Averages of Laplace eigenfunctions

Joint works with J.Galkowski and J.Toth

Problem

- $\left(M^{n}, g\right)$ compact, smooth, no boundary.

Problem

" $\left(M^{n}, g\right)$ compact, smooth, no boundary.
" $-\Delta_{g} \phi_{\lambda_{j}}=\lambda_{j}^{2} \phi_{\lambda_{j}}$ with $\lambda_{j} \rightarrow \infty, \quad\left\|\phi_{\lambda_{j}}\right\|_{L^{2}(M)}=1$.

Problem

" $\left(M^{n}, g\right)$ compact, smooth, no boundary.
" $-\Delta_{g} \phi_{\lambda_{j}}=\lambda_{j}^{2} \phi_{\lambda_{j}}$ with $\lambda_{j} \rightarrow \infty, \quad\left\|\phi_{\lambda_{j}}\right\|_{L^{2}(M)}=1$.

Problem

- $\left(M^{n}, g\right)$ compact, smooth, no boundary.
" $-\Delta_{g} \phi_{\lambda_{j}}=\lambda_{j}^{2} \phi_{\lambda_{j}}$ with $\lambda_{j} \rightarrow \infty, \quad\left\|\phi_{\lambda_{j}}\right\|_{L^{2}(M)}=1$.

Problem

- $\left(M^{n}, g\right)$ compact, smooth, no boundary.
" $-\Delta_{g} \phi_{\lambda_{j}}=\lambda_{j}^{2} \phi_{\lambda_{j}}$ with $\lambda_{j} \rightarrow \infty, \quad\left\|\phi_{\lambda_{j}}\right\|_{L^{2}(M)}=1$.

Question: $H \subset M$ submanifold. What's the behavior of

$$
\lim _{\lambda \rightarrow \infty} \int_{H} \phi_{\lambda} d \sigma_{H} ?
$$

Problem

- $\left(M^{n}, g\right)$ compact, smooth, no boundary.
" $-\Delta_{g} \phi_{\lambda_{j}}=\lambda_{j}^{2} \phi_{\lambda_{j}}$ with $\lambda_{j} \rightarrow \infty, \quad\left\|\phi_{\lambda_{j}}\right\|_{L^{2}(M)}=1$.

Question: $H \subset M$ submanifold. What's the behavior of

$$
\lim _{\lambda \rightarrow \infty} \int_{H} \phi_{\lambda} d \sigma_{H} ?
$$

Obs. If $H=\{x\}$ we get info on $\phi_{\lambda}(x)$.

What's known

M surface, H curve

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=O(1) \quad \begin{aligned}
& \text { Good '83, Hejhal'82 } \\
& M \text { hyperbolic } \\
& H \text { closed geodesic }
\end{aligned}
$$

What's known

M surface, H curve
M manifold, H submanifold $k=$ co-dimension of H

Good '83, Hejhal'82
$\begin{array}{ll}\int_{H} \phi_{\lambda} d \sigma_{H}=O(1) & M \text { hyperbolic } \\ & H \text { closed geodesic }\end{array}$

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=O\left(\lambda^{\frac{k-1}{2}}\right) \quad \text { Zelditch'92 }
$$

What's known

M surface, H curve

M manifold, H submanifold $k=$ co-dimension of H

Good '83, Hejhal'82
$\int_{H} \phi_{\lambda} d \sigma_{H}=O(1) \quad \begin{aligned} & M \text { hyperbolic } \\ & H \text { closed geodesic }\end{aligned}$

Chen-Sogge'15
$\int_{H} \phi_{\lambda} d \sigma_{H}=o(1) \quad \begin{aligned} & M \text { sect.curv }<0 \\ & H \text { geodesic }\end{aligned}$

What's known

M surface, H curve

M manifold, H submanifold $k=$ co-dimension of H

$$
\begin{array}{ll}
\int_{H} \phi_{\lambda} d \sigma_{H}=O(1) & \begin{array}{l}
\text { Good '83, Hejhal'82 } \\
M \text { hyperbolic } \\
H \text { closed geodesic }
\end{array} \\
\int_{H} \phi_{\lambda} d \sigma_{H}=o(1) & \begin{array}{l}
\text { Chen-Sogge'15 } \\
M \text { sect.curv }<0 \\
H \text { geodesic }
\end{array} \\
& \\
\text { improvements to } & \begin{array}{l}
\text { Sogge-Xi-Zhang'16 } \\
M \text { sect.curv }<0
\end{array} \\
O(1 / \sqrt{\log \lambda}) & \begin{array}{l}
H \text { geodesic }
\end{array}
\end{array}
$$

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=O\left(\lambda^{\frac{k-1}{2}}\right) \quad \text { Zelditch'92 }
$$

What's known

M surface, H curve

M manifold, H submanifold $k=$ co-dimension of H

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=O(1) \begin{array}{ll}
\text { Good '83, Hejhal'82 } \\
& M \text { hyperbolic } \\
H \text { closed geodesic }
\end{array} \quad \int_{H} \phi_{\lambda} d \sigma_{H}=O\left(\lambda^{\frac{k-1}{2}}\right) \quad \text { Zelditch'92 }
$$

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o(1) \begin{aligned}
& \text { Chen-Sogge'15 } \\
& M \text { sect.curv }<0 \\
& H \text { geodesic }
\end{aligned}
$$

improvements to	Sogge-Xi-Zhang'16
$O(1 / \sqrt{\log \lambda})$	H geoct.curvic <0
	Wyman'17
	M sect.curv ≤ 0
	H with curvature
	conditions

What's known

M surface, H curve Good '83, Hejhal'82

$$
\begin{array}{ll}
\int_{H} \phi_{\lambda} d \sigma_{H}=O(1) & M \text { hyperbolic } \\
& H \text { closed geodesic }
\end{array}
$$

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o(1) \begin{aligned}
& \text { Chen-Sogge'15 } \\
& M \text { sect.curv }<0 \\
& \\
& H \text { geodesic }
\end{aligned}
$$

M manifold, H submanifold $k=$ co-dimension of H

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=O\left(\lambda^{\frac{k-1}{2}}\right) \quad \text { Zelditch'92 }
$$

$$
\begin{array}{ll}
\int_{H} \phi_{\lambda} d \sigma_{H}=o\left(\lambda^{\frac{k-1}{2}}\right) & \begin{array}{l}
\text { Wyman'17 } \\
\\
\sigma_{S N^{* H}}\left(\mathcal{L}_{H}\right)=0
\end{array}
\end{array}
$$

$$
\mathcal{L}_{H}=\left\{(x, \xi) \in S N^{*} H^{*} \text { that loop back to } S N^{*} H\right\}
$$

Gaussian beam heuristics

Profile across a gaussian beam

Profile along a gaussian beam

Gaussian beam heuristics

Profile across a gaussian beam

Profile along a gaussian beam

$\left\|\phi_{\lambda}\right\|_{L^{2}}=1$
$\int_{H} \phi_{\lambda} d \sigma_{H}=O\left(\lambda^{-\infty}\right)$

Gaussian beam heuristics

Profile across a gaussian beam

Profile along a gaussian beam

Gaussian beam heuristics

Profile across a gaussian beam

Profile along a gaussian beam

$$
\int_{H} \phi_{\lambda} d \sigma_{H} \sim 2 c \lambda^{-\frac{1}{4}}
$$

Gaussian beam heuristics

Profile across a gaussian beam

Profile along a gaussian beam

Gaussian beam heuristics

Profile across a gaussian beam

Profile along a gaussian beam

$$
\begin{gathered}
\left\|\phi_{\lambda}\right\|_{L^{2}}=\sqrt{\lambda^{\frac{1}{2}}} \\
\int_{H} \phi_{\lambda} d \sigma_{H} \sim \underbrace{\lambda^{\frac{1}{2}} c \lambda^{-\frac{1}{4}}}_{c \lambda^{\frac{1}{4}}}
\end{gathered}
$$

Defect measures

Defect measures

A defect measure μ for $\left\{\phi_{\lambda_{j}}\right\}$ is a probability measure on $S^{*} M$ s.t. for all $A \in \Psi(M)$

$$
\left\langle A \phi_{\lambda_{j}}, \phi_{\lambda_{j}}\right\rangle \xrightarrow{j \rightarrow \infty} \int_{S^{*} M} \sigma(A) d \mu .
$$

Defect measures

A defect measure μ for $\left\{\phi_{\lambda_{j}}\right\}$ is a probability measure on $S^{*} M$ s.t. for all $A \in \Psi(M)$

$$
\left\langle A \phi_{\lambda_{j}}, \phi_{\lambda_{j}}\right\rangle \stackrel{j \rightarrow \infty}{\longrightarrow} \int_{S^{*} M} \sigma(A) d \mu .
$$

Some facts:

- Every sequence $\left\{\phi_{\lambda}\right\}$ has a subsequence $\left\{\phi_{\lambda_{j}}\right\}$ with a defect measure μ.

Defect measures

A defect measure μ for $\left\{\phi_{\lambda_{j}}\right\}$ is a probability measure on $S^{*} M$ s.t. for all $A \in \Psi(M)$

$$
\left\langle A \phi_{\lambda_{j}}, \phi_{\lambda_{j}}\right\rangle \stackrel{j \rightarrow \infty}{\longrightarrow} \int_{S^{*} M} \sigma(A) d \mu .
$$

Some facts:

- Every sequence $\left\{\phi_{\lambda}\right\}$ has a subsequence $\left\{\phi_{\lambda_{j}}\right\}$ with a defect measure μ.
- μ is invariant under the geodesic flow.

Defect measures

A defect measure μ for $\left\{\phi_{\lambda_{j}}\right\}$ is a probability measure on $S^{*} M$ s.t. for all $A \in \Psi(M)$

$$
\left\langle A \phi_{\lambda_{j}}, \phi_{\lambda_{j}}\right\rangle \stackrel{j \rightarrow \infty}{\longrightarrow} \int_{S^{*} M} \sigma(A) d \mu .
$$

Some facts:

- Every sequence $\left\{\phi_{\lambda}\right\}$ has a subsequence $\left\{\phi_{\lambda_{j}}\right\}$ with a defect measure μ.
- μ is invariant under the geodesic flow.
- $\left\{\phi_{\lambda}\right\}$ is quantum ergodic: μ is the Liouville measure on $S^{*} M$.

Measures on $S N^{*} H$ (unit co-normal directions to H)

Measures on $S N^{*} H$ (unit co-normal directions to H)

Let $\left\{\phi_{\lambda}\right\}$ have defect measure μ.

Measures on $S N^{*} H$ (unit co-normal directions to H)

Let $\left\{\phi_{\lambda}\right\}$ have defect measure μ. Set

$$
\mu_{H}(A):=\frac{1}{2 \delta} \mu\left(\bigcup_{|t| \leq \delta} G^{t}(A)\right) \quad A \subset S N^{*} H
$$

Measures on $S N^{*} H$ (unit co-normal directions to H)

Let $\left\{\phi_{\lambda}\right\}$ have defect measure μ. Set

$$
\mu_{H}(A):=\frac{1}{2 \delta} \mu\left(\bigcup_{|t| \leq \delta} G^{t}(A)\right) \quad A \subset S N^{*} H
$$

Theorem (C-Galkowski-Toth)

If $\mu_{H}\left(S N^{*} H\right)=0$ and H is a hypersurface $(k=1)$, then

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o(1)
$$

Measures on $S N^{*} H$ (unit co-normal directions to H)

Let $\left\{\phi_{\lambda}\right\}$ have defect measure μ. Set

$$
\mu_{H}(A):=\frac{1}{2 \delta} \mu\left(\bigcup_{|t| \leq \delta} G^{t}(A)\right) \quad A \subset S N^{*} H
$$

Theorem (C-Galkowski-Toth)

If $\mu_{H}\left(S N^{*} H\right)=0$ and H is a hypersurface $(k=1)$, then

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o(1)
$$

and

$$
\int_{H} \partial_{\nu} \phi_{\lambda} d \sigma_{H}=o(\lambda)
$$

Measures on $S N^{*} H$ (unit co-normal directions to H)

Let $\left\{\phi_{\lambda}\right\}$ have defect measure μ. Set

$$
\mu_{H}(A):=\frac{1}{2 \delta} \mu\left(\bigcup_{|t| \leq \delta} G^{t}(A)\right) \quad A \subset S N^{*} H
$$

Theorem (C-Galkowski-Toth)

If $\mu_{H}\left(S N^{*} H\right)=0$ and H is a hypersurface $(k=1)$, then

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o(1)
$$

and

$$
\int_{H} \partial_{\nu} \phi_{\lambda} d \sigma_{H}=o(\lambda)
$$

Always true if $\left\{\phi_{\lambda}\right\}$ is a Quantum Ergodic sequence.

$\left\{\phi_{\lambda}\right\}$ with maximal averages

- Suppose $\left\{\phi_{\lambda}\right\}$ has maximal averages: $\left|\int_{H} \phi_{\lambda_{j}} d \sigma_{H}\right| \geq c \lambda_{j}^{\frac{k-1}{2}}$

$\left\{\phi_{\lambda}\right\}$ with maximal averages

- Suppose $\left\{\phi_{\lambda}\right\}$ has maximal averages: $\left|\int_{H} \phi_{\lambda_{j}} d \sigma_{H}\right| \geq c \lambda_{j}^{\frac{k-1}{2}}$
- Extract $\left\{\phi_{\lambda_{j_{\ell}}}\right\}$ subsequence with defect measure μ.

$\left\{\phi_{\lambda}\right\}$ with maximal averages

- Suppose $\left\{\phi_{\lambda}\right\}$ has maximal averages: $\left|\int_{H} \phi_{\lambda_{j}} d \sigma_{H}\right| \geq c \lambda_{j}^{\frac{k-1}{2}}$
- Extract $\left\{\phi_{\lambda_{j_{\ell}}}\right\}$ subsequence with defect measure μ.
- Decompose $\mu_{H}=f \sigma_{S N^{*} H}+\lambda_{H}$.

$\left\{\phi_{\lambda}\right\}$ with maximal averages

- Suppose $\left\{\phi_{\lambda}\right\}$ has maximal averages: $\left|\int_{H} \phi_{\lambda_{j}} d \sigma_{H}\right| \geq c \lambda_{j}^{\frac{k-1}{2}}$
- Extract $\left\{\phi_{\lambda_{j_{\ell}}}\right\}$ subsequence with defect measure μ.
- Decompose $\mu_{H}=f \sigma_{S_{N}{ }^{*}}+\lambda_{H}$.

Theorem (C-Galkowski. Key estimate)

$$
\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right| \leq C_{n, k} \lambda^{\frac{k-1}{2}} \int_{S N^{*} H} \sqrt{f} d \sigma_{S N^{* H}}+o\left(\lambda^{\frac{k-1}{2}}\right) .
$$

$\left\{\phi_{\lambda}\right\}$ with maximal averages

- Suppose $\left\{\phi_{\lambda}\right\}$ has maximal averages: $\left|\int_{H} \phi_{\lambda_{j}} d \sigma_{H}\right| \geq c \lambda_{j}^{\frac{k-1}{2}}$
- Extract $\left\{\phi_{\lambda_{j_{\ell}}}\right\}$ subsequence with defect measure μ.
- Decompose $\mu_{H}=f \sigma_{S N^{*} H}+\lambda_{H}$.

Theorem (C-Galkowski. Key estimate)

$$
\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right| \leq C_{n, k} \lambda^{\frac{k-1}{2}} \int_{S N^{*} H} \sqrt{f} d \sigma_{S N^{*} H}+o\left(\lambda^{\frac{k-1}{2}}\right) .
$$

\Longrightarrow If $\left\{\phi_{\lambda}\right\}$ has maximal averages, then μ_{H} and $\sigma_{S N^{* H}}$ are not mutually singular.

$\left\{\phi_{\lambda}\right\}$ with maximal averages

- Suppose $\left\{\phi_{\lambda}\right\}$ has maximal averages: $\left|\int_{H} \phi_{\lambda_{j}} d \sigma_{H}\right| \geq c \lambda_{j}^{\frac{k-1}{2}}$
- Extract $\left\{\phi_{\lambda_{j \ell}}\right\}$ subsequence with defect measure μ.
- Decompose $\mu_{H}=f \sigma_{S N^{*} H}+\lambda_{H}$.

Theorem (C-Galkowski. Key estimate)

$$
\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right| \leq C_{n, k} \lambda^{\frac{k-1}{2}} \int_{S N^{*} H} \sqrt{f} d \sigma_{S N^{* H}}+o\left(\lambda^{\frac{k-1}{2}}\right) .
$$

\Longrightarrow If $\left\{\phi_{\lambda}\right\}$ has maximal averages, then μ_{H} and $\sigma_{S N^{* H}}$ are not mutually singular.

- Torus example: $f=1$ (average is saturated)
- Gaussian Beam: $f=0$ (average goes to 0)

Recurrent co-normal directions

$$
\mathcal{L}_{H}=\left\{(x, \xi) \in S N^{*} H \text { that loop back to } S N^{*} H\right\}
$$

Recurrent co-normal directions

Recurrent co-normal directions

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right)
$$

$$
\mathcal{R}_{H}=\left\{(x, \xi) \in S N^{*} H: \text { that are recurrent }\right\}
$$

Recurrent co-normal directions

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right)
$$

$$
\mathcal{R}_{H}=\left\{(x, \xi) \in S N^{*} H: \text { that are recurrent }\right\}
$$

Theorem (C-Galkowski)

If $\sigma_{S N^{* H}}\left(\mathcal{R}_{H}\right)=0$, then for every sequence $\left\{\phi_{\lambda}\right\}$

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o\left(\lambda^{\frac{k-1}{2}}\right)
$$

Recurrent co-normal directions

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right)
$$

$$
\mathcal{R}_{H}=\left\{(x, \xi) \in S N^{*} H: \text { that are recurrent }\right\}
$$

Theorem (C-Galkowski)

If $\sigma_{S N^{*} H}\left(\mathcal{R}_{H}\right)=0$, then for every sequence $\left\{\phi_{\lambda}\right\}$

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o\left(\lambda^{\frac{k-1}{2}}\right)
$$

Remember $\mu_{H}=f \sigma_{S N^{* H}}+\lambda_{H}$, so $\sigma_{S N^{* H}}\left(\mathcal{R}_{H}\right)=0$ implies $\mu_{H} \perp f \sigma_{S N^{* H}}$.

Submanifolds with $\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0$

Theorem (C-Galkowski)

Submanifolds with $\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0$

Theorem (C-Galkowski)
The following setting imply

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0 .
$$

Submanifolds with $\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0$

Theorem (C-Galkowski)

The following setting imply

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0 .
$$

" (M, g) has constant negative curvature and H is any submanifold.

Submanifolds with $\sigma_{S N^{* H}}\left(\mathcal{R}_{H}\right)=0$

Theorem (C-Galkowski)

The following setting imply

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0 .
$$

- (M, g) has constant negative curvature and H is any submanifold.
" (M, g) is a surface with Anosov geodesic flow and H is any curve.

Theorem (C-Galkowski)

The following setting imply

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0 .
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.

Theorem (C-Galkowski)

The following setting imply

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0 .
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
" (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.
- (M, g) has no conjugate points and H is a geodesic sphere.

Theorem (C-Galkowski)

The following setting imply

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0 .
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.
" (M, g) has no conjugate points and H is a geodesic sphere.
" (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.

Theorem (C-Galkowski)

The following setting imply

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0 .
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.
- (M, g) has no conjugate points and H is a geodesic sphere.
- (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.

All these imply

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=o\left(\lambda^{\frac{k-1}{2}}\right)
$$

Logarithmic improvements

Theorem (C-Galkowski)

The following settings imply

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=O\left(\frac{\lambda^{\frac{k-1}{2}}}{\sqrt{\log \lambda}}\right) .
$$

- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.
- (M, g) has no conjugate points and H is a geodesic sphere.
- (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.

Logarithmic improvements

Theorem (C-Galkowski)

The following settings imply

$$
\int_{H} \phi_{\lambda} d \sigma_{H}=O\left(\frac{\lambda^{\frac{k-1}{2}}}{\sqrt{\log \lambda}}\right)
$$

- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.
- (M, g) has no conjugate points and H is a geodesic sphere.
- (M, g) has Anosov geodesic flow and non-positive curv., and H is totally geodesic.

In addition, if $x \in M$ is not self-conjugate with maximal multiplicity,

$$
\left\|\phi_{\lambda}\right\|_{L^{\infty}\left(B\left(x, \lambda^{-\delta}\right)\right)}=O\left(\frac{\lambda^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\right)
$$

Thank you!

Ideas in the proofs

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right) .
$$

Ideas in the proofs

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right) .
$$

Idea: Use Poincaré Recurrence Theorem since $\left(S^{*} M, \mu, G^{t}\right)$ is a measure preserving system. Induce recurrence for μ_{H} directly from its definition.

Ideas in the proofs

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right) .
$$

Idea: Use Poincaré Recurrence Theorem since $\left(S^{*} M, \mu, G^{t}\right)$ is a measure preserving system. Induce recurrence for μ_{H} directly from its definition.

Theorem (C-Galkowski)

The following settings have

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.

Ideas in the proofs

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right) .
$$

Idea: Use Poincaré Recurrence Theorem since $\left(S^{*} M, \mu, G^{t}\right)$ is a measure preserving system. Induce recurrence for μ_{H} directly from its definition.

Theorem (C-Galkowski)

The following settings have

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.

Anosov flow: $\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=\sigma_{S N * H}\left(\mathcal{R}_{H} \cap \mathcal{S}_{H}\right)$ for

$$
\mathcal{S}_{H}=\left\{\rho \in S N^{*} H: \quad T_{\rho}\left(S N^{*} H\right)=E_{H}^{+}(\rho)+E_{H}^{-}(\rho), \quad E_{H}^{+}(\rho) \neq 0, \quad E_{H}^{-}(\rho) \neq 0\right\}
$$

Ideas in the proofs

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right) .
$$

Idea: Use Poincaré Recurrence Theorem since $\left(S^{*} M, \mu, G^{t}\right)$ is a measure preserving system. Induce recurrence for μ_{H} directly from its definition.

Theorem (C-Galkowski)

The following settings have

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.

Anosov flow: $\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=\sigma_{S N^{*} H}\left(\mathcal{R}_{H} \cap \mathcal{S}_{H}\right)$ for

$$
\mathcal{S}_{H}=\left\{\rho \in S N^{*} H: \quad T_{\rho}\left(S N^{*} H\right)=E_{H}^{+}(\rho)+E_{H}^{-}(\rho), \quad E_{H}^{+}(\rho) \neq 0, \quad E_{H}^{-}(\rho) \neq 0\right\}
$$

- Anosov surface: $\operatorname{dim}\left(T_{\rho}\left(S N^{*} H\right)\right)=1 \Rightarrow \mathcal{S}_{H}=\emptyset$.

Ideas in the proofs

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right) .
$$

Idea: Use Poincaré Recurrence Theorem since $\left(S^{*} M, \mu, G^{t}\right)$ is a measure preserving system. Induce recurrence for μ_{H} directly from its definition.

Theorem (C-Galkowski)

The following settings have

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.

Anosov flow: $\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=\sigma_{S N^{*} H}\left(\mathcal{R}_{H} \cap \mathcal{S}_{H}\right)$ for

$$
\mathcal{S}_{H}=\left\{\rho \in S N^{*} H: \quad T_{\rho}\left(S N^{*} H\right)=E_{H}^{+}(\rho)+E_{H}^{-}(\rho), \quad E_{H}^{+}(\rho) \neq 0, \quad E_{H}^{-}(\rho) \neq 0\right\}
$$

- Anosov surface: $\operatorname{dim}\left(T_{\rho}\left(S N^{*} H\right)\right)=1 \Rightarrow \mathcal{S}_{H}=\emptyset$.
- Constant negative curvature: $\sigma_{S N^{*} H}\left(S_{H}\right)=0$ by hand.

Ideas in the proofs

Theorem (C-Galkowski)

$$
\mu_{H}\left(\mathcal{R}_{H}\right)=\mu_{H}\left(S N^{*} H\right) .
$$

Idea: Use Poincaré Recurrence Theorem since $\left(S^{*} M, \mu, G^{t}\right)$ is a measure preserving system. Induce recurrence for μ_{H} directly from its definition.

Theorem (C-Galkowski)

The following settings have

$$
\sigma_{S N * H}\left(\mathcal{R}_{H}\right)=0
$$

- (M, g) has constant negative curvature and H is any submanifold.
- (M, g) is a surface with Anosov geodesic flow and H is any curve.
- (M, g) has no conjugate points and H has dimension $\operatorname{dim} H<\frac{n-1}{2}$.

Anosov flow: $\sigma_{S N^{*} H}\left(\mathcal{R}_{H}\right)=\sigma_{S N^{* H}}\left(\mathcal{R}_{H} \cap \mathcal{S}_{H}\right)$ for

$$
\mathcal{S}_{H}=\left\{\rho \in S N^{*} H: \quad T_{\rho}\left(S N^{*} H\right)=E_{H}^{+}(\rho)+E_{H}^{-}(\rho), \quad E_{H}^{+}(\rho) \neq 0, \quad E_{H}^{-}(\rho) \neq 0\right\}
$$

- Anosov surface: $\operatorname{dim}\left(T_{\rho}\left(S N^{*} H\right)\right)=1 \Rightarrow \mathcal{S}_{H}=\emptyset$.
- Constant negative curvature: $\sigma_{S N^{*} H}\left(S_{H}\right)=0$ by hand.

No conjugate points: $\operatorname{dim}\left(\mathcal{L}_{H}\right)<\operatorname{dim}\left(S N^{*} H\right) \Rightarrow \sigma_{S N^{*} H}\left(\mathcal{L}_{H}\right)=0$.

Thank you!

Key estimate

$$
\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}
$$

Key estimate

$$
\begin{gathered}
\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \\
\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \sigma_{S N^{*} H}(\operatorname{supp} \chi) \frac{1}{T}\left\|O p_{h}\left(b_{\varepsilon, T}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(M)}^{2}
\end{gathered}
$$

Key estimate

$$
\begin{aligned}
&\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \\
&\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \sigma_{S N^{* H}}(\text { supp } \chi) \frac{1}{T}\left\|O p_{h}\left(b_{\varepsilon, T}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(M)}^{2} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\text { supp } \chi) \frac{1}{T} \int_{S^{*} M} b_{\varepsilon, T}^{2} \tilde{\chi}^{2} d \mu
\end{aligned}
$$

Key estimate

$$
\begin{aligned}
&\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \\
&\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T}\left\|O p_{h}\left(b_{\varepsilon, T}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(M)}^{2} \\
& \leq C h^{1-k} \sigma_{S N^{*} H}(\operatorname{supp} \chi) \frac{1}{T} \int_{S^{*} M} b_{\varepsilon, T}^{2} \tilde{\chi}^{2} d \mu \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \int_{S N^{* H}} \tilde{\chi}^{2} d \mu_{H}
\end{aligned}
$$

Key estimate

$$
\begin{aligned}
&\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \\
&\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T}\left\|O p_{h}\left(b_{\varepsilon, T}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(M)}^{2} \\
& \leq C h^{1-k} \sigma_{S N^{*} H}(\operatorname{supp} \chi) \frac{1}{T} \int_{S^{*} M} b_{\varepsilon, T}^{2} \tilde{\chi}^{2} d \mu \\
& \leq C h^{1-k} \sigma_{S N^{*} H}(\operatorname{supp} \chi) \int_{S N^{*} H} \tilde{\chi}^{2} d \mu_{H} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi)\left(\int_{S N^{* H}} \tilde{\chi}^{2} f d \sigma_{S N^{* H}}+\int_{S N^{* H}} \tilde{\chi}^{2} d \lambda_{H}\right)
\end{aligned}
$$

Key estimate

$$
\begin{aligned}
&\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \\
&\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T}\left\|O p_{h}\left(b_{\varepsilon}, T\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(M)}^{2} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T} \int_{S^{*} M} b_{\varepsilon, T}^{2} \tilde{\chi}^{2} d \mu \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \int_{S N^{* H}} \tilde{\chi}^{2} d \mu_{H} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi)\left(\int_{S N^{* H}} \tilde{\chi}^{2} f d \sigma_{S N^{* H}}+\int_{S N^{* H}} \tilde{\chi}^{2} d \lambda_{H}\right)
\end{aligned}
$$

$\bullet\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq \delta C h^{1-k}$

Key estimate

$$
\begin{aligned}
&\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \\
&\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T}\left\|O p_{h}\left(b_{\varepsilon}, T\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(M)}^{2} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T} \int_{S^{*} M} b_{\varepsilon, T}^{2} \tilde{\chi}^{2} d \mu \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \int_{S N^{* H}} \tilde{\chi}^{2} d \mu_{H} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi)\left(\int_{S N^{* H}} \tilde{\chi}^{2} f d \sigma_{S N^{* H}}+\int_{S N^{* H}} \tilde{\chi}^{2} d \lambda_{H}\right)
\end{aligned}
$$

- $\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{k}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq \delta C h^{1-k}$
$\bullet\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \int_{S N^{* H}} f d \sigma_{S N * H}+\delta C h^{1-k}$

Key estimate

$$
\begin{aligned}
&\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2}+\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \\
&\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T}\left\|O p_{h}\left(b_{\varepsilon}, T\right) O p_{h}(\tilde{\chi}) \phi_{\lambda}\right\|_{L^{2}(M)}^{2} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \frac{1}{T} \int_{S^{*} M} b_{\varepsilon, T}^{2} \tilde{\chi}^{2} d \mu \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi) \int_{S N^{* H}} \tilde{\chi}^{2} d \mu_{H} \\
& \leq C h^{1-k} \sigma_{S N^{* H}}(\operatorname{supp} \chi)\left(\int_{S N^{* H}} \tilde{\chi}^{2} f d \sigma_{S N^{* H}}+\int_{S N^{* H}} \tilde{\chi}^{2} d \lambda_{H}\right)
\end{aligned}
$$

- $\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq \delta C h^{1-k}$
$\bullet\left\|O p_{h}\left(\beta_{\varepsilon}\right) O p_{h}\left(1-\tilde{\kappa}_{\delta}\right) \phi_{\lambda}\right\|_{L^{2}(H)}^{2} \leq C h^{1-k} \int_{S N^{* H}} f d \sigma_{S N * H}+\delta C h^{1-k}$

$$
\left|\int_{H} \phi_{\lambda} d \sigma_{H}\right|^{2} \leq C h^{1-k} \int_{S N * H} f d \sigma_{S N^{* H}}+o\left(h^{1-k}\right)
$$

