Averages of Laplace eigenfunctions

Joint works with J.Galkowski and J.Toth
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= (M", g) compact, smooth, no boundary.

© =gy, = Aoy, with Aj — oo, ol i2my = 1-

Question: H C M submanifold. What's the behavior of

?
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Obs. If H= {x} we get info on ¢, (x).
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Defect measures

A defect measure p for {¢,} is a probability measure on S*M s.t. for all A € W(M)

<A ¢>\j,¢xj> ity / o(A) dpu.
S*M

Some facts:
e Every sequence {¢} has a subsequence {¢>\j} with a defect measure p.
e 1 is invariant under the geodesic flow.

e {¢,} is quantum ergodic: 1 is the Liouville measure on S*M.



Measures on SN*H (unit co-normal directions to H)



Measures on SN*H (unit co-normal directions to H)

Let {¢x} have defect measure p.



Measures on SN*H (unit co-normal directions to H)
B

Let {¢x} have defect measure u. Set

A)——y(UG* ) A C SN*H
|t]|<é8



Measures on SN*H (unit co-normal directions to H)

Let {¢x} have defect measure u. Set

(A = lu( U Gf(A)) A C SN*H

Theorem (C-Galkowski-Toth)

If 1y (SN*H) = 0 and H is a hypersurface (k = 1), then

/ ¢rdoy = 0(1),
H




Measures on SN*H (unit co-normal directions to H)
.

Let {¢x} have defect measure u. Set

(A = lu( U Gf(A)) A C SN*H

Theorem (C-Galkowski-Toth)

If 1y (SN*H) = 0 and H is a hypersurface (k = 1), then

/ ¢rdoy = 0(1),
H

/ Ovprdoy = o(X).
H

and



Measures on SN*H (unit co-normal directions to H)
. _____________________________________________________________

Let {¢x} have defect measure u. Set

— 1 t *
(A = %ﬂ( LIJ Gt(A) A C SN*H
[t <68

Theorem (C-Galkowski-Toth)

If 1y (SN*H) = 0 and H is a hypersurface (k = 1), then

/ ¢rdoy = 0(1),
H

/ Ovprdoy = o(X).
H

and

Always true if {¢»} is a Quantum Ergodic sequence.
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H

e Extract {<j>>\je} subsequence with defect measure .

k=1

e Suppose {¢»} has maximal averages: > c)\jT

e Decompose (i = fo, ., + Ay.

Theorem (C-Galkowski. Key estimate)

/¢>\d0'H
H

= If {¢r} has maximal averages, then 14, and

k—1 k—1
S G Az / VFdo, ., +o(A 7).
SN*H

@+, are not mutually singular.

e Torus example: f =1 (average is saturated)
e Gaussian Beam: f =0 (average goes to 0)
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Recurrent co-normal directions

N

Theorem (C-Galkowski)

pH(Rr) = pa(SN*H).
Ry = {(z,&) € SN*H : that are recurrent}

Theorem (C-Galkowski)

If 7,,.,,(Rn) =0, then for every sequence {¢x}

/ drdoy = o(AT).
H

Remember 11y = fo, ., + Ay, so o, (Ry) = 0 implies p1yy L for, ..
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= (M, g) has no conjugate points and H has dimension dim H <
= (M, g) has no conjugate points and H is a geodesic sphere.

= (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.

All these imply

/ drdoy = o(ATH).
H



1o conjugate points

Logarithmic improvements

non-positive
Anosov

Theorem (C-Galkowski)

The following settings imply

/H¢AdaH = O(\;%).

= (M, g) is a surface with Anosov geodesic flow and H is any curve.

n—

= (M, g) has no conjugate points and H has dimension dim H < 5 g,

= (M, g) has no conjugate points and H is a geodesic sphere.

= (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.



1o conjugate points

Logarithmic improvements
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Anosov

Theorem (C-Galkowski)

The following settings imply

= (M, g) is a surface with Anosov geodesic flow and H is any curve.

n—

= (M, g) has no conjugate points and H has dimension dim H < 5 g,

= (M, g) has no conjugate points and H is a geodesic sphere.

= (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.

In addition, if x € M is not self-conjugate with maximal multiplicity,

n—1

A2
||¢>‘||L°°(B(X,/\_6)) - O(, /Iog)\)'
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Theorem (C-Galkowski)

pH(Ru) = pu(SNH).

Idea: Use Poincaré Recurrence Theorem since (S*M, i, G') is a measure preserving system.
Induce recurrence for py directly from its definition.

Theorem (C-Galkowski)

The following settings have

Fpypy (Ret1) = 0.

= (M, g) has constant negative curvature and H is any submanifold.

= (M, g) is a surface with Anosov geodesic flow and H is any curve.

n—
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= (M, g) has no conjugate points and H has dimension dim H < “5=.

Anosov flow: g, (RH) = gy, (Ru N Sk) for

Sy ={p € SN"H: T,(SN*H) = E}(p) + E; (p), Ei(p) #0, Ej(p)#0}
e Anosov surface: dim(T,(SN*H)) =1 = Sy = 0.

e Constant negative curvature: q;,., (Sy) = 0 by hand.

No conjugate points: dim(Ly) < dim(SN*H) = o ., (L1) = 0.
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