423022818913	54.18796257468186
15961	54.01893045692087	54.18795201892610
17769	54.10749616313925	54.18794349206255
27669	54.18 <mark>376165215992</mark>	54.18793604159895
33905	54.187 <mark>06280054064</mark>	54.187 <mark>93573134040</mark>
50505	54.1879 <mark>2572767124</mark>	54.1879 <mark>3562650560</mark>
59893	54.18793 <mark>452877433</mark>	54.18793 <mark>562557860</mark>
73201	54.187935 <mark>51973868</mark>	54.187935 <mark>62538509</mark>

- T. Vejchodský, Three methods for two-sided bounds of eigenvalues–A comparison, Numer. Methods Partial Differential Eq., 34:1188–1208, 2018
- E. Cancés, G. Dusson, Y. Maday, B. Stamm, and M. Vohralík, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations, SIAM J. Numer. Anal. 55(5):2228–2254, 2017
- X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math. Comput. 267:341–355, 2015
- C. Carstensen and J. Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comp., 83(290):2605–2629, 2014
- C. Carstensen, J. Gedicke, and D. Rim, Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods, J. Comput. Math., 30(4):337–353, 2012