Introduction 000 Propertie 0000 odal partition

3-partition 0000000 -partitions for the max

o-norm OOO

Conclusion

Minimal *k*-partition for the *p*-norm of the eigenvalues

V. Bonnaillie-Noël

DMA, CNRS, ENS Paris

joint work with B. Bogosel, B. Helffer, G. Vial

Banff, Canada

July, 3rd 2018

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Notation

• $\Omega \subset \mathbf{R}^2$: bounded and connected domain

▶ $0 < \lambda_1(D) < \lambda_2(D) \leqslant \cdots$ eigenvalues of the Dirichlet-Laplacian on D

 $\blacktriangleright \mathcal{D} = (D_i)_{i=1,...,k} : k\text{-partition of } \Omega$ (i.e. D_i open, $D_i \cap D_j = \emptyset$, and $\cup D_i \subset \Omega$)

strong if $\operatorname{Int}\overline{D_i} \setminus \partial \Omega = D_i$ and $(\overline{\cup D_i}) \setminus \partial \Omega = \Omega$

• $\mathfrak{O}_k(\Omega) = \{ \text{strong } k \text{-partitions of } \Omega \}$

Introduction	1D
000	00

Properties 0000 odal partition

3-partition 0000000 k-partitions for the max 000000

p-norm C

Minimal k-partition

$$\mathfrak{L}_{k,\infty}(\Omega) = \inf_{\mathcal{D}\in\mathfrak{O}_k(\Omega)} \max_{1\leqslant i\leqslant k} \lambda_1(D_i)$$

[Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini,

BN-Helffer-Vial, BN-Léna, ...]

ntroduction	1D
000	00

Properties 0000 lodal partition

3-partition 0000000 *k*-partitions for the max

p-norm Co

Conclusion 00

Minimal k-partition

$$\mathfrak{L}_{k,\infty}(\Omega) = \inf_{\mathcal{D}\in\mathfrak{O}_k(\Omega)} \max_{1\leqslant i\leqslant k} \lambda_1(D_i)$$

$$\mathfrak{L}_{k,1}(\Omega) = \inf_{\mathcal{D} \in \mathfrak{O}_k(\Omega)} \frac{1}{k} \sum_{i=1}^k \lambda_1(D_i)$$

[Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini,

BN-Helffer-Vial, BN-Léna, ...]

[Bucur-Buttazzo-Henrot, Caffarelli-Lin, Bourdin-Bucur-Oudet, ...]

Minimal *k*-partition

Introduction

$$\mathfrak{L}_{k,\infty}(\Omega) = \inf_{\mathcal{D} \in \mathfrak{O}_k(\Omega)} \max_{1 \leqslant i \leqslant k} \lambda_1(D_i) \qquad \mathfrak{L}_{k,1}(\Omega) = \inf_{\mathcal{D} \in \mathfrak{O}_k(\Omega)} \frac{1}{k} \sum_{i=1}^k \lambda_1(D_i)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Minimal k-partition

Introduction

$$\mathfrak{L}_{k,\infty}(\Omega) = \inf_{\mathcal{D} \in \mathfrak{O}_k(\Omega)} \max_{1 \leq i \leq k} \lambda_1(D_i) \qquad \mathfrak{L}_{k,1}(\Omega) = \inf_{\mathcal{D} \in \mathfrak{O}_k(\Omega)} \frac{1}{k} \sum_{i=1}^k \lambda_1(D_i)$$
sum
max

Definitions

• p-energy $\mathcal{D} = (D_1, \dots, D_k)$: k-partition of Ω

$$egin{aligned} & egin{aligned} & egi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definitions

• p-energy $\mathcal{D} = (D_1, \dots, D_k)$: k-partition of Ω

$$\Lambda_{k,p}(\mathcal{D}) = \frac{1}{k^{1/p}} \left\| \left(\lambda_1(D_1), \ldots, \lambda_1(D_k) \right) \right\|_p$$

$$p \qquad p = 1 \qquad 1 \le p < +\infty \qquad p = +\infty \\ \Lambda_{k,p}(\mathcal{D}) \qquad \left| \begin{array}{c} \frac{1}{k} \sum_{i=1}^{k} \lambda_1(D_i) \\ \frac{1}{k} \sum_{i=1}^{k} \lambda_1(D_i) \end{array} \right| \begin{pmatrix} 1 \le p < +\infty \\ \left(\frac{1}{k} \sum_{i=1}^{k} \lambda_1(D_i)^p \right)^{1/p} \\ \max_{1 \le i \le k} \lambda_1(D_i) \end{pmatrix}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Introduction 1D Properties Nodal partition 3-partition k-partitions for the max p-norm Conclusion 000 p-minimal k-partition

Definitions

• p-energy $\mathcal{D} = (D_1, \dots, D_k)$: k-partition of Ω

$$\Lambda_{k,\rho}(\mathcal{D}) = rac{1}{k^{1/\rho}} \left\| \left(\lambda_1(D_1), \ldots, \lambda_1(D_k) \right) \right\|_{
ho}$$

• Optimization problem: let $1 \le p \le \infty$,

$$\mathfrak{L}_{k,p}(\Omega) = \inf_{\mathcal{D} \in \mathfrak{O}_k(\Omega)} \Lambda_{k,p}(\mathcal{D})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definitions

• p-energy $\mathcal{D} = (D_1, \dots, D_k)$: k-partition of Ω

$$\Lambda_{k,\rho}(\mathcal{D}) = \frac{1}{k^{1/\rho}} \left\| \left(\lambda_1(D_1), \ldots, \lambda_1(D_k) \right) \right\|_{\rho}$$

• Optimization problem: let $1 \le p \le \infty$,

$$\mathfrak{L}_{k,p}(\Omega) = \inf_{\mathcal{D} \in \mathfrak{O}_k(\Omega)} \Lambda_{k,p}(\mathcal{D})$$

• \mathcal{D}^* is called a *p*-minimal *k*-partition if $\Lambda_{k,p}(\mathcal{D}^*) = \mathfrak{L}_{k,p}(\Omega)$

Introduction 000	1D ●○	Properties 0000	Nodal partition	3-partition 0000000	<i>k</i> -partitions for the max 000000	<i>p</i> -norm 000	Conclusion 00
Dimension 1							

 ∞ -minimal k-partition

Let
$$\Omega = (a, b), p = \infty$$

 $\lambda_1(\Omega) = \frac{\pi^2}{(b-a)^2} = \frac{\pi^2}{|\Omega|^2}$

<□ > < @ > < E > < E > E のQ @

 ∞ -minimal k-partition

Let
$$\Omega = (a, b), p = \infty$$

 $\lambda_1(\Omega) = \frac{\pi^2}{(b-a)^2} = \frac{\pi^2}{|\Omega|^2}$

• Let
$$\mathcal{D} = (D_1, \dots, D_k)$$
 be a k-partition

$$\Lambda_{k,\infty}(\mathcal{D}) = \max_{1 \le i \le k} \frac{\pi^2}{|D_i|^2}$$

 ∞ -minimal k-partition

Let
$$\Omega = (a, b)$$
, $p = \infty$
 $\lambda_1(\Omega) = \frac{\pi^2}{(b-a)^2} = \frac{\pi^2}{|\Omega|^2}$

• Let
$$\mathcal{D} = (D_1, \ldots, D_k)$$
 be a k-partition

$$\Lambda_{k,\infty}(\mathcal{D}) = \max_{1 \le i \le k} \frac{\pi^2}{|D_i|^2} \ge \frac{k^2 \pi^2}{(b-a)^2}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Dimension 1

 ∞ -minimal k-partition

Let
$$\Omega = (a, b)$$
, $p = \infty$
 $\lambda_1(\Omega) = \frac{\pi^2}{(b-a)^2} = \frac{\pi^2}{|\Omega|^2}$

• Let
$$\mathcal{D} = (D_1, \dots, D_k)$$
 be a *k*-partition

$$\Lambda_{k,\infty}(\mathcal{D}) = \max_{1 \leq i \leq k} \frac{\pi^2}{|D_i|^2} \geq \frac{k^2 \pi^2}{(b-a)^2}$$

Then

$$\mathfrak{L}_{k,\infty}(\Omega) = rac{k^2 \pi^2}{(b-a)^2}$$

and the equipartition $\mathcal{D}^* = (D_1, \dots, D_k)$ is minimal with $D_i = (a + (i - 1)h, a + ih), h = \frac{b-a}{k}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Nodal partition

Let
$$\Omega = (a, b)$$

 \blacktriangleright k-th eigenvalue: $\lambda_k(\Omega) = \frac{k^2 \pi^2}{(b-a)^2} = \frac{k^2 \pi^2}{|\Omega|^2}$
 $\Longrightarrow \qquad \mathfrak{L}_{k,\infty}(\Omega) = \lambda_k(\Omega)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 目 - のへで

Nodal partition

Let $\Omega = (a, b)$ • k-th eigenvalue: $\lambda_k(\Omega) = \frac{k^2 \pi^2}{(b-a)^2} = \frac{k^2 \pi^2}{|\Omega|^2}$ $\implies \mathcal{L}_{k,\infty}(\Omega) = \lambda_k(\Omega)$

k-th eigenfunctions

$$u_k(x) = \sin\left(k\pi \frac{x-a}{b-a}\right), \quad \forall x \in \Omega$$
$$u_5:$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Nodal partition

Let $\Omega = (a, b)$ • k-th eigenvalue: $\lambda_k(\Omega) = \frac{k^2 \pi^2}{(b-a)^2} = \frac{k^2 \pi^2}{|\Omega|^2}$ $\implies \mathfrak{L}_{k,\infty}(\Omega) = \lambda_k(\Omega)$

► *k*-th eigenfunctions

$$u_k(x) = \sin\left(k\pi \frac{x-a}{b-a}\right), \quad \forall x \in \Omega$$
$$u_5:$$

• Any nodal partition associated with $\lambda_k(\Omega)$ gives a minimal k-partition

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Existence of minimal partition

Theorem For any $k \ge 1$ and $p \in [1, +\infty]$,

there exists a regular strong p-minimal k-partition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

[Bucur-Buttazzo-Henrot, Caffarelli-Lin, Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini]

Existence of minimal partition

Theorem For any $k \ge 1$ and $p \in [1, +\infty]$,

there exists a regular strong p-minimal k-partition

[Bucur-Buttazzo-Henrot, Caffarelli-Lin, Conti-Terracini-Verzini, Helffer-Hoffmann-Ostenhof-Terracini]

$$N(\mathcal{D}) = \cup (\partial D_i \cap \Omega)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Regular : $N(\mathcal{D})$ is smooth curve except at finitely many points and

- $N(\mathcal{D}) \cap \partial \Omega$ is finite (boundary singular points)
- $N(\mathcal{D})$ satisfies the Equal Angle Property

Properties 0000 1

Let $k \geq 1$ and $1 \leq p \leq q < \infty$ ► With respect to the domain

$$\Omega \subset ilde{\Omega} \quad \Rightarrow \quad \mathfrak{L}_{k,p}(ilde{\Omega}) \leq \mathfrak{L}_{k,p}(\Omega)$$

▲ロト ▲圖ト ▲温ト ▲温ト

э.

Let $k \ge 1$ and $1 \le p \le q < \infty$

With respect to the domain

$$\Omega \subset ilde{\Omega} \quad \Rightarrow \quad \mathfrak{L}_{k, p}(ilde{\Omega}) \leq \mathfrak{L}_{k, p}(\Omega)$$

▶ With respect to *k*

 $\mathfrak{L}_{k,p}(\Omega) < \mathfrak{L}_{k+1,p}(\Omega)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Monotonicity

Let
$$k \ge 1$$
 and $1 \le p \le q < \infty$
With respect to the domain

$$\Omega \subset ilde{\Omega} \quad \Rightarrow \quad \mathfrak{L}_{k,p}(ilde{\Omega}) \leq \mathfrak{L}_{k,p}(\Omega)$$

▶ With respect to *k*

$$\mathfrak{L}_{k,p}(\Omega) < \mathfrak{L}_{k+1,p}(\Omega)$$

▶ With respect to *p*

$$rac{1}{k^{1/p}} \Lambda_{k,\infty}(\mathcal{D}) \leq \Lambda_{k,p}(\mathcal{D}) \leq \Lambda_{k,q}(\mathcal{D}) \leq \Lambda_{k,\infty}(\mathcal{D})$$

・ロト ・四ト ・ヨト ・ヨト

æ.

Monotonicity

Let $k \ge 1$ and $1 \le p \le q < \infty$ With respect to the domain

$$\Omega \subset ilde{\Omega} \quad \Rightarrow \quad \mathfrak{L}_{k, p}(ilde{\Omega}) \leq \mathfrak{L}_{k, p}(\Omega)$$

► With respect to *k*

 $\mathfrak{L}_{k,p}(\Omega) < \mathfrak{L}_{k+1,p}(\Omega)$

With respect to p

$$rac{1}{k^{1/p}} \Lambda_{k,\infty}(\mathcal{D}) \leq \Lambda_{k,p}(\mathcal{D}) \leq \Lambda_{k,q}(\mathcal{D}) \leq \Lambda_{k,\infty}(\mathcal{D})$$

$$rac{1}{k^{1/p}}\mathfrak{L}_{k,\infty}(\Omega)\leq\mathfrak{L}_{k,p}(\Omega)\leq\mathfrak{L}_{k,q}(\Omega)\leq\mathfrak{L}_{k,\infty}(\Omega)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Proposition

• If $\mathcal{D}^* = (D_i)_{1 \le i \le k}$ is a ∞ -minimal k-partition, then \mathcal{D}^* is an equipartition

$$\lambda_1(D_i) = \mathfrak{L}_{k,\infty}(\Omega), \quad \text{for any} \quad 1 \leq i \leq k$$

Equipartition

Proposition

• If $\mathcal{D}^* = (D_i)_{1 \le i \le k}$ is a ∞ -minimal k-partition, then \mathcal{D}^* is an equipartition

$$\lambda_1(D_i) = \mathfrak{L}_{k,\infty}(\Omega) \,, \qquad ext{ for any } 1 \leq i \leq k$$

Let p ≥ 1 and D* a p-minimal k-partition If D* is an equipartition, then

 $\mathfrak{L}_{k,q}(\Omega) = \mathfrak{L}_{k,p}(\Omega), \qquad \textit{for any} \quad q \geq p$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Equipartition

Proposition

• If $\mathcal{D}^* = (D_i)_{1 \le i \le k}$ is a ∞ -minimal k-partition, then \mathcal{D}^* is an equipartition

$$\lambda_1(D_i) = \mathfrak{L}_{k,\infty}(\Omega), \qquad ext{ for any } 1 \leq i \leq k$$

• Let $p \ge 1$ and \mathcal{D}^* a p-minimal k-partition If \mathcal{D}^* is an equipartition, then

 $\mathfrak{L}_{k,q}(\Omega) = \mathfrak{L}_{k,p}(\Omega), \qquad \textit{for any} \quad q \geq p$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We set

$$p_{\infty}(\Omega, k) = \inf\{p \ge 1, \mathfrak{L}_{k,p}(\Omega) = \mathfrak{L}_{k,\infty}(\Omega)\}$$

Rayleigh quotient

$$\mathcal{Q}(u) = rac{\int_\Omega |
abla u|^2}{\int_\Omega |u|^2}, \qquad orall u \in H^1_0(\Omega)$$

Min-max principle

 $\lambda_k(\Omega) = \max_{u_1,\ldots,u_{k-1}} \min \left\{ \mathcal{Q}(u), u \in H^1_0(\Omega), u \in [u_1,\ldots,u_{k-1}]^{\perp} \right\}$

 $\implies \lambda_k(\Omega) \leq \mathfrak{L}_{k,\infty}(\Omega)$

Let u be an eigenfunction of $-\Delta$ on Ω

The nodal sets of u are the components of

 $\Omega \setminus N(u)$ with $N(u) = \overline{\{x \in \Omega | u(x) = 0\}}$

The partition composed by the nodal sets is called nodal partition

Regularity

N(u) is a \mathcal{C}^{∞} curve except on some critical points $\{x\}$ If $x \in \Omega$, N(u) is locally the union of an **even** number of half-curves ending at x with equal angle If $x \in \partial\Omega$, N(u) is locally the union of half-curves ending at x with equal angle

Nodal partitions

Let u be an eigenfunction of $-\Delta$ on Ω

The nodal sets of u are the components of

 $\Omega \setminus N(u)$ with $N(u) = \overline{\{x \in \Omega | u(x) = 0\}}$

► The partition composed by the nodal sets is called nodal partition

Theorem Any eigenfunction u associated with $\lambda_k(\Omega)$ has at most k nodal domains

[Courant]

u is said Courant-sharp if it has exactly k nodal domains

Theorem

Any eigenfunction u associated with $\lambda_k(\Omega)$ has at most k nodal domains [Courant]

u is said Courant-sharp if it has exactly *k* nodal domains For $k \ge 1$,

 $L_k(\Omega)$ denotes the smallest eigenvalue (if any) for which there exists an eigenfunction with k nodal domains

We set $L_k(\Omega) = +\infty$ if there is no eigenfunction with k nodal domains

 $\Rightarrow \qquad \lambda_k(\Omega) \leq \mathfrak{L}_{k,\infty}(\Omega) \leq L_k(\Omega)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nodal partitions

Theorem Any eigenfunction u associated with $\lambda_k(\Omega)$ has at most k nodal domains

u is said Courant-sharp if it has exactly *k* nodal domains For $k \ge 1$,

 $L_k(\Omega)$ denotes the smallest eigenvalue (if any) for which there exists an eigenfunction with k nodal domains

$$\Rightarrow \qquad \lambda_k(\Omega) \leq \mathfrak{L}_{k,\infty}(\Omega) \leq L_k(\Omega)$$

For $k \ge 1$, $\tilde{L}_k(\Omega)$ denotes the smallest eigenvalue for which there exists an eigenfunction with *at leat* k nodal domains

$$\Rightarrow \qquad \lambda_k(\Omega) \leq \mathfrak{L}_{k,\infty}(\Omega) \leq ilde{\mathcal{L}}_k(\Omega) \leq \mathcal{L}_k(\Omega)$$

duction	1D	Prope
2	00	000

roperties

Nodal partition

3-partition

-partitions for the max

p-norm 000 Conclusior 00

Nodal partitions

Square

≣ ୬୯୯

k-partitions for the max

p-norm 000 Conclusion 00

Nodal partitions

Disk

Theorem

 $\lambda_k(\Omega) \leq \mathfrak{L}_{k,\infty}(\Omega) \leq L_k(\Omega)$

If $\mathfrak{L}_{k,\infty} = L_k$ or $\mathfrak{L}_{k,\infty} = \lambda_k$, then $\lambda_k(\Omega) = \mathfrak{L}_{k,\infty}(\Omega) = L_k(\Omega)$ with a Courant sharp eigenfunction associated with $\lambda_k(\Omega)$

[Helffer-Hoffmann-Ostenhof-Terracini]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

$$\begin{split} \lambda_k(\Omega) &\leq \mathfrak{L}_{k,\infty}(\Omega) \leq L_k(\Omega) \\ \text{If } \mathfrak{L}_{k,\infty} &= L_k \text{ or } \mathfrak{L}_{k,\infty} = \lambda_k \text{, then } \lambda_k(\Omega) = \mathfrak{L}_{k,\infty}(\Omega) = L_k(\Omega) \\ & \text{ with a Courant sharp eigenfunction associated with } \lambda_k(\Omega) \end{split}$$

[Helffer-Hoffmann-Ostenhof-Terracini]

Theorem

- There exists k_0 such that $\lambda_k < L_k$ for $k \ge k_0$ [Pleijel]
- Explicit upper-bound for k₀

[Bérard-Helffer 16, van den Berg-Gittins 16]
Introduction	1D	Properties	Nodal partition	3-partition	<i>k</i> -partitions for the max 000000	<i>p</i> -norm	Conclusion
000	00	0000	○○○○O●○○○○○○	0000000		000	00
			Exa	mples			

Minimal nodal partitions

• Let $\Omega = \Box$, \bigcirc or \triangle ,

 $\lambda_k(\Omega) = \mathfrak{L}_{k,\infty}(\Omega) = L_k(\Omega)$ iff k = 1, 2, 4

Minimal nodal partitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Introduction
 1D
 Properties
 Nodal partition
 3-partition
 k-partitions for the max
 p-norm
 Conclusion

 000
 00
 0000
 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

∞ -minimal 2-partition

Theorem

 $\mathfrak{L}_{2,\infty}(\Omega) = \lambda_2(\Omega)$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Any nodal partition associated with $\lambda_2(\Omega)$ is minimal

ntroduction 1D Properties

Nodal partition

3-partition

k-partitions for the max

rm Conc O OO

∞ -minimal 2-partition

Theorem

 $\mathfrak{L}_{2,\infty}(\Omega) = \lambda_2(\Omega)$

Any nodal partition associated with $\lambda_2(\Omega)$ is minimal Examples

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへの

Proposition

Let $\mathcal{D} = (D_1, D_2)$ be a ∞ -minimal 2-partition of Ω Suppose that there exists a second eigenfunction φ_2 of $-\Delta$ on Ω having D_1 and D_2 as nodal domains and such that

$$\int_{D_1} |\varphi_2|^2 \neq \int_{D_2} |\varphi_2|^2$$

Then

 $\mathfrak{L}_{2,1}(\Omega) < \mathfrak{L}_{2,\infty}(\Omega)$

[Helffer-Hoffman-Ostenhof]

Applications Let $\mathcal{D} = (D_i)_{1 \le i \le k}$ be a ∞ -minimal *k*-partition Let $D_i \sim D_j$ be a pair of neighbors. We denote

 $D_{ij} = \operatorname{Int} \overline{D_i \cup D_i}$

▶ Suppose that there exists a second eigenfunction φ_{ij} of $-\Delta$ on D_{ij} having D_i and D_j as nodal domains and such that

$$\int_{D_i} |\varphi_{ij}|^2 \neq \int_{D_j} |\varphi_{ij}|^2$$

Then

 $\mathfrak{L}_{k,1}(\Omega) < \Lambda_{k,\infty}(\mathcal{D})$

[Helffer-Hoffman-Ostenhof]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	1D	Properties	Nodal partition	3-partition	<i>k</i> -partitions for the max	<i>p</i> -norm	Conclusion
000	00	0000	000000000000000000000000000000000000000	0000000	000000	000	00
	2-partition						
p = 1							
			,				

• $\Omega = \Box$?

► $\Omega = \bigcirc$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

►
$$\Omega = \Box$$
, \bigcirc ?

 $\Omega = \Delta$

 φ_2 : symmetric eigenfunction associated with $\lambda_2(\Omega)$

$$0.495 \simeq \int_{D_1} |\varphi_2|^2 < \int_{D_2} |\varphi_2|^2 \simeq 0.505$$

 $\mathfrak{L}_{2,1}(\Omega) < \mathfrak{L}_{2,\infty}(\Omega)$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Introduction 000	1D 00	Properties 0000	Nodal partition	3-partition 0000000	<i>k</i> -partitions for the max 000000	<i>p</i> -norm 000	Conclusion OO
			2-pa "	rtition = 1			

► $\Omega = \Box$, \bigcirc ?

• \bigwedge is a ∞ -minimal 2-partition but not a 1-minimal 2-partition

(ロ)、(型)、(E)、(E)、 E) の(の)

- ► $\Omega = \Box$, \bigcirc ?
- is a ∞ -minimal 2-partition but not a 1-minimal 2-partition
- Angular sector with opening $\pi/4$ φ_2 : symmetric eigenfunction associated with $\lambda_2(\Omega)$

$$egin{aligned} 0.37 \simeq \int_{D_1} |arphi_2|^2 < \int_{D_2} |arphi_2|^2 \simeq 0.63 \ & \ \mathfrak{L}_{2,1}(\Omega) < \mathfrak{L}_{2,\infty}(\Omega) \end{aligned}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- ► $\Omega = \Box$, \bigcirc ?
- \checkmark is a ∞ -minimal 2-partition but not a 1-minimal 2-partition

\blacktriangleright is a ∞ -minimal 2-partition but not a 1-minimal 2-partition

• The inequality $\mathfrak{L}_{2,1}(\Omega) < \mathfrak{L}_{2,\infty}(\Omega)$ is "generically" satisfied

[Helffer-Hoffmann-Ostenhof]

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	1D	Properties	Nodal partition	3-partition	k-partitions for the max	<i>p</i> -norm	Conclu
000	00	0000	00000000000000	0000000	000000	000	00

Lower bounds

Square, equilateral triangle, disk

$$\left(rac{1}{k}\sum_{i=1}^k\lambda_i(\Omega)^p
ight)^{1/p}\leq\mathfrak{L}_{k,p}(\Omega)\leq L_k(\Omega)$$

Explicit eigenvalues for \Box , \triangle , \bigcirc

Ω	$\lambda_{m,n}(\Omega)$	<i>m</i> , <i>n</i>
	$\pi^2(m^2+n^2)$	$m,n\geq 1$
\triangle	$\frac{16}{9}\pi^2(m^2+mn+n^2)$	$m,n\geq 1$
0	$j_{m,n}^2$	$m \ge 0, n \ge 1$ (multiplicity)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let k > 2To determine a ∞ -minimal k-partition,

we consider the eigenspace E_k associated with λ_k

Two cases:

 If there exists u ∈ E_k with k nodal domains, then u produces a minimal k-partition and any minimal k-partition is nodal

 $\mathfrak{L}_{k,\infty}(\Omega) = \lambda_k(\Omega) = L_k(\Omega)$

[Bipartite case]

• If $\mu(u) < k$ for any $u \in E_k \dots$

... we have to find another strategy [Non bipartite case]

Known results in the non bipartite case, $p = \infty$

Sphere and fine flat torus

Theorem The minimal 3-partition for the sphere is

[Helffer-Hoffmann-Ostenhof-Terracini]

Theorem

Let $0 < b \le a$ and $T(a, b) = (\mathbf{R}/a\mathbf{Z}) \times (\mathbf{R}/b\mathbf{Z})$ the flat torus

$$\mathcal{D}_k(a,b) = \left\{ \left| \frac{i-1}{k}a, \frac{i}{k}a \right[\times]0, b[, 1 \le i \le k \right\} \right\}$$

k even and ^b/_a ≤ ²/_k ⇒ D_k(a, b) is minimal
k odd and ^b/_a < ¹/_k ⇒ D_k(a, b) is minimal

- k odd and $\frac{1}{k} \leq \frac{b}{2} \leq \ell_* \Rightarrow \mathcal{D}_k(a, b)$ is minimal

[Helffer-Hoffmann-Ostenhof]

[BN-Léna 16]

The question is open for any other domain (in the non bipartite case) (日)(周)((日)(日))(日)

Topological configurations

Euler formula

$$k = 1 + b_1 - b_0 + \sum_{\mathbf{x}_i \in X(\partial \mathcal{D})} \left(\frac{\nu(\mathbf{x}_i)}{2} - 1\right) + \frac{1}{2} \sum_{\mathbf{y}_i \in Y(\partial \mathcal{D})} \rho(\mathbf{y}_i)$$

 $\begin{array}{ll} & \begin{array}{ll} b_0 & \text{number of components of } \partial\Omega \\ \text{with} & \begin{array}{ll} b_1 & \text{number of components of } \partial\mathcal{D} \cup \partial\Omega \\ & \nu(\mathbf{x}_i) & \text{number of curves ending at } \mathbf{x}_i \in X(\partial\mathcal{D}) \\ & \rho(\mathbf{y}_i) & \text{number of curves ending at } \mathbf{y}_i \in Y(\partial\mathcal{D}) \\ & \Rightarrow 3 \text{ types of configurations} \end{array}$

Question

If Ω is symmetric, does it exist a symmetric minimal 3-partition ?

Non bipartite symmetric ∞ -minimal 3-partition

First configuration: One critical point on the symmetry axis

 $\mathcal{D} = (D_1, D_2, D_3)$ minimal 3-partition $\Rightarrow (D_1, D_3)$ minimal 2-partition for $\operatorname{Int}(\overline{D_1} \cup \overline{D_3})$

 \Rightarrow nodal partition on $Int(\overline{D_1} \cup \overline{D_3})$

[BN-Helffer-Vial 10]

Non bipartite symmetric ∞ -minimal 3-partition

First configuration: One critical point on the symmetry axis

Introduce a mixed Dirichlet-Neumann problem

[BN-Helffer-Vial 10]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Non bipartite symmetric ∞ -minimal 3-partition

First configuration: One critical point on the symmetry axis

Introduce a mixed Dirichlet-Neumann problem

- $(\lambda_2(x_0), \varphi_{x_0})$ second eigenmode
- $x_0 \mapsto \lambda_2(x_0)$ is increasing
- the nodal line starts from (a, b) and reaches the boundary

[BN-Helffer-Vial 10]

 ntroduction
 1D
 Properties
 Nodal partition
 3-partition
 k-partitions for the max
 p-norm
 Conclusion

 000
 000
 00000000000
 0000000
 0000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Non bipartite symmetric ∞ -minimal 3-partition

First configuration: One critical point on the symmetry axis

Introduce a mixed Dirichlet-Neumann problem

- $(\lambda_2(x_0), \varphi_{x_0})$ second eigenmode
- $x_0 \mapsto \lambda_2(x_0)$ is increasing
- the nodal line starts from (a, b) and reaches the boundary

[BN-Helffer-Vial 10]

Introduction1DPropertiesNodal partition3-partitionk-partitions for the maxp-normConclusionCOCCOCCOCCOCCOCCOCCOCCOC

Non bipartite symmetric ∞ -minimal 3-partition

First configuration: One critical point on the symmetry axis

Introduce a mixed Dirichlet-Neumann problem

- $(\lambda_2(x_0), \varphi_{x_0})$ second eigenmode
- $x_0 \mapsto \lambda_2(x_0)$ is increasing
- the nodal line starts from (a, b) and reaches the boundary

[BN-Helffer-Vial 10]

Non bipartite symmetric ∞ -minimal 3-partition

First configuration: One critical point on the symmetry axis

Introduce a mixed Dirichlet-Neumann problem

- $(\lambda_2(x_0), \varphi_{x_0})$ second eigenmode
- $x_0 \mapsto \lambda_2(x_0)$ is increasing
- the nodal line starts from (a, b) and reaches the boundary

[BN-Helffer-Vial 10]

Non bipartite symmetric ∞ -minimal 3-partition

First configuration: examples

(日)

Non bipartite symmetric ∞ -minimal 3-partition

3-partition

Second and third configurations: Two critical points on the symmetry axis

Mixed Neumann-Dirichlet-Neumann problem

$$\begin{array}{rcl} -\Delta \varphi &=& \lambda \varphi & \text{ in } \Omega^+ \\ \partial_{\mathbf{n}} \varphi &=& 0 & \text{ on } [a, x_0] \cup [x_1, b] \\ \varphi &=& 0 & \text{ elsewhere } \end{array}$$

Mixed Dirichlet-Neumann-Dirichlet problem

$$\left\{ \begin{array}{rrrr} -\Delta \varphi &=& \lambda \varphi & \text{ in } \Omega^+ \\ \partial_{\mathbf{n}} \varphi &=& 0 & \text{ on } [x_0, x_1] \\ \varphi &=& 0 & \text{ elsewhere } \end{array} \right.$$

No candidate for the square, disk, angular sectors with two critical points!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\Lambda_{3,\infty}(\mathcal{D}_0) \simeq 66.58 \quad \Lambda_{3,\infty}(\mathcal{D}_1) \simeq 66.58 \ \left| \begin{array}{c} \Lambda_{3,\infty}(\mathcal{D}_0) \simeq 61.872 \end{array} \right| \ \Lambda_{3,\infty}(\mathcal{D}_0) \simeq 20.20$

Applications

 $0.75 \simeq \int_{D_1} |\varphi_2|^2 > 2 \int_{D_2} |\varphi_2|^2 \simeq 0.51$

troduction 1D Pro

λ

Properties 0000 lodal partition

3-partition ○○○○○●○ *k*-partitions for the max

Conclusi 00

Numerical simulations

p-minimal 3-partition for the square

Since $\Lambda_3^{DN} \simeq 66.581$ and $L_3 = 10\pi^2 \simeq 98.696$

$$_{3} < \mathfrak{L}_{3,\infty} < \Lambda_{3}^{DN}, \qquad \qquad \left(rac{1}{3}\sum_{j=1}^{3}\lambda_{j}(\Box)^{p}
ight)^{1/p} \leq \mathfrak{L}_{3,p} \leq \Lambda_{3}^{DN}$$

ntroduction	1D	Prop
000	00	000

lodal partition)000000000000 3-partition ○○○○○●○

k-partitions for the max

Conclusio

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^p + 5^p + 5^p}{3}\right)^{1/p} \le \mathfrak{L}_{3,p} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

イロト イ理ト イヨト イヨト

[Bogosel-BN16]

Ξ.

ntroduction	1D	Prop
000	00	000

lodal partition)000000000000 3-partition ○○○○○●○

k-partitions for the max

Conclusio

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^p + 5^p + 5^p}{3}\right)^{1/p} \le \mathfrak{L}_{3,p} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

▲ロト ▲圖ト ▲温ト ▲温ト

[Bogosel-BN16]

ntroduction	1D	Prop
000	00	000

lodal partition)000000000000 3-partition ○○○○○●○

k-partitions for the max

Conclusio

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^{\rho} + 5^{\rho} + 5^{\rho}}{3}\right)^{1/\rho} \le \mathfrak{L}_{3,\rho} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

▲ロト ▲圖ト ▲温ト ▲温ト

[Bogosel-BN16]

ntroduction	1D	Prop
000	00	000

lodal partition

3-partition

k-partitions for the max

Conclusio

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^{\rho} + 5^{\rho} + 5^{\rho}}{3}\right)^{1/\rho} \le \mathfrak{L}_{3,\rho} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

イロト イ理ト イヨト イヨト

[Bogosel-BN16]

ntroduction	1D	Prop
000	00	000

lodal partition)000000000000 3-partition ○○○○○●○

k-partitions for the max

Conclusio

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^p + 5^p + 5^p}{3}\right)^{1/p} \le \mathfrak{L}_{3,p} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

[Bogosel-BN16]

ntroduction	1D	Prop
000	00	000

lodal partition

3-partition

k-partitions for the max

Conclusi

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^p + 5^p + 5^p}{3}\right)^{1/p} \le \mathfrak{L}_{3,p} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

▲ロト ▲圖ト ▲温ト ▲温ト

[Bogosel-BN16]

ntroduction	1D	Prop
000	00	000

lodal partition)000000000000 3-partition

k-partitions for the max

Conclusio

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^p + 5^p + 5^p}{3}\right)^{1/p} \le \mathfrak{L}_{3,p} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

▲ロト ▲圖ト ▲温ト ▲温ト

[Bogosel-BN16]

ntroduction	1D	Prop
000	00	000

lodal partition)000000000000 3-partition

k-partitions for the max

Conclusion

Numerical simulations

p-minimal 3-partition for the square

$$49.35 \simeq 5\pi^2 < \mathfrak{L}_{3,\infty} \le \Lambda_3^{DN} \simeq 66.581$$
$$\pi^2 \left(\frac{2^{\rho} + 5^{\rho} + 5^{\rho}}{3}\right)^{1/\rho} \le \mathfrak{L}_{3,\rho} \le \Lambda_3^{DN} \qquad \Rightarrow \qquad 39.48 \simeq 4\pi^2 \le \mathfrak{L}_{3,1} \le 66.58$$

[Bogosel-BN16]

æ

・ロト ・個ト ・モト ・モト

 Introduction
 1D
 Properties
 Nodal partition
 3-partition
 k-partitions for the

 000
 00
 000000000000
 0000000
 0000000
 0000000

Numerical simulations

p-minimal 3-partition

Conjecture For the square :

- $p \mapsto \mathfrak{L}_{3,p}(\Box)$ is increasing
- $p_{\infty}(\Box, 3) = +\infty$

For the disk:

• $p_{\infty}(\bigcirc,3)=1$

For the equilateral triangle: $p_{\infty}(\triangle, 3) = 1$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Iterative methods

Penalization

 Instead of looking for k domains (D₁,..., D_K), we look for a k-upple of functions (φ₁,..., φ_k) ∈ M with

$$M = \left\{ (\varphi_1, \dots, \varphi_k), \varphi_i : \Omega \to [0, 1] \text{ measurable }, \sum_{i=1}^k \varphi_i = 1 \text{ a.e. } \Omega \right\}$$

Iterative methods

Penalization

Instead of looking for k domains (D₁,..., D_K), we look for a k-upple of functions (φ₁,..., φ_k) ∈ M with

$$M = \left\{ (arphi_1, \dots, arphi_k), arphi_i : \Omega o [0, 1] ext{ measurable }, \sum_{i=1}^k arphi_i = 1 ext{ a.e. } \Omega
ight\}$$

2. Penalized eigenvalue problem on $\boldsymbol{\Omega}$

$$-\Delta v_i + \frac{1}{\varepsilon}(1-\varphi_i)v_i = \lambda(\varepsilon,\varphi_i)v_i$$
 in Ω

Note that

$$\lim_{\varepsilon\to 0}\lambda(\varepsilon,\varphi_i)=\lambda_1(D_i)$$

Iterative methods

Penalization

 Instead of looking for k domains (D₁,..., D_K), we look for a k-upple of functions (φ₁,..., φ_k) ∈ M with

$$M = \left\{ (arphi_1, \dots, arphi_k), arphi_i : \Omega o [0, 1] ext{ measurable }, \sum_{i=1}^k arphi_i = 1 ext{ a.e. } \Omega
ight\}$$

2. Penalized eigenvalue problem on Ω

$$-\Delta v_i + rac{1}{arepsilon}(1-arphi_i)v_i = \lambda(arepsilon,arphi_i)v_i$$
 in Ω

3. Penalized optimization problem

$$\mathcal{M}(\varepsilon,k) = \inf\left\{\left(rac{1}{k}\sum_{i=1}^k\lambda_1^p(\varepsilon,arphi_i)
ight)^{1/
ho}, (arphi_1,\ldots,arphi_k)\in M
ight\}$$

In some sense

$$\lim_{\varepsilon\to 0}\mathcal{M}(\varepsilon,k)=\mathfrak{L}_{k,p}(\Omega)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Iterative methods

Penalization

 Instead of looking for k domains (D₁,..., D_K), we look for a k-upple of functions (φ₁,..., φ_k) ∈ M with

$$M = \left\{ (\varphi_1, \dots, \varphi_k), \varphi_i : \Omega o [0, 1] \text{ measurable }, \sum_{i=1}^k \varphi_i = 1 \text{ a.e. } \Omega
ight\}$$

2. Penalized eigenvalue problem on Ω

$$-\Delta v_i + rac{1}{arepsilon}(1-arphi_i)v_i = \lambda(arepsilon,arphi_i)v_i$$
 in Ω

3. Penalized optimization problem

$$\mathcal{M}(\varepsilon,k) = \inf\left\{\left(\frac{1}{k}\sum_{i=1}^{k}\lambda_{1}^{p}(\varepsilon,\varphi_{i})\right)^{1/p}, (\varphi_{1},\ldots,\varphi_{k})\in M\right\}$$

4. Projected-gradient descent with adaptive step

Let $\rho > 0$, $\varepsilon > 0$

Initialisation k vectors Φ^0_ℓ given randomly

Iteration Step *p*: for any $\ell = 1, \ldots, k$:

 Compute the first eigenmode (λ(Φ_ℓ), U(Φ_ℓ)) of A(ε, Φ_ℓ)

2. Gradient descent : $\tilde{\Phi}_{\ell}^{p+1} = \Phi_{\ell}^{p+1} - \rho \nabla_{\Phi_{\ell}^{p}} \lambda(\Phi_{\ell}^{p})$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3. Projection on S : $\tilde{\Phi}_{\ell}^{p+1} = \Pi_{S} \tilde{\Phi}_{\ell}^{p+1}$

Iterative method

ntroduction	1D	Properties	Nodal partition	3-partition	k-partitions for the max	<i>p</i> -norm	Conclusion
000	00	0000		0000000	○○○●○○	000	00
			∞ -minima	al <i>k</i> -par	tition		

Dirichlet-Neumann approach

duction	1D 00	Properties 0000	Nodal partition	3-partition 0000000	<i>k</i> -partitions for the max	<i>p</i> -norm 000
			∞ -minima	al <i>k</i> -par	tition	

Dirichlet-Neumann approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

uction	1D 00	Properties 0000	Nodal partition	3-partition 0000000	<i>k</i> -partitions for the max $\bigcirc \bigcirc \bigcirc$	<i>p</i> -norm 000
			∞ -minima	al <i>k</i> -par	tition	

Dirichlet-Neumann approach

Candidates for the max vs. the sum Criteria of the L^2 -norm

k-partitions for the max

Let $\mathcal{D} = (D_i)_{1 \le i \le k}$ be a ∞ -minimal *k*-partition Let $D_i \sim D_j$ be a pair of neighbors. We denote

 $D_{ij} = \operatorname{Int} \overline{D_i \cup D_i}$

Suppose that there exists a second eigenfunction φ_{ij} of $-\Delta$ on D_{ij} having D_i and D_j as nodal domains and such that

$$\int_{D_i} |\varphi_{ij}|^2 \neq \int_{D_j} |\varphi_{ij}|^2$$

Then

 $\mathfrak{L}_{k,1}(\Omega) < \Lambda_{k,\infty}(\mathcal{D})$

Criteria of the L^2 -norm

Criteria not applicable when the subdomains are congruent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Candidates for the max vs. the sum Criteria of the L^2 -norm

- Criteria not applicable when the subdomains are congruent
- Cases where the criteria applies

Non optimal partitions for the sum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Candidates for the max vs. the sum Criteria of the L^2 -norm

Criteria not applicable when the subdomains are congruent

Cases where the criteria applies

Non optimal partitions for the sum

No conclusion

Let $k = \frac{n(n+1)}{2}$

Numerical candidates for $k \in \{15, 21, 28, 36\}$

3 equal quadrilaterals, 3(n-2) pentagons, $\frac{(n-2)(n-3)}{2}$ regular hexagons

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Properties

3-partition

k-partitions for the max

p-norm ●○○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion 00

Numerical results for the *p*-norm

Equilateral triangle

Equilateral triangle

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

p-norm ●○○ 0000 000000000 000000

k-partitions for the max 000000

・ロト ・個ト ・モト ・モト

э

p-norm ●○○ Conclusion 00

Numerical results for the *p*-norm

Equilateral triangle

Properties

odal partition

3-partition

k-partitions for the max

p-norm ●○○ Conclusion

Numerical results for the *p*-norm

Equilateral triangle

ヘロン 人間 とくほど 人ほとう

э

• k = 2, 4: equipartitions

► $k \in \{3\}$ $\Lambda_{3,p}(\mathcal{D}^{3,p}), \Lambda_{3,\infty}(\mathcal{D}^{3,p}) \text{ and } \Lambda_3^{DN}(\Box) \text{ vs. } p$ $\mathcal{D}^{3,p} \text{ vs. } p$

• k = 2, 4: equipartitions

• k = 2, 4: equipartitions

• k = 2, 4: equipartitions

• k = 2, 4: equipartitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・個ト ・モト ・モト

æ

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

•
$$\mathfrak{L}_{k,p}(\bigcirc) = \lambda_1(\sum_{\frac{2\pi}{k}})$$
 for $k \in \{2,3,4,5\}$, $\forall p$

•
$$\mathfrak{L}_{k,p}(\Box) = \lambda_k(\Box)$$
 iff $k = 1, 2, 4, \forall p$

•
$$\mathfrak{L}_{k,p}(\triangle) = \lambda_k(\triangle)$$
 iff $k = 1, 2, 4, \forall p$

$$p\mapsto \mathfrak{L}_{k,p}(riangle)=constant$$
 if $k=rac{n(n+1)}{2}$

Introduction	1D	Properties	Nodal partition	3-partition	k-partitions for the max	<i>p</i> -norm	Conclusion
000	00	0000	000000000000	0000000	000000	000	•0

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

troduction	1D
00	00

Properties 0000 lodal partition)000000000000 3-partition

k-partitions for the max

p-norm

Conclusion • O

Conclusion

くりゃく 前・ 本語・ 本語・ オロ・

Properties Nodal p

dal partition

3-partition

k-partitions for the max

p-norm

Conclusion

Asymptotics $k \to \infty$

Hexagonal conjecture

▶ The limit of $\mathfrak{L}_k(\Omega)/k$ as $k \to +\infty$ exists and

$$\lim_{k\to+\infty}\frac{\mathfrak{L}_k(\Omega)}{k}=\frac{\lambda_1(\bigcirc)}{|\Omega|}$$

▶ The limit of $\mathfrak{L}_{k,1}(\Omega)/k$ as $k \to +\infty$ exists and

lim	$\mathfrak{L}_{k,1}(\Omega)$	$\lambda_1(\bigcirc)$
$k \rightarrow +\infty$	k	$- \Omega$

