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Problem

• (Mn, g) compact, smooth, no boundary.

• −∆gφλj = λ2
j φλj with λj →∞, ‖φλj ‖L2(M) = 1.

Question: H ⊂ M submanifold. What’s the behavior of

lim
λ→∞

∫
H
φλ dσH ?
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What’s known

M surface, H curve

M manifold, H submanifold
k= co-dimension of H

∫
H φλ dσH = O(1)

∫
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improvements to
O(1/

√
log λ)

Good ’83, Hejhal’82
M hyperbolic
H closed geodesic

Chen-Sogge’15
M sect.curv< 0
H geodesic

Sogge-Xi-Zhang’16
M sect.curv< 0
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Wyman’17
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H with curvature
conditions

∫
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k−1
2 )

∫
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Defect measures

A defect measure µ for {φλj } is a probability measure on S∗M s.t. for all A ∈ Ψ(M)〈
A φλj , φλj

〉 j→∞−→
∫

S∗M
σ(A) dµ.

Some facts:

• Every sequence {φλ} has a subsequence {φλj } with a defect measure µ.

• µ is invariant under the geodesic flow.

• {φλ} is quantum ergodic: µ is the Liouville measure on S∗M.
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Measures on SN∗H (unit co-normal directions to H)

Let {φλ} have defect measure µ. Set

µH (A) := 1
2δ
µ

( ⋃
|t|≤δ

Gt (A)
)

A ⊂ SN∗H

Theorem (C-Galkowski-Toth)
If µH (SN∗H) = 0 and H is a hypersurface (k = 1), then∫

H
φλdσH = o(1),

and ∫
H
∂νφλdσH = o(λ).

Always true if {φλ} is a Quantum Ergodic sequence.



Measures on SN∗H (unit co-normal directions to H)

Let {φλ} have defect measure µ.

Set

µH (A) := 1
2δ
µ

( ⋃
|t|≤δ

Gt (A)
)

A ⊂ SN∗H

Theorem (C-Galkowski-Toth)
If µH (SN∗H) = 0 and H is a hypersurface (k = 1), then∫

H
φλdσH = o(1),

and ∫
H
∂νφλdσH = o(λ).

Always true if {φλ} is a Quantum Ergodic sequence.



Measures on SN∗H (unit co-normal directions to H)

Let {φλ} have defect measure µ. Set

µH (A) := 1
2δ
µ

( ⋃
|t|≤δ

Gt (A)
)

A ⊂ SN∗H

Theorem (C-Galkowski-Toth)
If µH (SN∗H) = 0 and H is a hypersurface (k = 1), then∫

H
φλdσH = o(1),

and ∫
H
∂νφλdσH = o(λ).

Always true if {φλ} is a Quantum Ergodic sequence.



Measures on SN∗H (unit co-normal directions to H)

Let {φλ} have defect measure µ. Set

µH (A) := 1
2δ
µ

( ⋃
|t|≤δ

Gt (A)
)

A ⊂ SN∗H

Theorem (C-Galkowski-Toth)
If µH (SN∗H) = 0 and H is a hypersurface (k = 1), then∫

H
φλdσH = o(1),

and ∫
H
∂νφλdσH = o(λ).

Always true if {φλ} is a Quantum Ergodic sequence.



Measures on SN∗H (unit co-normal directions to H)

Let {φλ} have defect measure µ. Set

µH (A) := 1
2δ
µ

( ⋃
|t|≤δ

Gt (A)
)

A ⊂ SN∗H

Theorem (C-Galkowski-Toth)
If µH (SN∗H) = 0 and H is a hypersurface (k = 1), then∫

H
φλdσH = o(1),

and ∫
H
∂νφλdσH = o(λ).

Always true if {φλ} is a Quantum Ergodic sequence.



Measures on SN∗H (unit co-normal directions to H)

Let {φλ} have defect measure µ. Set

µH (A) := 1
2δ
µ

( ⋃
|t|≤δ

Gt (A)
)

A ⊂ SN∗H

Theorem (C-Galkowski-Toth)
If µH (SN∗H) = 0 and H is a hypersurface (k = 1), then∫

H
φλdσH = o(1),

and ∫
H
∂νφλdσH = o(λ).

Always true if {φλ} is a Quantum Ergodic sequence.



{φλ} with maximal averages

• Suppose {φλ} has maximal averages:
∣∣∣∣∫

H
φλj dσH

∣∣∣∣ ≥ cλ
k−1

2
j

• Extract {φλj`
} subsequence with defect measure µ.

• Decompose µH = f σSN∗H + λH .

Theorem (C-Galkowski. Key estimate)∣∣∣∣∫
H
φλdσH

∣∣∣∣ ≤ Cn,k λ
k−1

2

∫
SN∗H

√
f dσSN∗H + o(λ

k−1
2 ).

=⇒ If {φλ} has maximal averages, then µH and σSN∗H are not mutually singular.

• Torus example: f = 1 (average is saturated)
• Gaussian Beam: f = 0 (average goes to 0)
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Recurrent co-normal directions

Theorem (C-Galkowski)
µH (RH ) = µH (SN∗H).

Theorem (C-Galkowski)
If σSN∗H (RH ) = 0, then for every sequence {φλ}∫

H
φλdσH = o(λ

k−1
2 ).

Remember µH = f σSN∗H + λH , so σSN∗H (RH ) = 0 implies µH ⊥ f σSN∗H .

H

(x, ξ)

Gt(x, ξ)

LH = {(x, ξ) ∈ SN∗H that loop back to SN∗H}SN∗H SN∗H

H

RH = {(x, ξ) ∈ SN∗H : that are recurrent}
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Submanifolds with σSN∗H (RH) = 0

Theorem (C-Galkowski)

Anosov
non-positive

neg.

no conjugate points

The following setting imply
σSN∗H (RH ) = 0.

• (M, g) has constant negative curvature and H is any submanifold.

• (M, g) is a surface with Anosov geodesic flow and H is any curve.

• (M, g) has no conjugate points and H has dimension dim H < n−1
2 .

• (M, g) has no conjugate points and H is a geodesic sphere.

• (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.

All these imply ∫
H
φλdσH = o(λ

k−1
2 ).
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Ideas in the proofs

Theorem (C-Galkowski)
µH (RH ) = µH (SN∗H).

Idea: Use Poincaré Recurrence Theorem since (S∗M, µ,G t ) is a measure preserving system.
Induce recurrence for µH directly from its definition.

Theorem (C-Galkowski)
The following settings have

σSN∗H (RH ) = 0.

• (M, g) has constant negative curvature and H is any submanifold.
• (M, g) is a surface with Anosov geodesic flow and H is any curve.

• (M, g) has no conjugate points and H has dimension dim H < n−1
2 .

Anosov flow: σSN∗H (RH ) = σSN∗H (RH ∩ SH ) for

SH = {ρ ∈ SN∗H : Tρ(SN∗H) = E +
H (ρ) + E−H (ρ), E +

H (ρ) 6= 0, E−H (ρ) 6= 0}

• Anosov surface: dim(Tρ(SN∗H)) = 1⇒ SH = ∅.

• Constant negative curvature: σSN∗H (SH ) = 0 by hand.

No conjugate points: dim(LH ) < dim(SN∗H)⇒ σSN∗H (LH ) = 0.
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Idea: Use Poincaré Recurrence Theorem since (S∗M, µ,G t ) is a measure preserving system.
Induce recurrence for µH directly from its definition.

Theorem (C-Galkowski)
The following settings have

σSN∗H (RH ) = 0.

• (M, g) has constant negative curvature and H is any submanifold.
• (M, g) is a surface with Anosov geodesic flow and H is any curve.

• (M, g) has no conjugate points and H has dimension dim H < n−1
2 .

Anosov flow: σSN∗H (RH ) = σSN∗H (RH ∩ SH ) for

SH = {ρ ∈ SN∗H : Tρ(SN∗H) = E +
H (ρ) + E−H (ρ), E +

H (ρ) 6= 0, E−H (ρ) 6= 0}

• Anosov surface: dim(Tρ(SN∗H)) = 1⇒ SH = ∅.

• Constant negative curvature: σSN∗H (SH ) = 0 by hand.

No conjugate points: dim(LH ) < dim(SN∗H)⇒ σSN∗H (LH ) = 0.



Ideas in the proofs

Theorem (C-Galkowski)
µH (RH ) = µH (SN∗H).
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Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)
•‖Oph(βε)Oph(κ̃δ)φλ‖2

L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )



Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)
•‖Oph(βε)Oph(κ̃δ)φλ‖2

L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )



Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)
•‖Oph(βε)Oph(κ̃δ)φλ‖2

L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )



Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)
•‖Oph(βε)Oph(κ̃δ)φλ‖2

L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )



Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)

•‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )



Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)
•‖Oph(βε)Oph(κ̃δ)φλ‖2

L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )



Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)
•‖Oph(βε)Oph(κ̃δ)φλ‖2

L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )



Key estimate

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ ‖Oph(βε)Oph(κ̃δ)φλ‖2
L2(H) + ‖Oph(βε)Oph(1− κ̃δ)φλ‖2

L2(H)

‖Oph(βε)Oph(χ̃)φλ‖2
L2(H) ≤ Ch1−kσSN∗H (suppχ) 1

T
‖Oph(bε,T )Oph(χ̃)φλ‖2

L2(M)

≤ Ch1−kσSN∗H (suppχ) 1
T

∫
S∗M

b2
ε,T χ̃2 dµ

≤ Ch1−kσSN∗H (suppχ)
∫

SN∗H
χ̃2 dµH

≤ Ch1−kσSN∗H (suppχ)
(∫

SN∗H
χ̃2 fdσSN∗H +

∫
SN∗H

χ̃2 dλH

)
•‖Oph(βε)Oph(κ̃δ)φλ‖2

L2(H) ≤ δCh1−k

•‖Oph(βε)Oph(1− κ̃δ)φλ‖2
L2(H) ≤ Ch1−k

∫
SN∗H

fdσSN∗H + δCh1−k

∣∣∣∣∫
H
φλdσH

∣∣∣∣2 ≤ Ch1−k
∫

SN∗H
fdσSN∗H + o(h1−k )


