A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem

Ola Svensson, Jakub Tarnawski and László A. Végh

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

What's the cheapest way to visit all 24727 pubs in the UK?

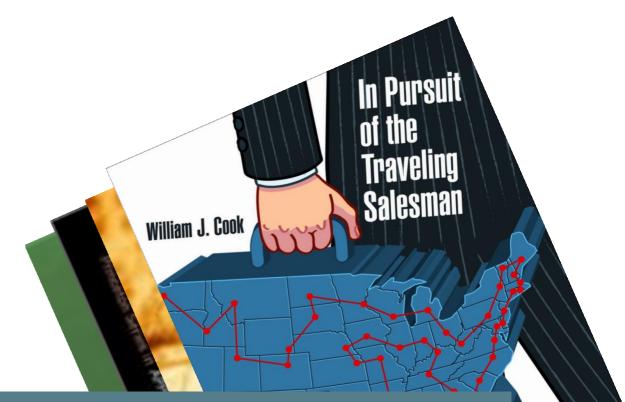
45,495,239 meters

Cook, Espinoza, Goycoolea, Helsgaun (2015)

Find the shortest tour that visits *n* given cities

Traveling Salesman Problem

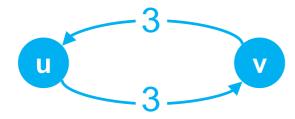
- Variants studied in mathematics by Hamilton and Kirkman already in the 1800's
- Benchmark problem:
 - one of the most studied
 NP-hard optimization problems
 - yet our understanding is quite incomplete



What can be accomplished with efficient computation (approximation algorithms)?

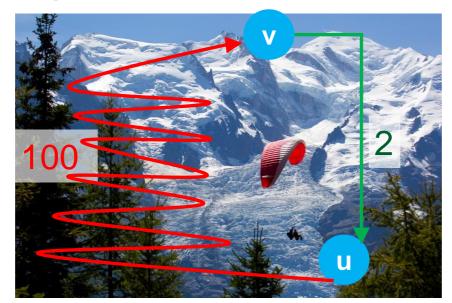
Two basic versions

Symmetric: distance(u,v) = distance(v,u)



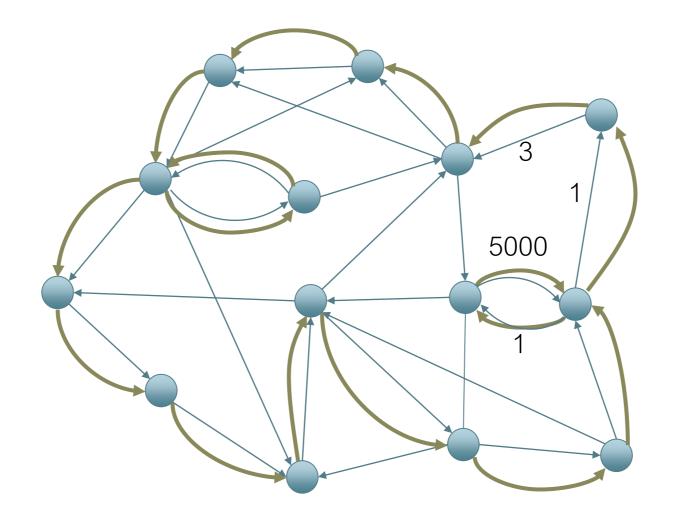
2-approximation is trivial 1.5-approximation [Christofides'76] taught in undergrad courses, still unbeaten

Asymmetric: more general, no such assumption is made



Input: an edge-weighted digraph G = (V, E, w)

Output: a minimum-weight tour that visits each vertex at least once

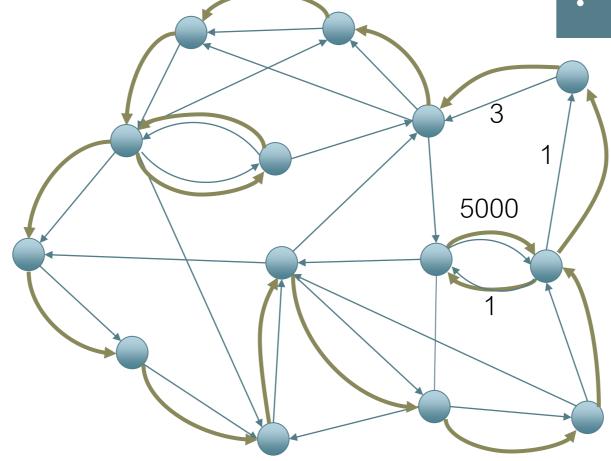


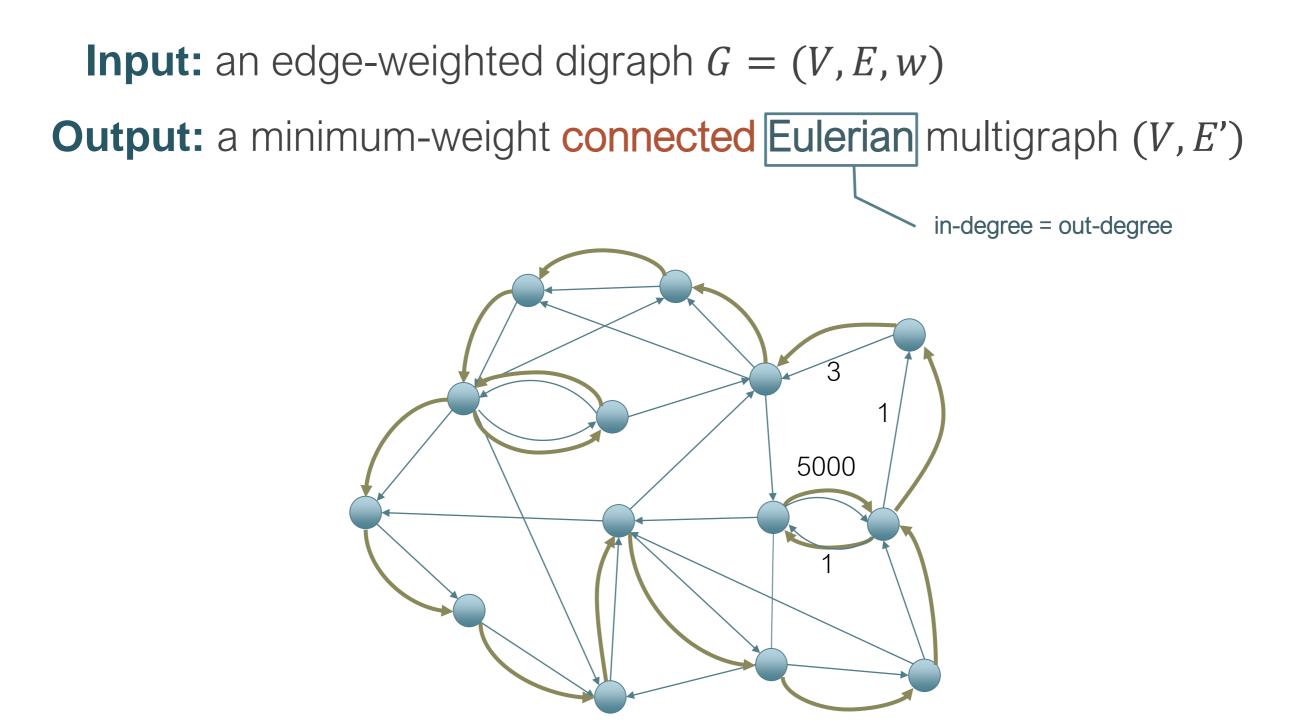
Input: an edge-weighted digraph G = (V, E, w)

Output: a minimum-weight tour that visits each vertex at least once

Equivalently could have:

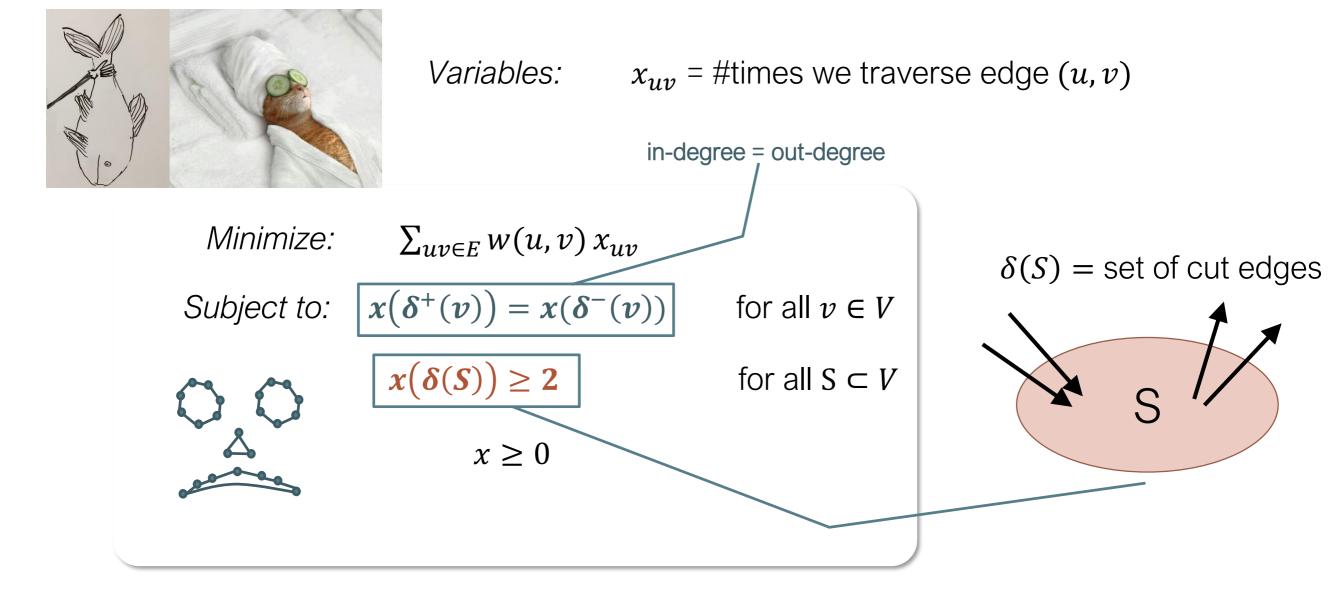
- Complete graph with Δ -inequality
- Visit each vertex *exactly* once





Input: an edge-weighted digraph G = (V, E, w)

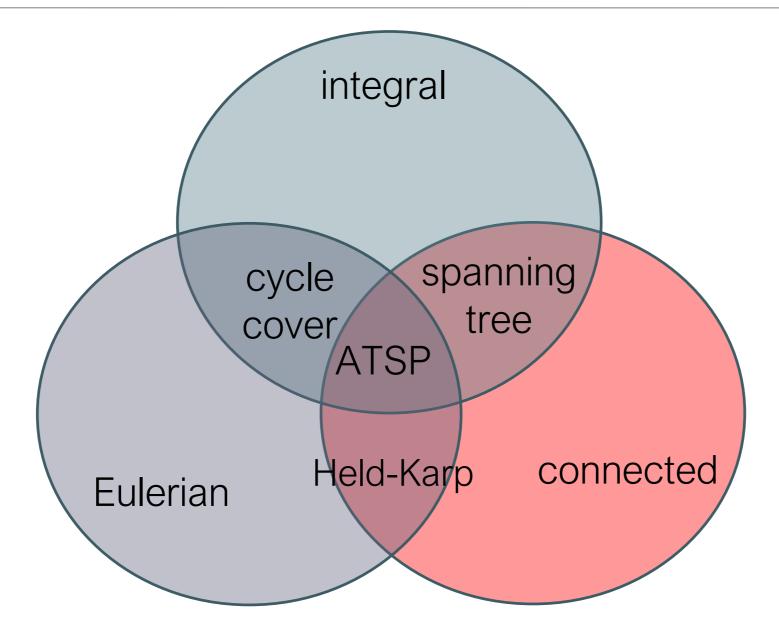
Output: a minimum-weight connected Eulerian multigraph (V, E')



Integrality gap of the

i.e. how far off is that particular algorithm?

Pick any two...



Two natural approaches: begin with...

Add Eulerian graphs until connected

log₂ *n*-approximation via repeated cycle covers [Frieze, Galbiati, Maffioli'82]

0.99 log₂ *n*-approximation [Bläser'03]

0.84 log₂ *n*-approximation [Kaplan, Lewenstein, Shafrir, Sviridenko'05]

 $0.67 \log_2 n$ -approximation [Feige, Singh'07]

Local-Connectivity ATSP

- Defined new, easier problem

. . .

- Reduced O(1)-approximation of ATSP to it
- Solved it for unweighted graphs (easy part) [Svensson'15]

Solved it for graphs with two edge weights [Svensson, T., Vegh'16]

Start with spanning tree, then make Eulerian

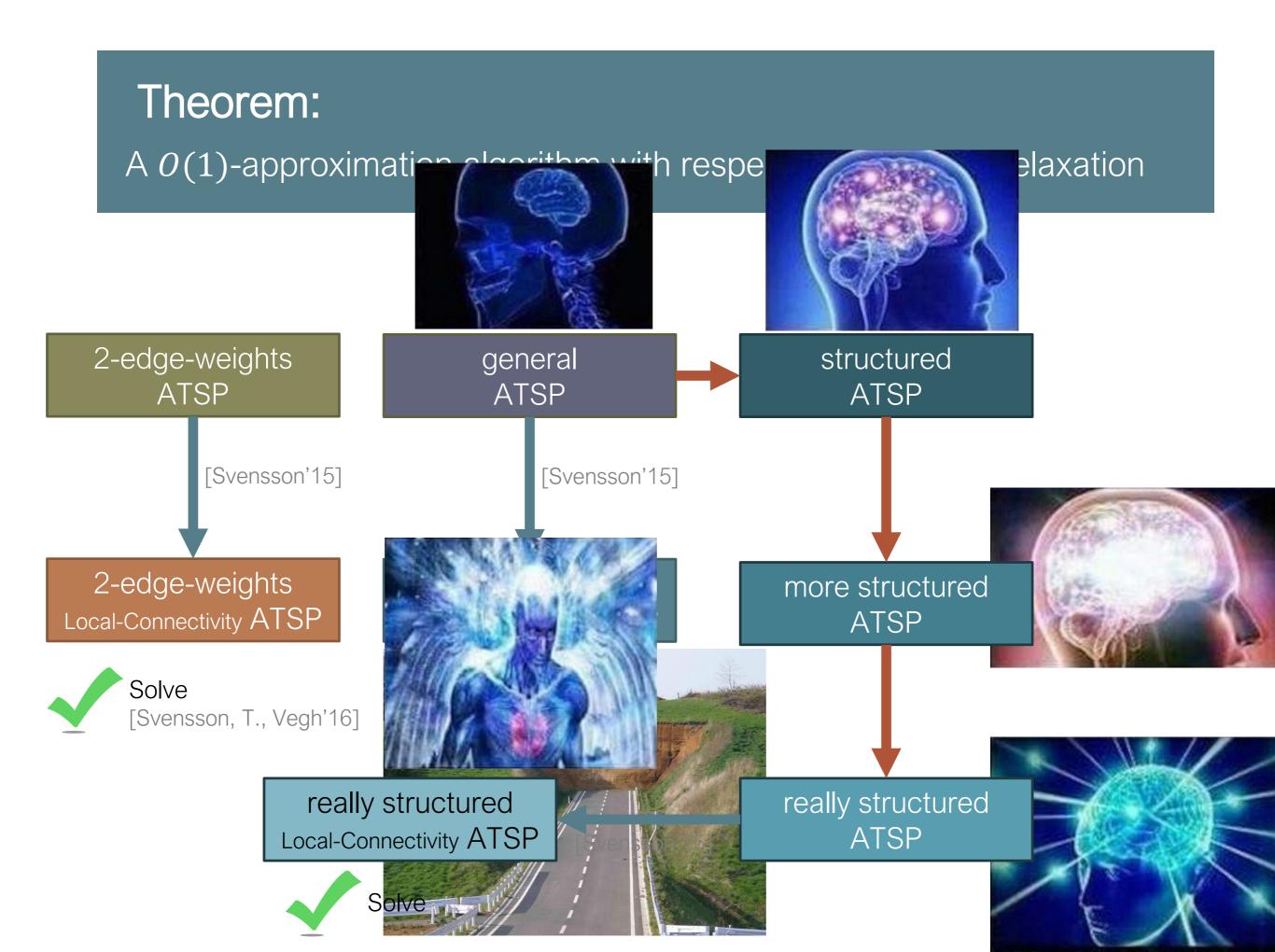
O(log *n* / log log *n*)-approximation via thin trees [Asadpour, Goemans, Mądry, Oveis Gharan, Saberi'10]

O(1)-approximation for planar & bounded-genus graphs [Oveis Gharan, Saberi'11]

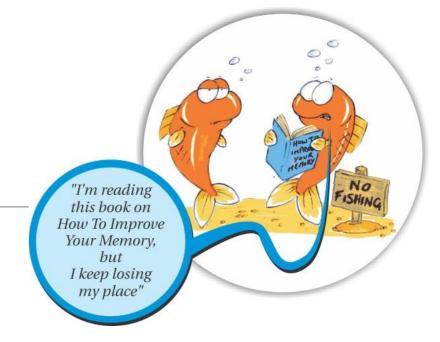
Integrality gap \leq poly(log log n) via generalization of Kadison-Singer [Anari, Oveis Gharan'14]

Hardness

NP-hard to approximate within $1 + \frac{1}{74}$ [Papadimitriou, Vempala'00, Karpinski, Lampis, Schmied'13] Integrality gap ≥ 2 [Charikar, Goemans, Karloff'02]



Outline of reductions

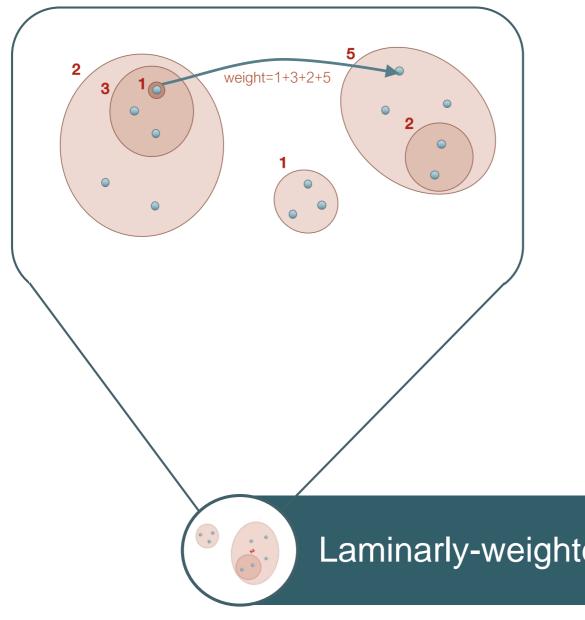


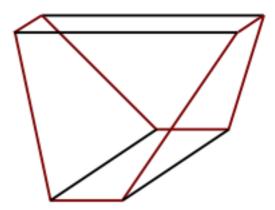
Laminarly-weighted instances

Irreducible instances

Vertebrate pairs

Solving Local-Connectivity ATSP



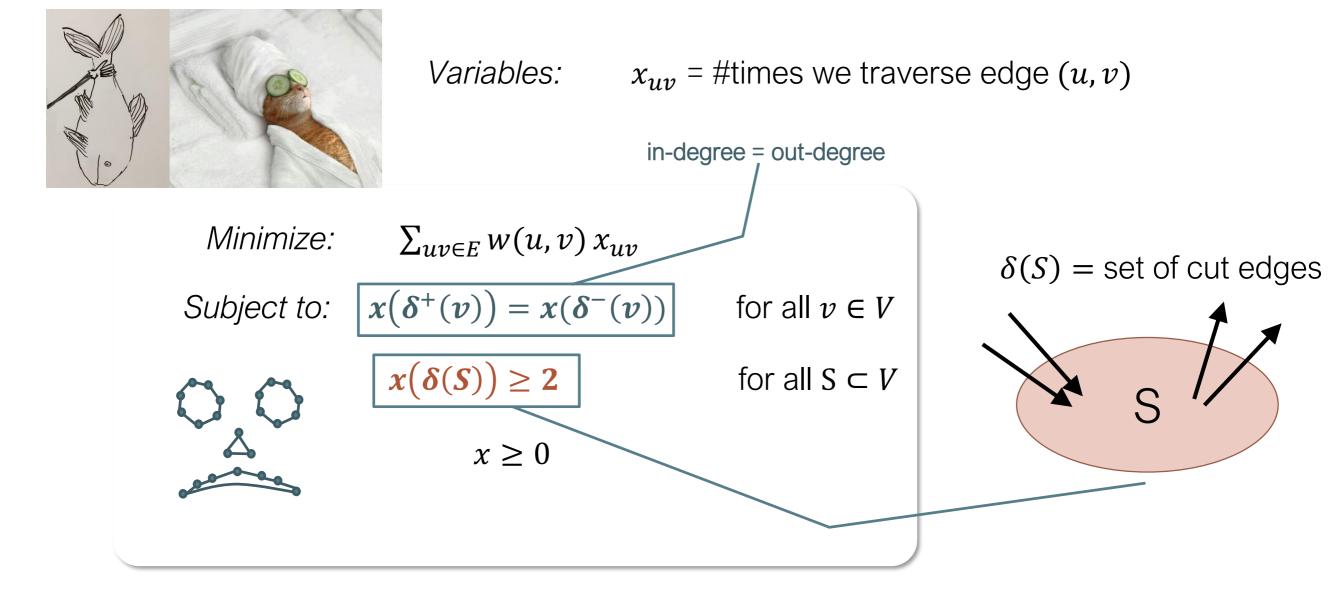


By amazing power of LP-duality

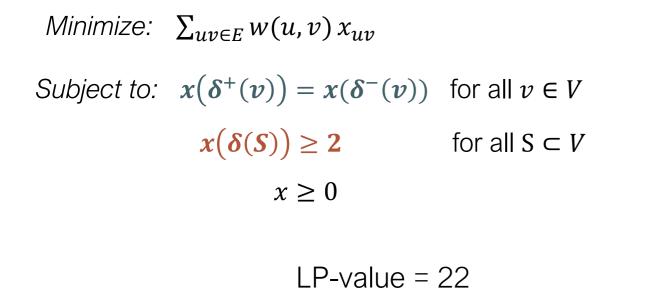
Laminarly-weighted instances

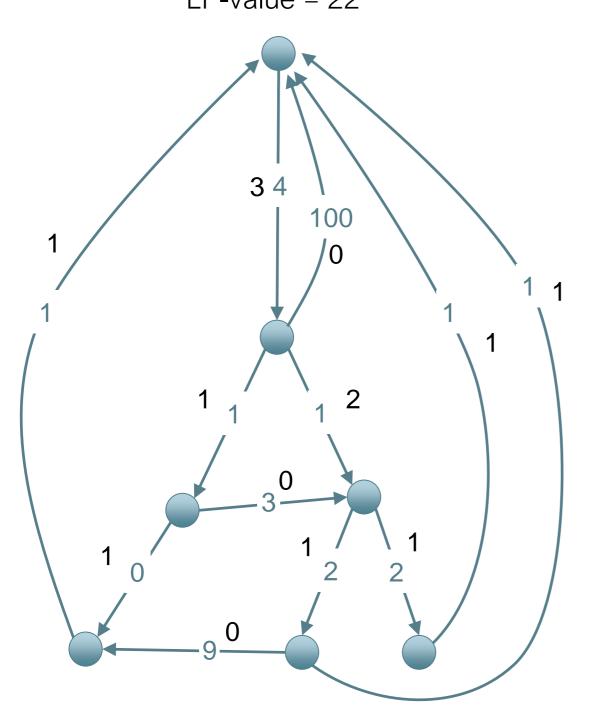
Input: an edge-weighted digraph G = (V, E, w)

Output: a minimum-weight connected Eulerian multigraph (V, E')

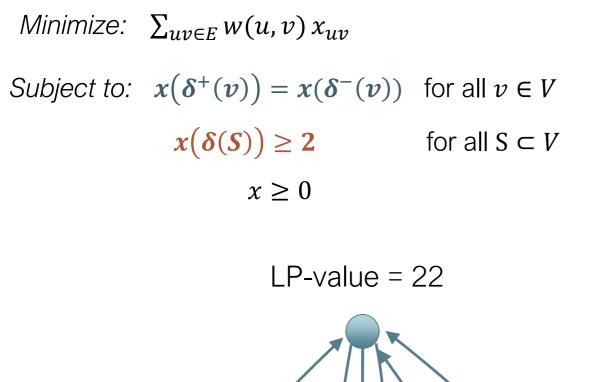


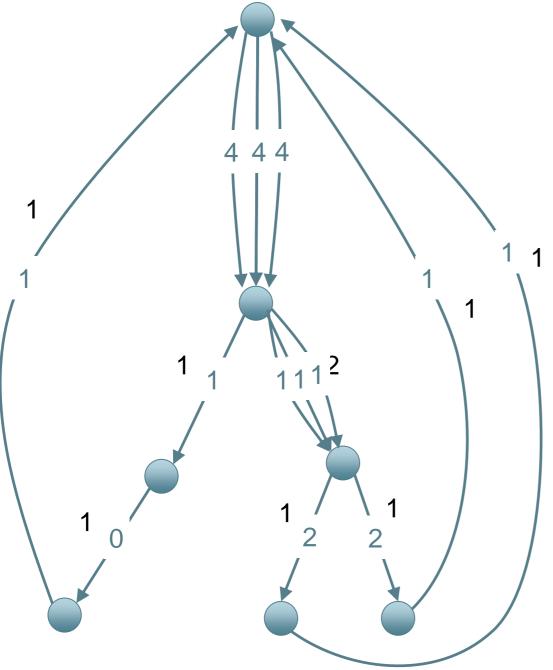
 $\begin{array}{ll} \text{Minimize:} & \sum_{uv \in E} w(u,v) \, x_{uv} \\\\ \text{Subject to:} & \textbf{x} \big(\boldsymbol{\delta}^+(v) \big) = \textbf{x} \big(\boldsymbol{\delta}^-(v) \big) & \text{for all } v \in V \\\\ & \textbf{x} \big(\boldsymbol{\delta}(\boldsymbol{S}) \big) \geq \mathbf{2} & \text{for all } \mathbf{S} \subset V \\\\ & x \geq \mathbf{0} \end{array}$



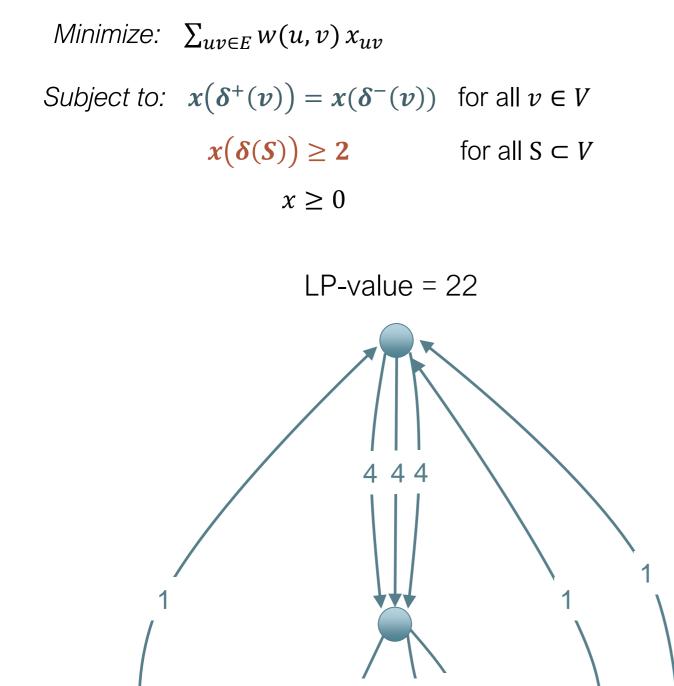


- 1. Solve LP to obtain solution depicted in black
- 2. Forget edges with LP-value = 0
 - Doesn't change LP-value
 - Any tour is smaller instance is a tour in original instance
- 3. Now all edges have positive LP-value





- 1. Solve LP to obtain solution depicted in black
- 2. Forget edges with LP-value = 0
 - Doesn't change LP-value
 - Any tour is smaller instance is a tour in original instance
- 3. Now all edges have positive LP-value



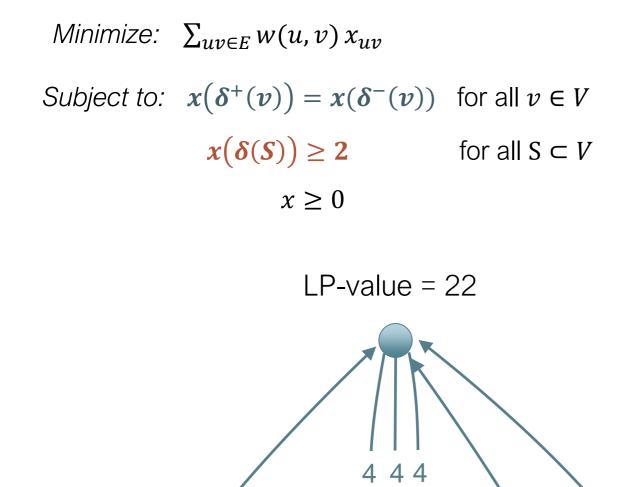
2

2

- 1. Solve LP to obtain solution depicted in black
- 2. Forget edges with LP-value = 0
 - Doesn't change LP-value
 - Any tour is smaller instance is a tour in original instance
- 3. Now all edges have positive LP-value

Do these edges have structure?

By complementarity slackness, each remaining edge corresponds to tight constraint in **dual**



 $\mathbf{0}$

2

2

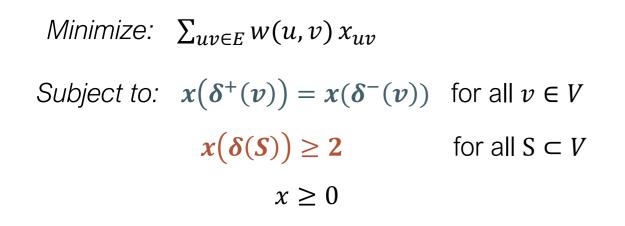
Maximize: $\sum_{S \subset V} 2 \cdot y_S$

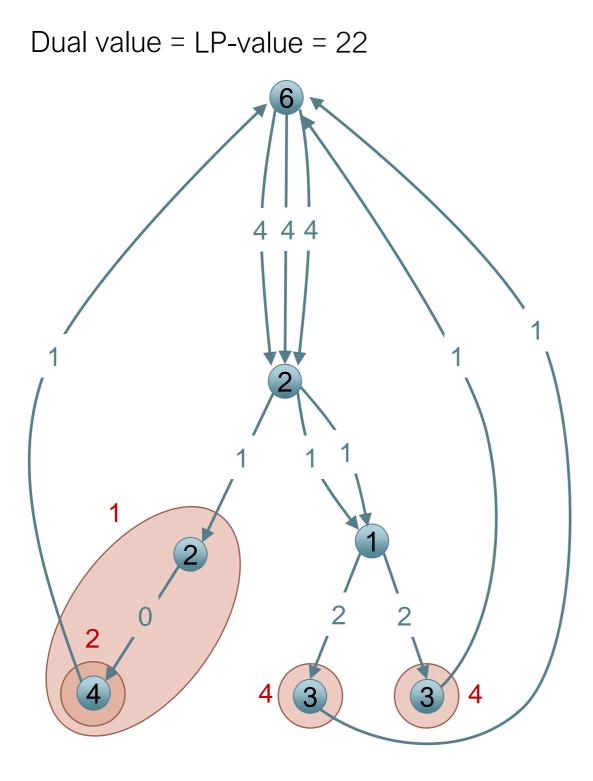
Subject to:

$$\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$$
$$y \ge 0$$
Sum of y-values cutting (u,v)

+ tail potential - head potential is at most the edge-weight

- α_v vertex potential for each v
- y_S value for each cut S



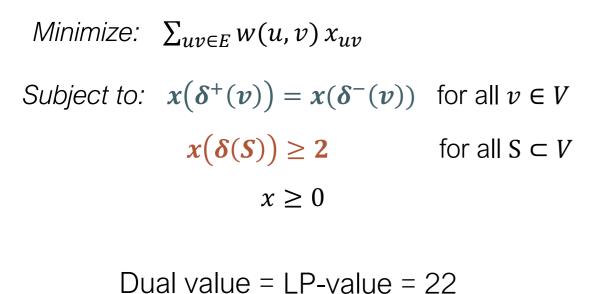


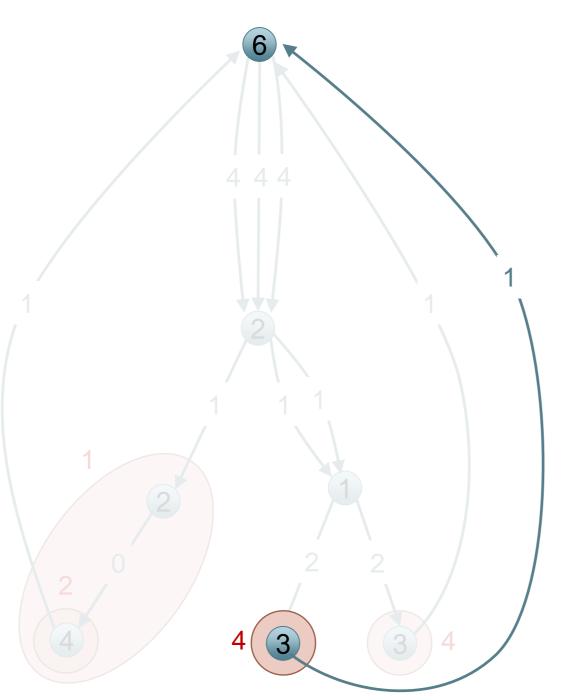
Subject to:

$$\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$$
$$y \ge 0$$

Sum of y-values cutting (u,v) + tail potential - head potential is at most the edge-weight

- α_v vertex potential for each v
- y_S value for each cut S





Subject to:

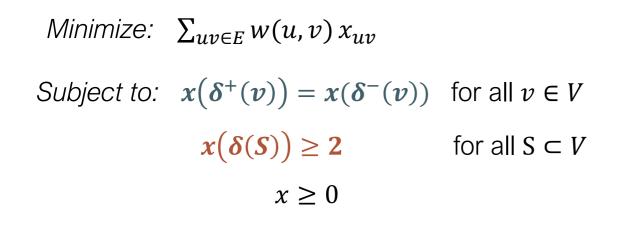
$$\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$$

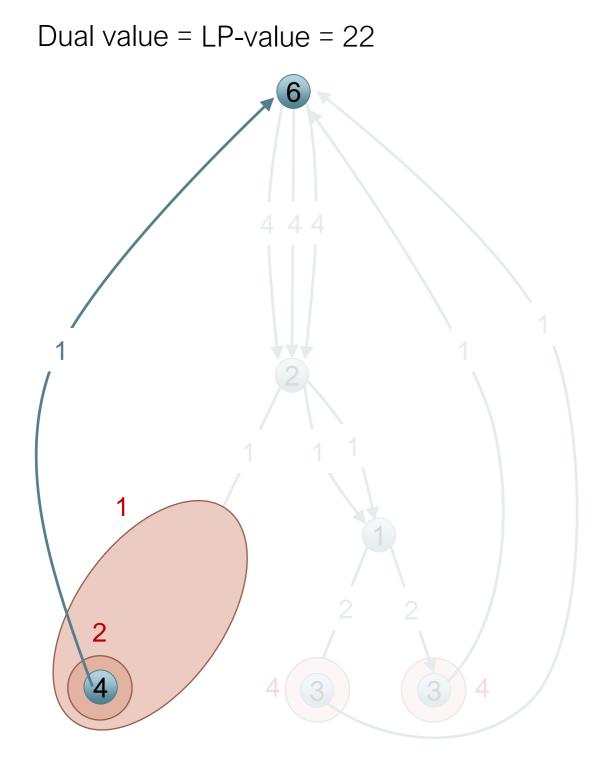
$$y \ge 0$$

Sum of y-values cutting (u,v) + tail potential - head potential is at most the edge-weight

- α_v vertex potential for each v
- y_S value for each cut S

$$\sum_{\substack{S:(u,v)\in\delta(S)\\4}} y_S + \alpha_u - \alpha_v \le w(u,v)$$





Subject to:

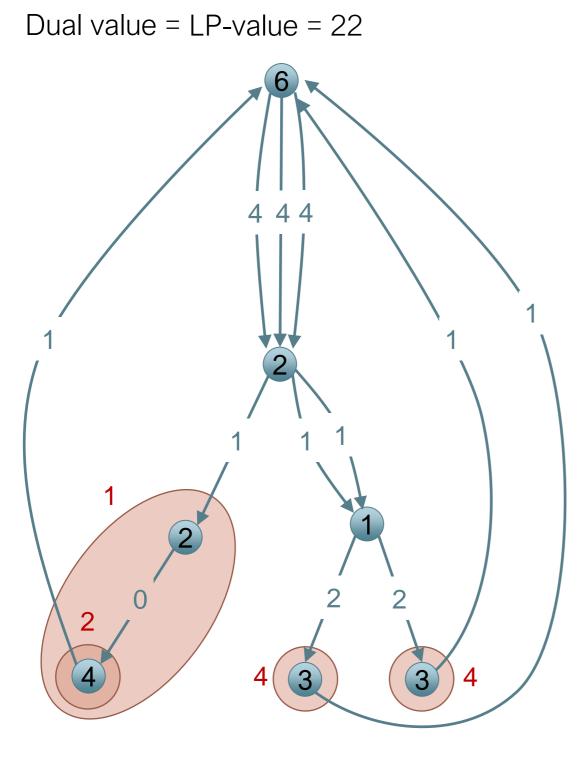
$$\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$$
$$y \ge 0$$

Sum of y-values cutting (u,v) + tail potential - head potential is at most the edge-weight

- α_v vertex potential for each v
- y_S value for each cut S

$$\sum_{\substack{S:(u,v)\in\delta(S)\\2+1}} y_S + \alpha_u - \alpha_v \le w(u,v)$$

 $\begin{array}{ll} \text{Minimize:} & \sum_{uv \in E} w(u,v) \, x_{uv} \\\\ \text{Subject to:} & \textbf{x} \big(\boldsymbol{\delta}^+(v) \big) = \textbf{x} (\boldsymbol{\delta}^-(v)) & \text{for all } v \in V \\\\ & \textbf{x} \big(\boldsymbol{\delta}(\boldsymbol{S}) \big) \geq \textbf{2} & \text{for all } \textbf{S} \subset V \\\\ & x \geq 0 \end{array}$



Maximize: $\sum_{S \subset V} 2 \cdot y_S$

Subject to:

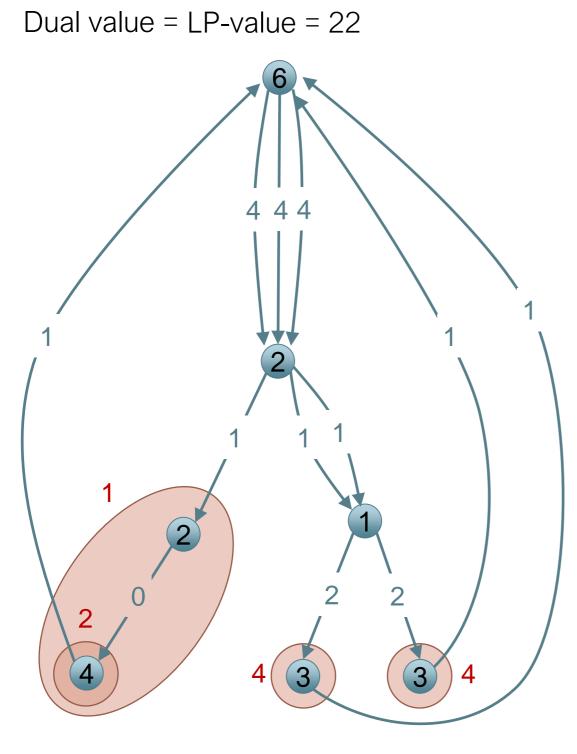
 $\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$ $y \ge 0$

By complementarity slackness:

$$\sum_{S:(u,v)\in\delta(S)}y_S+\alpha_u-\alpha_v=w(u,v)$$

for every edge (u,v) (since we only kept positive edges)

 $\begin{array}{ll} \text{Minimize:} & \sum_{uv \in E} w(u,v) \, x_{uv} \\\\ \text{Subject to:} & \textbf{x} \big(\boldsymbol{\delta}^+(v) \big) = \textbf{x} \big(\boldsymbol{\delta}^-(v) \big) & \text{for all } v \in V \\\\ & \textbf{x} \big(\boldsymbol{\delta}(\boldsymbol{S}) \big) \geq \textbf{2} & \text{for all } \textbf{S} \subset V \\\\ & x \geq 0 \end{array}$



Maximize: $\sum_{S \subset V} 2 \cdot y_S$

Subject to:

 $\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$ $y \ge 0$

By complementarity slackness:

$$\sum_{S:(u,v)\in\delta(S)}y_S=w(u,v)-\alpha_u+\alpha_v$$

for every edge (u,v) (since we only kept positive edges)

 $\begin{array}{ll} \text{Minimize:} & \sum_{uv \in E} w(u,v) \, x_{uv} \\\\ \text{Subject to:} & \textbf{x} \big(\boldsymbol{\delta}^+(v) \big) = \textbf{x} \big(\boldsymbol{\delta}^-(v) \big) & \text{for all } v \in V \\\\ & \textbf{x} \big(\boldsymbol{\delta}(\boldsymbol{S}) \big) \geq \textbf{2} & \text{for all } \textbf{S} \subset V \\\\ & x \geq 0 \end{array}$

Maximize: $\sum_{S \subset V} 2 \cdot y_S$

Subject to:

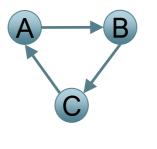
 $\sum_{\mathbf{S}:(\mathbf{u},\mathbf{v})\in\boldsymbol{\delta}(\mathbf{S})} \mathbf{y}_{\mathbf{S}} + \boldsymbol{\alpha}_{\mathbf{u}} - \boldsymbol{\alpha}_{\mathbf{v}} \le \mathbf{w}(\mathbf{u},\mathbf{v}) \text{ for all } (\mathbf{u},\mathbf{v}) \in E$ $\mathbf{y} \ge 0$

By complementarity slackness:

$$\sum_{S:(u,v)\in\delta(S)} y_S = w(u,v) - \alpha_u + \alpha_v =: w'(u,v)$$

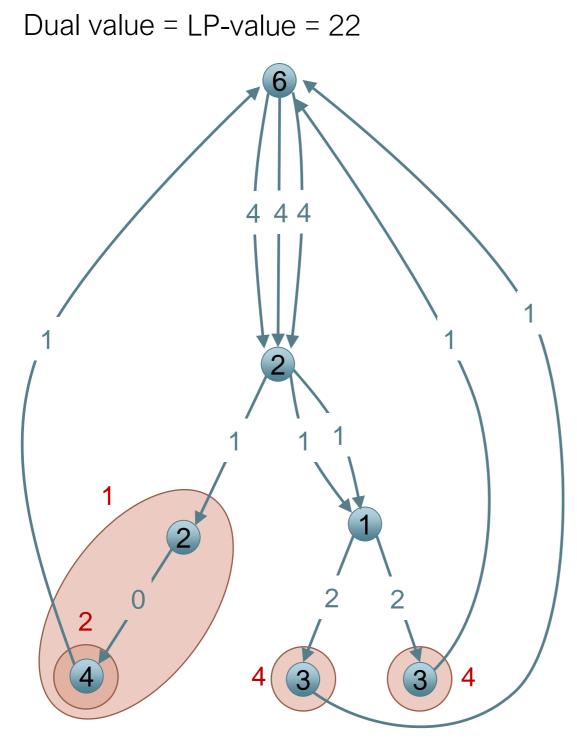
for every edge (u,v) (since we only kept positive edges)

Observation: For any Eulerian edge set F w(F) = w'(F)



 $w'(F) = w(A, B) + \alpha_A - \alpha_B$ $+ w(B, C) + \alpha_B - \alpha_C$ $+ w(C, A) + \alpha_c - \alpha_A$ = w(F)

 $\begin{array}{ll} \text{Minimize:} & \sum_{uv \in E} w(u,v) \, x_{uv} \\\\ \text{Subject to:} & \textbf{x} \big(\boldsymbol{\delta}^+(v) \big) = \textbf{x} \big(\boldsymbol{\delta}^-(v) \big) & \text{for all } v \in V \\\\ & \textbf{x} \big(\boldsymbol{\delta}(\boldsymbol{S}) \big) \geq \textbf{2} & \text{for all } \textbf{S} \subset V \\\\ & x \geq 0 \end{array}$



Maximize: $\sum_{S \subset V} 2 \cdot y_S$

Subject to:

 $\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$ $y \ge 0$

By complementarity slackness:

$$\sum_{S:(u,v)\in\delta(S)} y_S = w(u,v) - \alpha_u + \alpha_v =: w'(u,v)$$

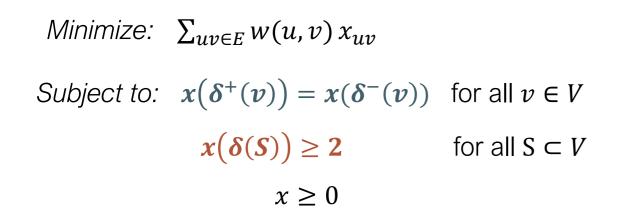
for every edge (u,v) (since we only kept positive edges)

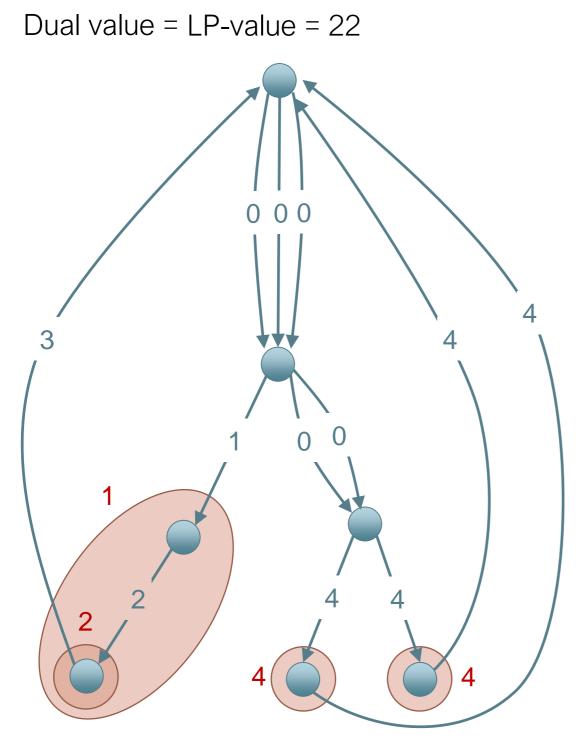
Observation: For any Eulerian edge set F w(F) = w'(F)

Thus equivalent to consider weight function w':

$$w'(u,v) = \sum_{S:(u,v)\in\delta(S)} y_S$$

So normalize and forget about vertex potentials





Subject to:

 $\sum_{S:(u,v)\in\delta(S)} y_S + \alpha_u - \alpha_v \le w(u,v) \text{ for all } (u,v) \in E$ $y \ge 0$

By complementarity slackness:

$$\sum_{S:(u,v)\in\delta(S)} y_S = w(u,v) - \alpha_u + \alpha_v =: w'(u,v)$$

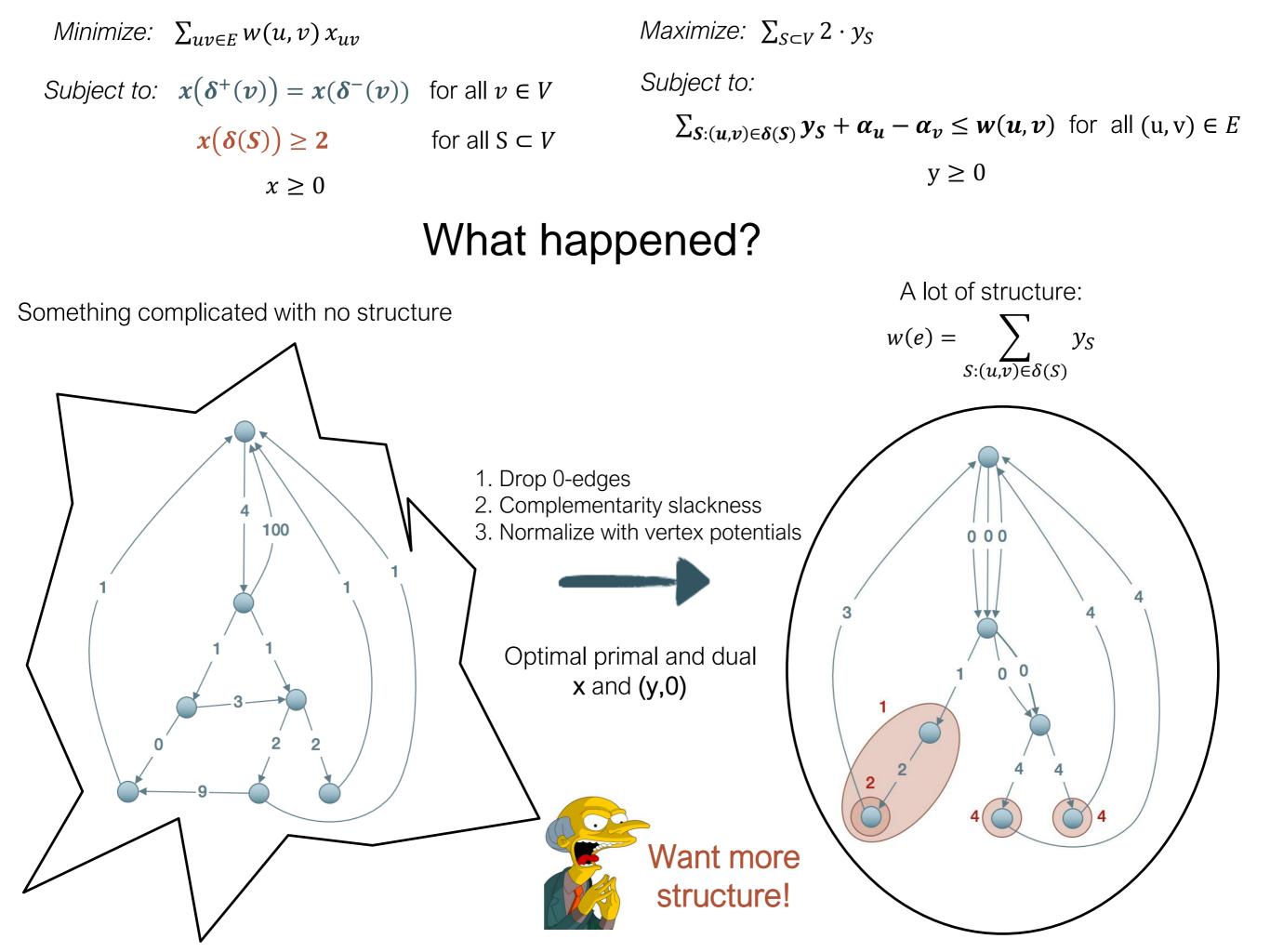
for every edge (u,v) (since we only kept positive edges)

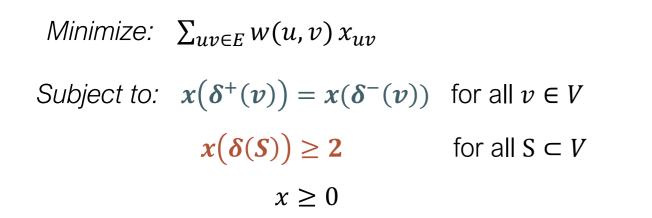
Observation: For any Eulerian edge set F w(F) = w'(F)

Thus equivalent to consider weight function w':

$$w'(u,v) = \sum_{S:(u,v)\in\delta(S)} y_S$$

So normalize and forget about vertex potentials

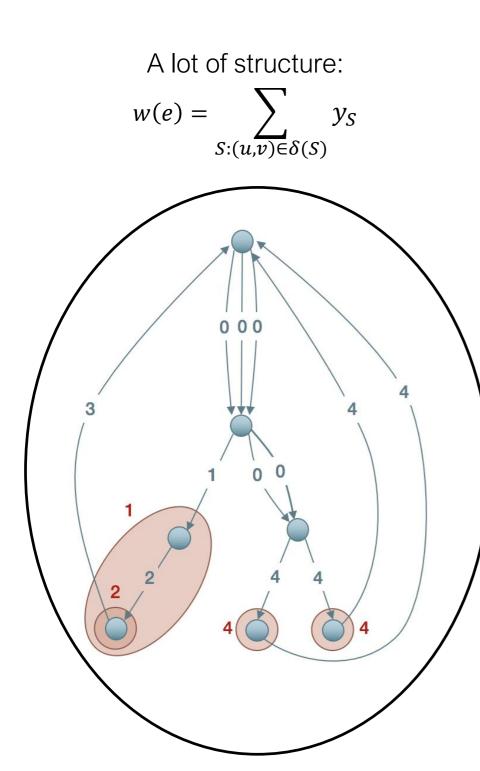


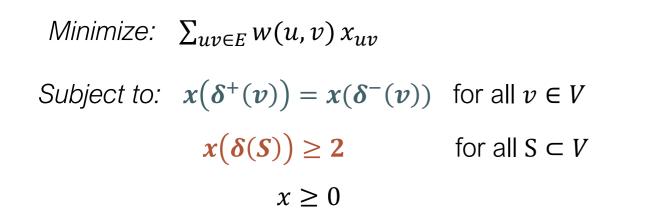


Subject to:

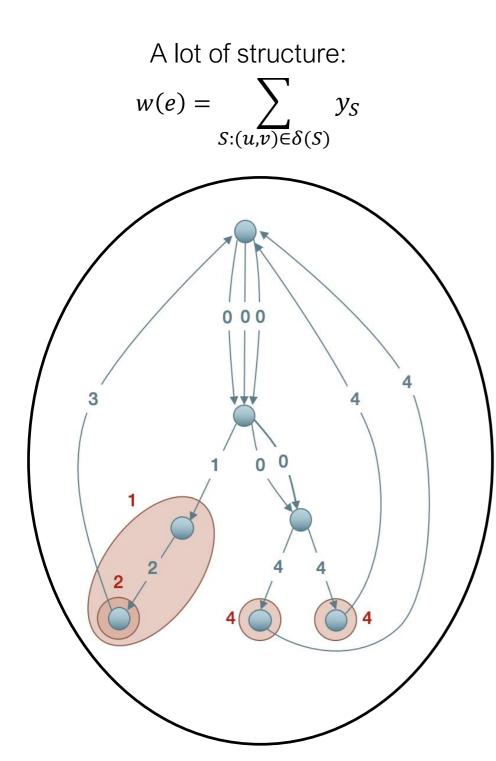
 $\sum_{\mathbf{S}:(u,v)\in\delta(\mathbf{S})}y_{\mathbf{S}}+\alpha_{u}-\alpha_{v}\leq w(u,v) \text{ for all } (u,v)\in E$

$$y \ge 0$$

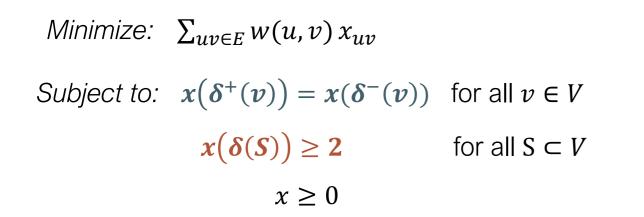


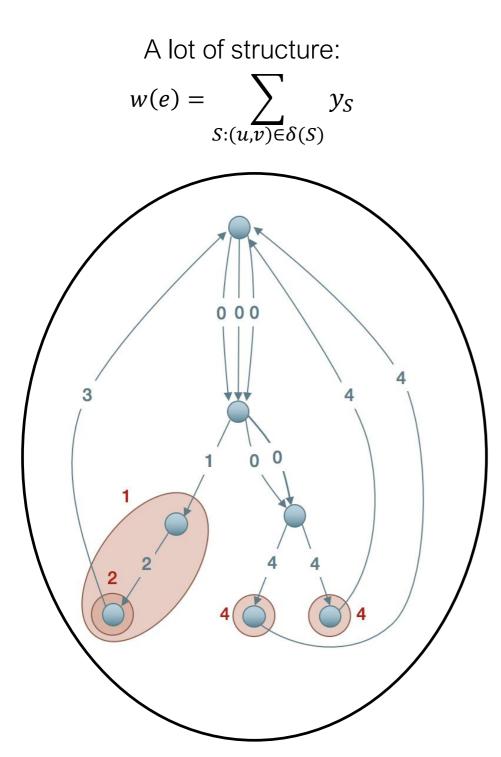


 $\begin{array}{ll} \textit{Maximize: } \sum_{S \subset V} 2 \cdot y_S \\ \textit{Subject to:} \\ \sum_{S:(u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \ \text{for all } (u,v) \in E \\ & y \geq 0 \end{array}$



Let $\mathcal{L} = \{S: y_S > 0\}$ be support of dual solution





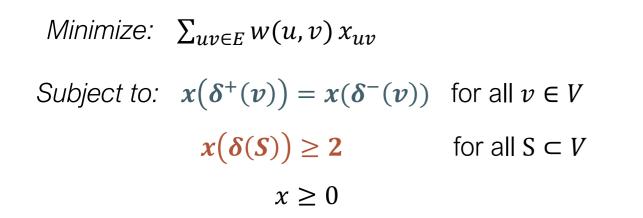
 $\begin{array}{ll} \textit{Maximize: } \sum_{S \subset V} 2 \cdot y_S \\ \textit{Subject to:} \\ & \sum_{S:(u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \ \text{for all } (u,v) \in E \\ & y \geq 0 \end{array}$

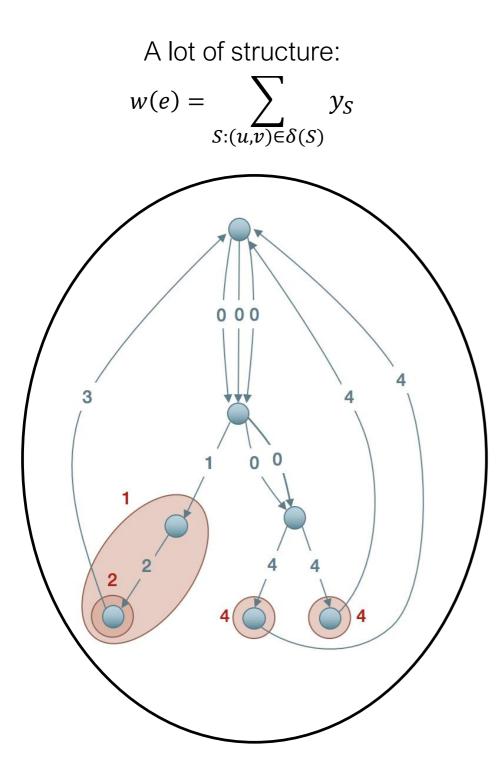
Let $\mathcal{L} = \{S: y_S > 0\}$ be support of dual solution

Again by complementarity slackness

 $x(\delta(S)) = 2$ for every $S \in \mathcal{L}$

So every $S \in \mathcal{L}$ is a tight set!





 $\begin{array}{ll} \textit{Maximize: } \sum_{S \subset V} 2 \cdot y_S \\ \textit{Subject to:} \\ \sum_{S:(u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \ \text{for all } (u,v) \in E \\ & y \geq 0 \end{array}$

Let $\mathcal{L} = \{S: y_S > 0\}$ be support of dual solution

Again by complementarity slackness

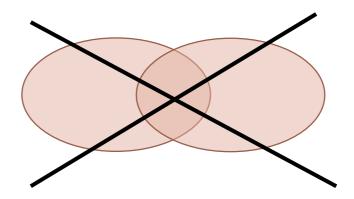
 $x(\delta(S)) = 2$ for every $S \in \mathcal{L}$

So every $S \in \mathcal{L}$ is a tight set!

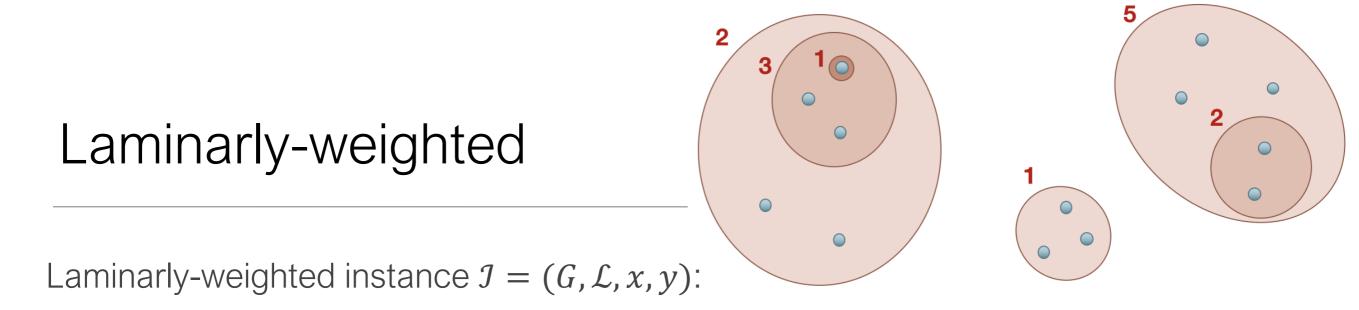
By "standard" uncrossing techniques:

 $\ensuremath{\mathcal{L}}$ is a laminar family

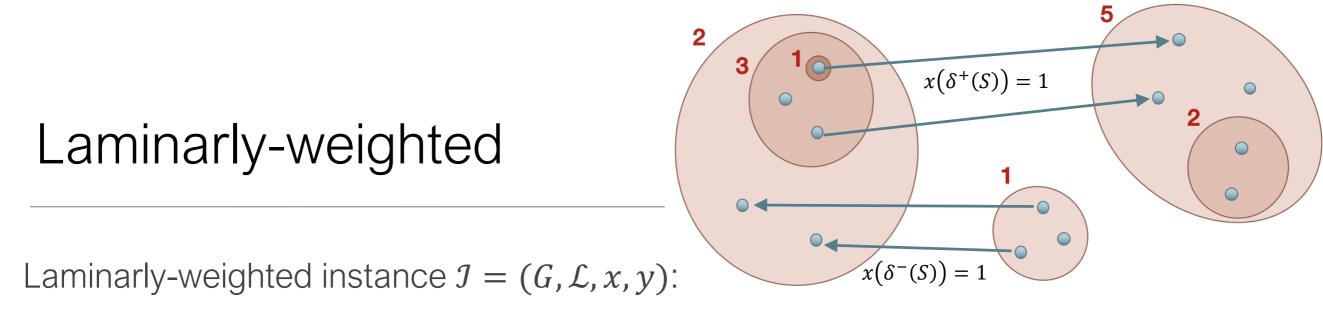
Any two sets are either disjoint or one is a subset of the other



No two sets intersect non-trivially



• *x*, *y* primal and dual solutions (that will be optimal by definition)



- *x*, *y* primal and dual solutions (that will be optimal by definition)
- $\mathcal{L} = \{S: y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)

Laminarly-weighted

Laminarly-weighted instance $\mathcal{I} = (G, \mathcal{L}, x, y)$:

- *x*, *y* primal and dual solutions (that will be optimal by definition)
- $\mathcal{L} = \{S: y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)

2

3

• weights induced by \mathcal{L} and y:

$$w(e) = \sum_{S \in \mathcal{L}: e \in \delta(S)} y_S$$
 for every edge e

5

weight=2+5+1

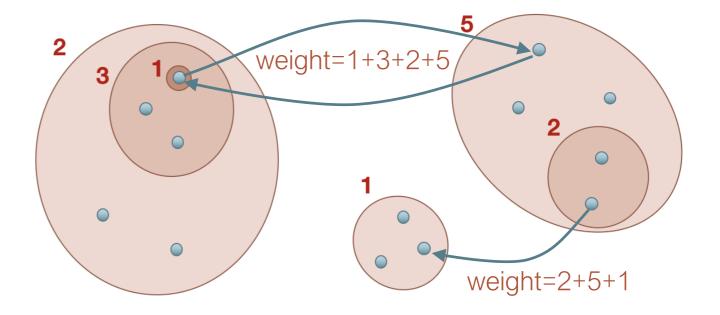
weight=1+3+2+5

Held-Karp lower bound = OPT = $2 \cdot \sum_{S \in \mathcal{L}} y_S$ (=28 in example)

Theorem:

A ρ -approximation algorithm for laminarly-weighted instances yields a ρ -approximation algorithm for general ATSP

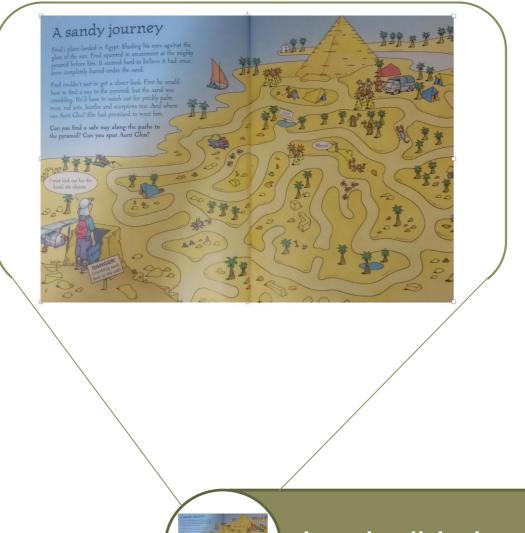
Reduced our task to:



Laminarly-weighted instance $\mathcal{I} = (G, \mathcal{L}, x, y)$:

- *x*, *y* primal and dual solutions (which will be optimal by definition)
- $\mathcal{L} = \{S: y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
- weights induced by \mathcal{L} and y:

$$w(e) = \sum_{S \in \mathcal{L}: e \in \delta(S)} y_S$$



Basic idea: recursively solving smaller instances is not dangerous if optimum drops

Irreducible instances

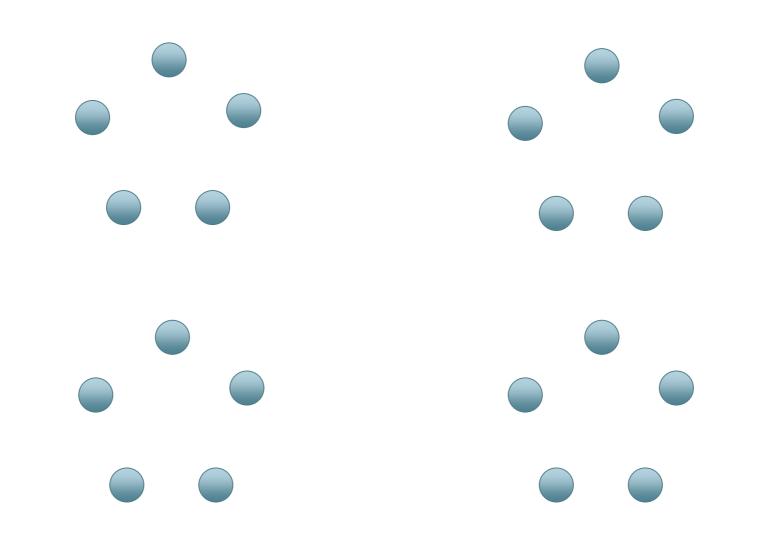
Let's take a detour

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover

"Contract"

Repeat until graph is connected



[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover

"Contract"

Repeat until graph is connected

Cost of cycle cover $\leq OPT$

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover

"Contract"

Repeat until graph is connected

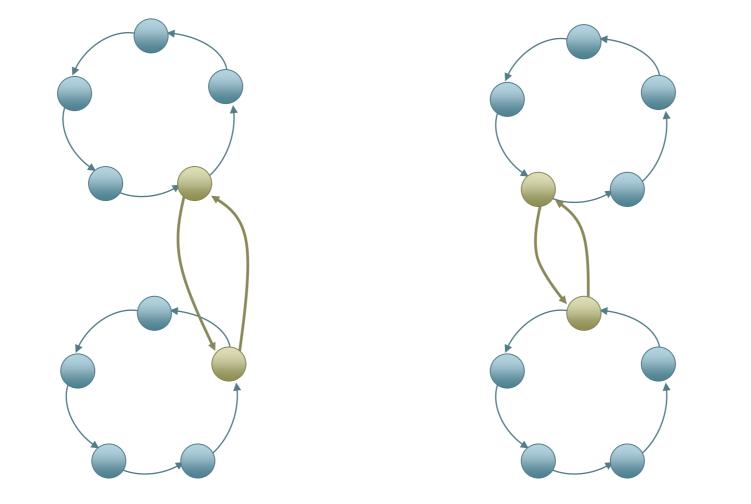
Cost of cycle cover $\leq OPT$

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover

"Contract"

Repeat until graph is connected



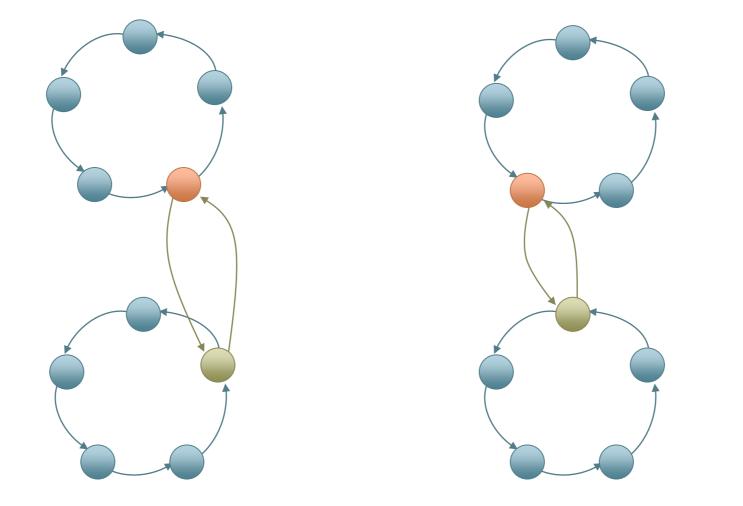
Cost of cycle cover $\leq OPT$ Cost of cycle cover $\leq OPT$

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover

"Contract"

Repeat until graph is connected



Cost of cycle cover $\leq OPT$ Cost of cycle cover $\leq OPT$

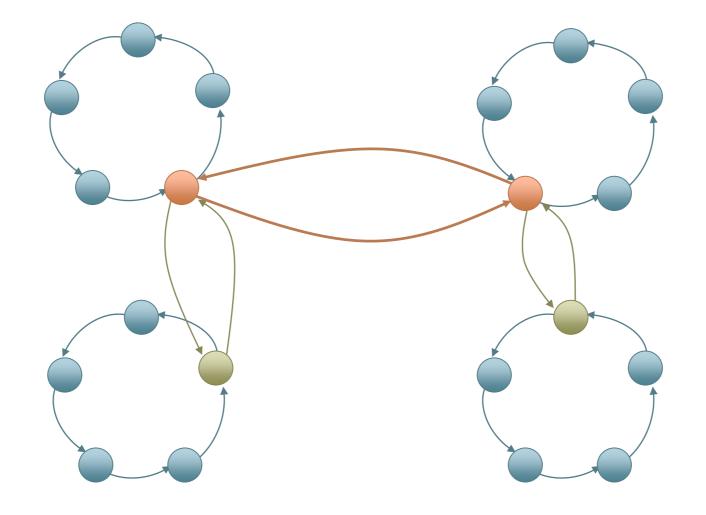
[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover

"Contract"

Repeat until graph is connected

Cost of cycle cover $\leq OPT$ Cost of cycle cover $\leq OPT$ Cost of cycle cover $\leq OPT$



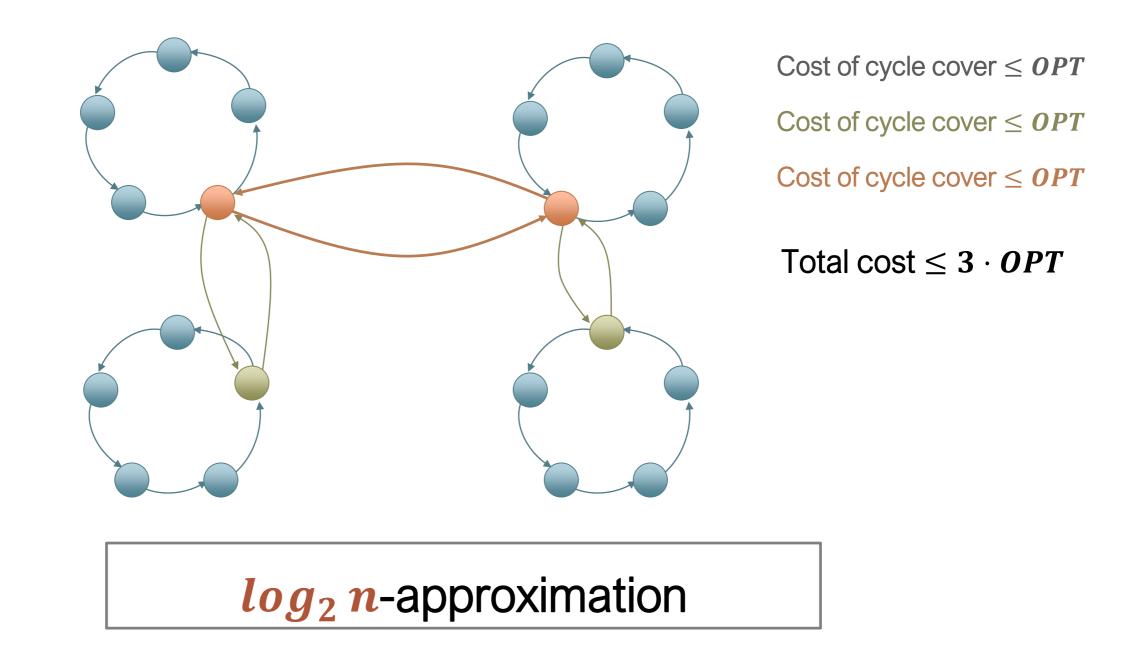
[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover

"Contract"

Repeat until graph is connected

Worst case: all cycles have length 2 so need to repeat $\log_2 n$ times (each time cost OPT_{LP})



Recursive algorithm fine if value drops

Each time we take a cycle cover we make some progress

What if the value of OPT drops by say a factor 9/10 each time?

Then total cost would be

$$\sum_{i=0}^{\log_2 n} \left(\frac{9}{10}\right)^i OPT \le \sum_{i=0}^{\infty} \left(\frac{9}{10}\right)^i OPT = 10 \cdot OPT$$

No one has been able to pursue this strategy with cycle cover approach

We pursue it using the structure of laminarly-weighted instances

Le retour

Laminarly-weighted

Laminarly-weighted instance $\mathcal{I} = (G, \mathcal{L}, x, y)$:

- *x*, *y* primal and dual solutions (which will be optimal by definition)
- $\mathcal{L} = \{S: y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)

2

3

• weights induced by \mathcal{L} and y:

$$w(e) = \sum_{S \in \mathcal{L}: e \in \delta(S)} y_S$$
 for every edge e

10

5

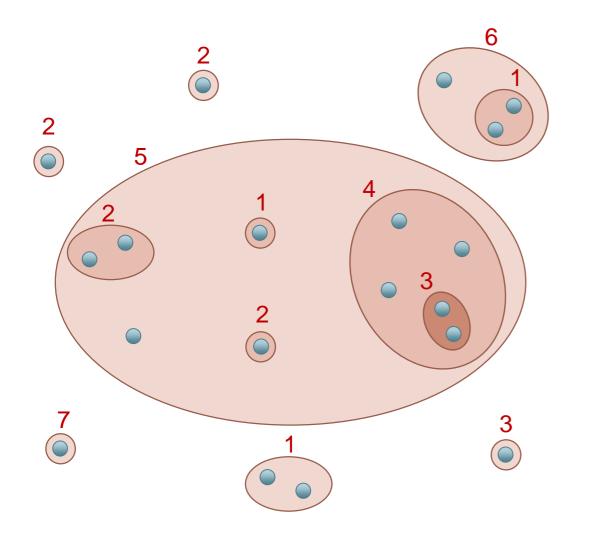
 \bigcirc

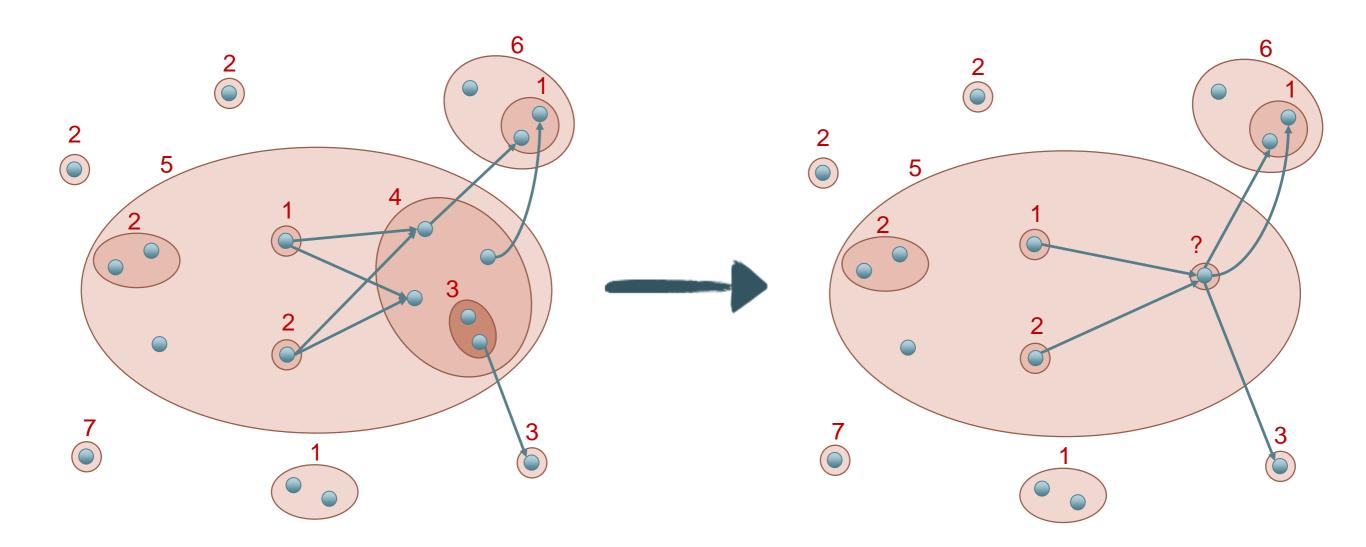
weight=2+5+1

weight=1+3+2+5

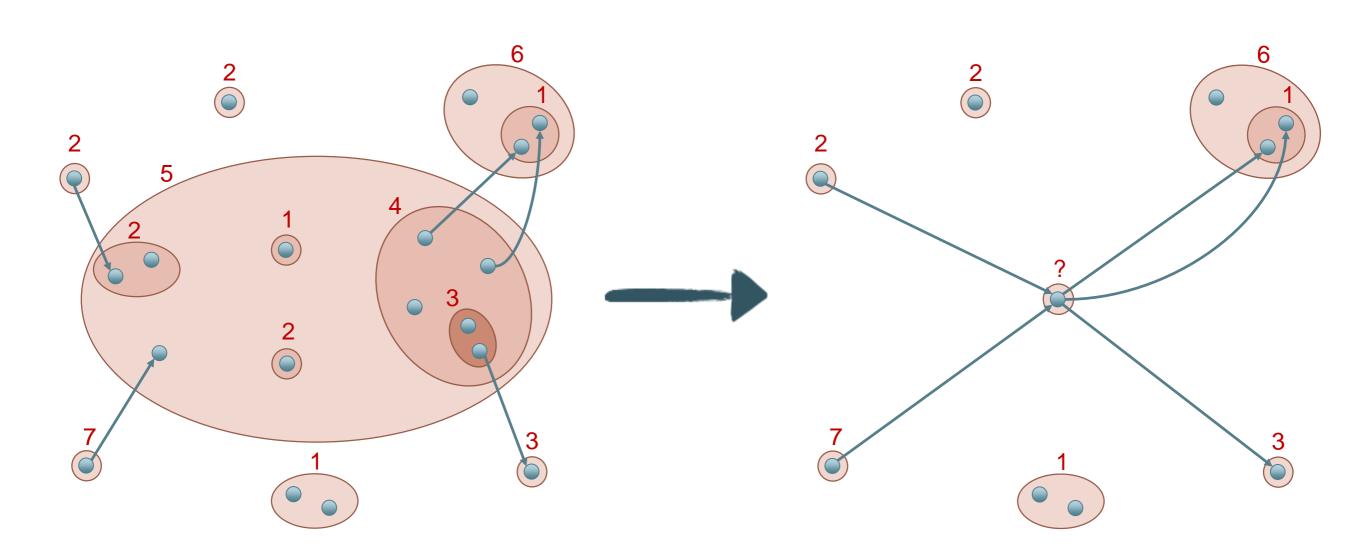
Held-Karp lower bound = OPT = $2 \cdot \sum_{S \in \mathcal{L}} y_S$ (=28 in example)

Contraction and lift

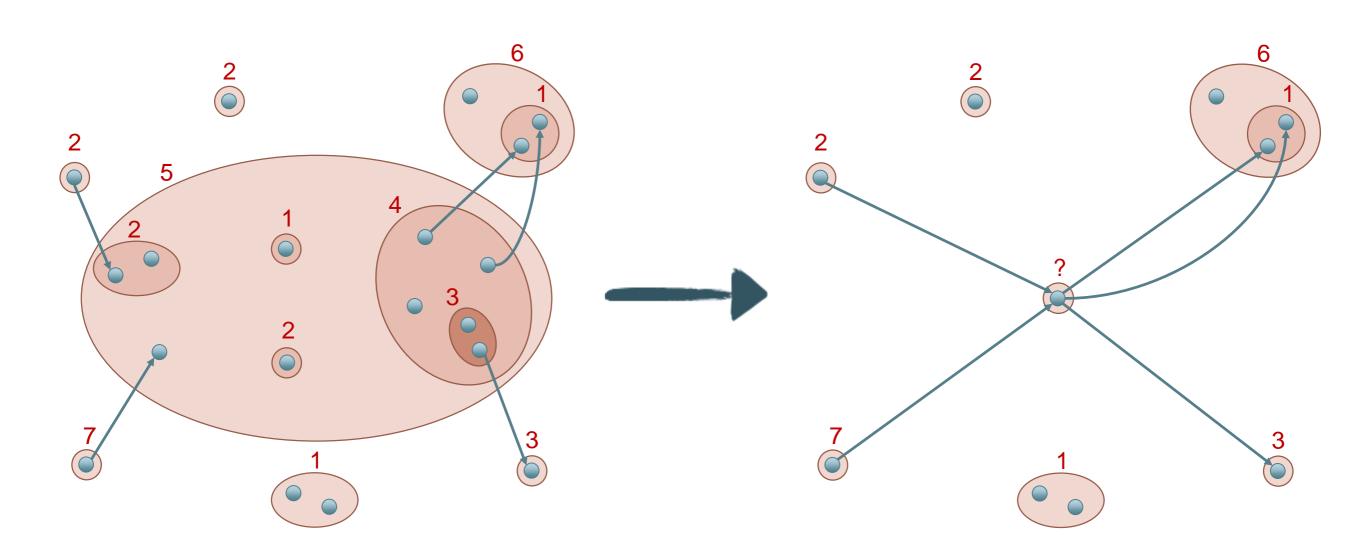




Contraction gives smaller instance: G, x, *L* easy to contract Remains to specify y-value of new vertex/set

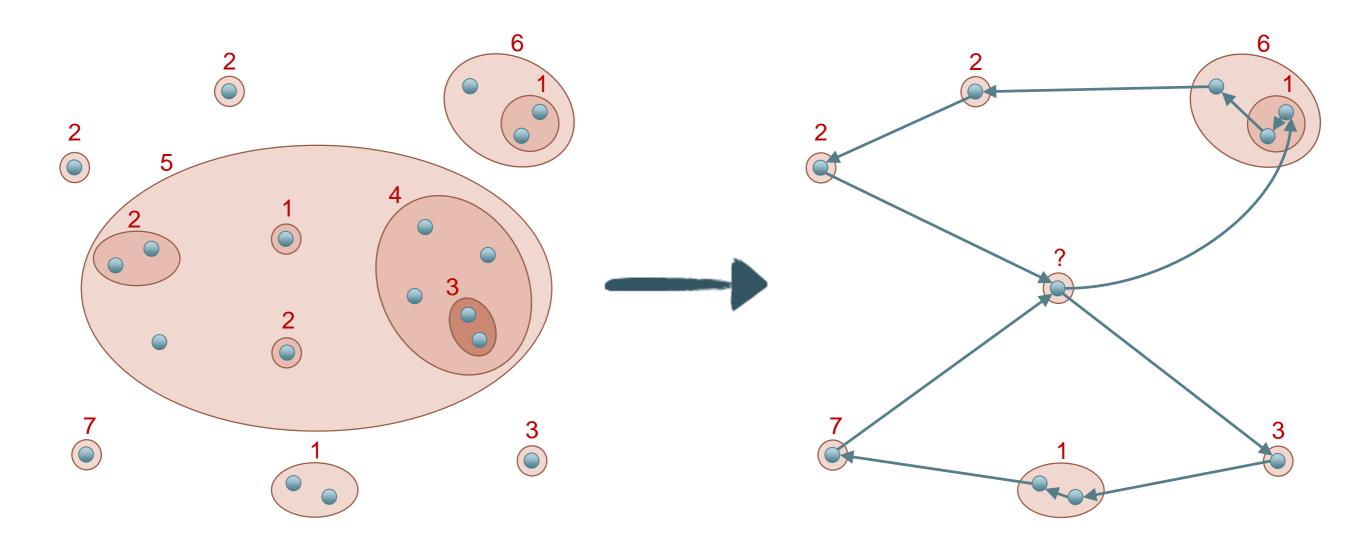


Contraction gives smaller instance: G, x, *L* easy to contract Remains to specify y-value of new vertex/set

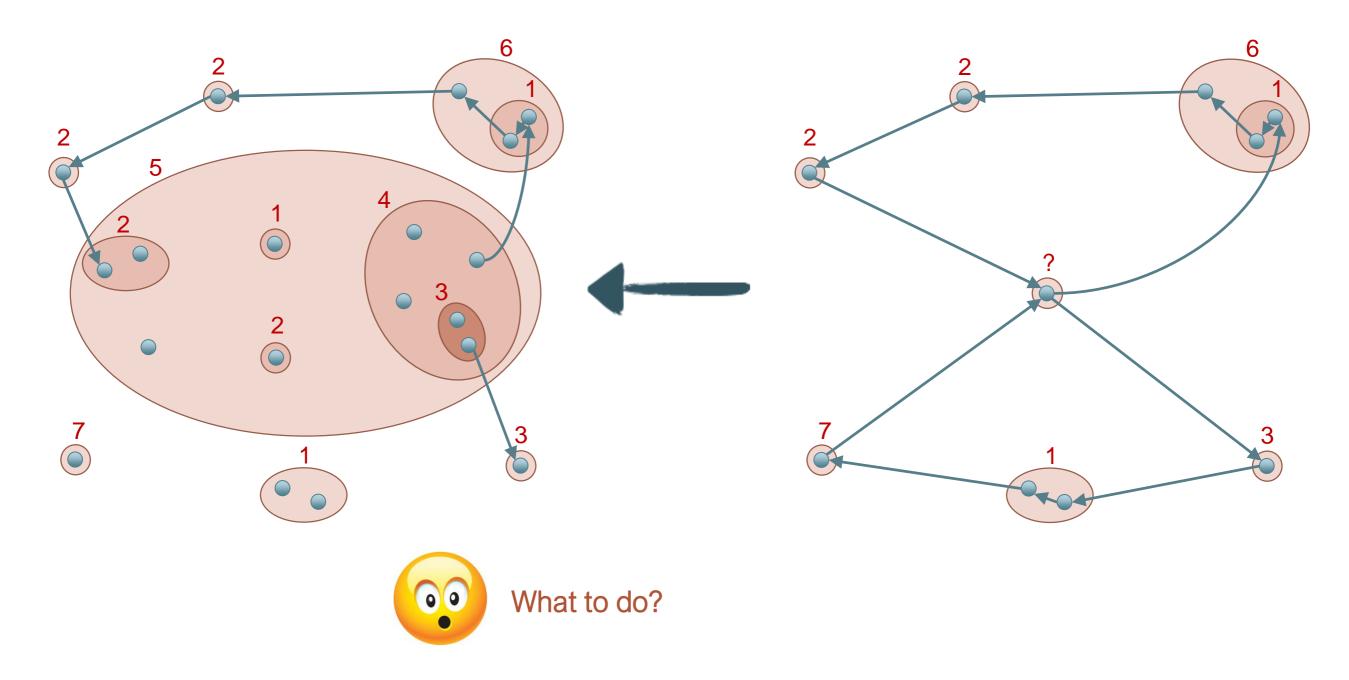


Contraction gives smaller instance: G, x, *L* easy to contract **Remains to specify y-value of new vertex/set**

Lifting a tour in the contracted instance

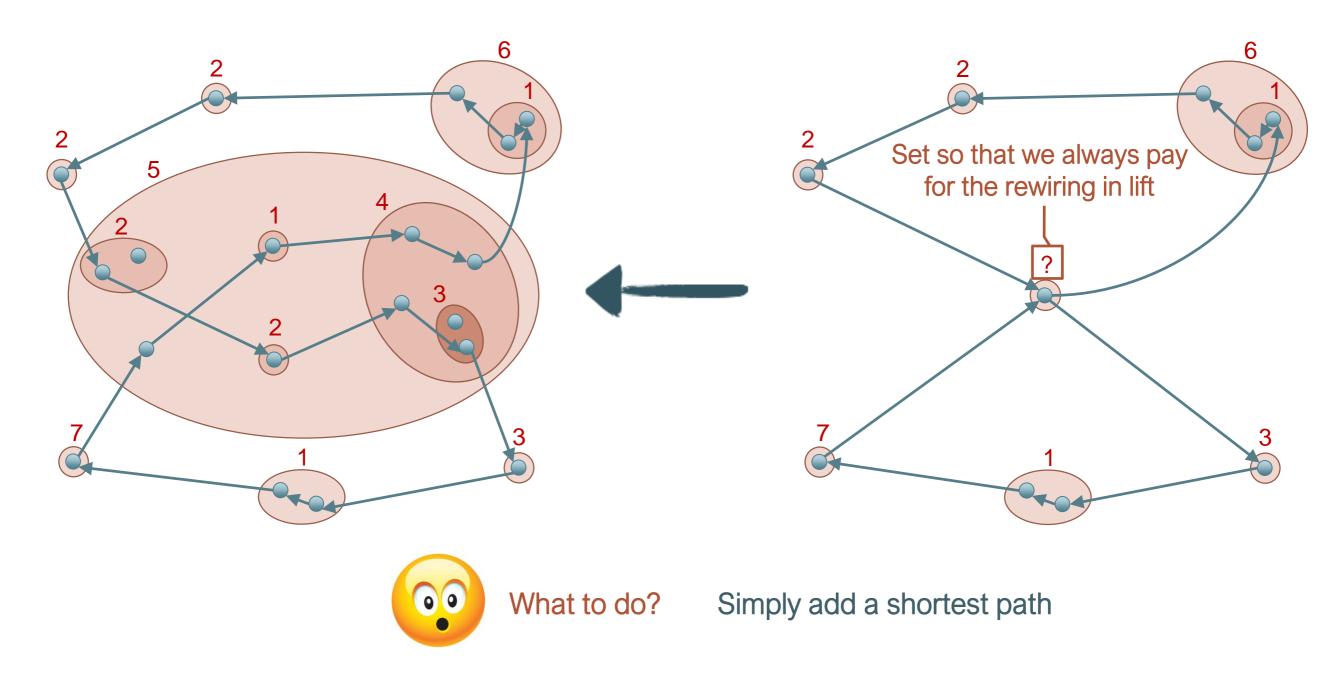


Lifting a tour in the contracted instance

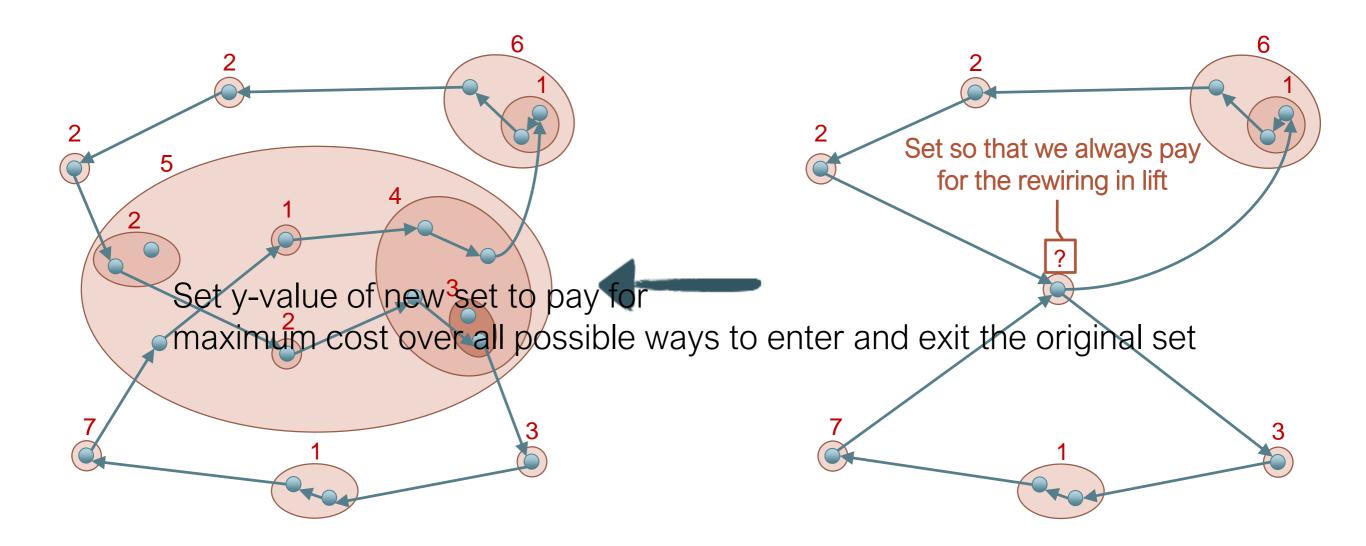


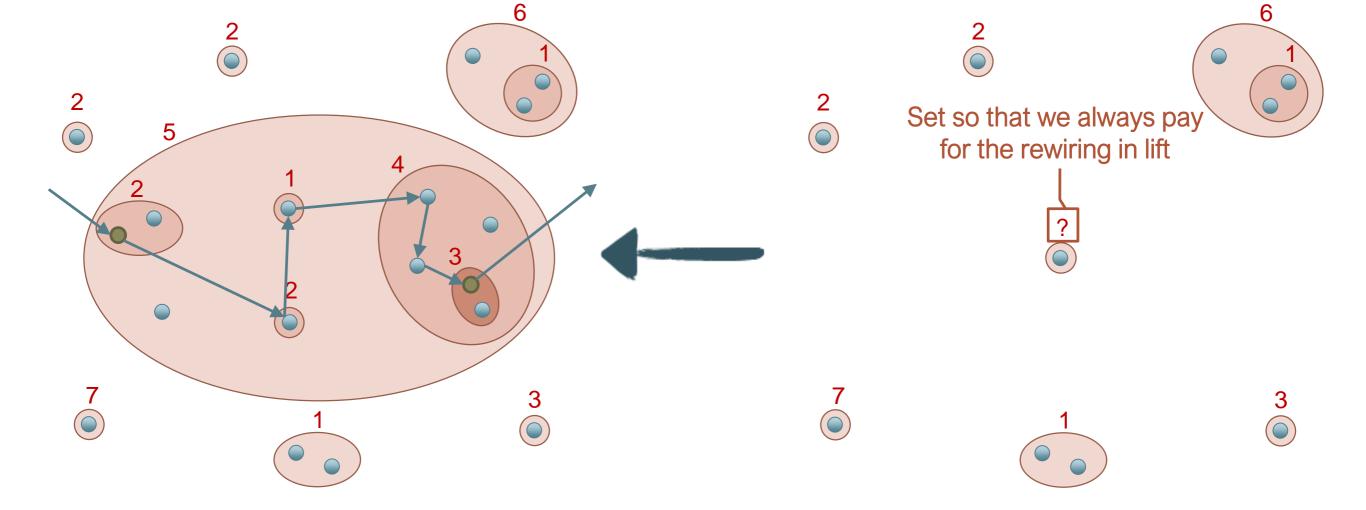
Lift tour in contracted instance to subtour in original instance

Lifting a tour in the contracted instance



Lift tour in contracted instance to subtour in original instance





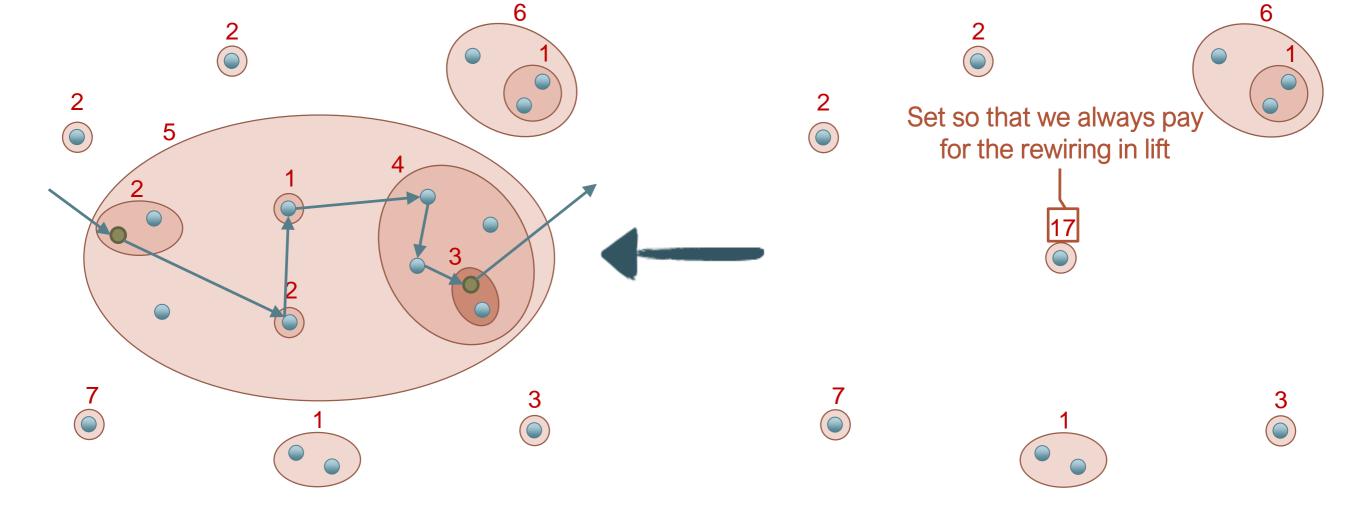
Set y-value of new set to pay for

maximum cost over all possible ways to enter and exit the original set

In example:

? = 5+2+2+1+4+3 = 17 (path crosse

(path crosses every tight set)



Set y-value of new set to pay for

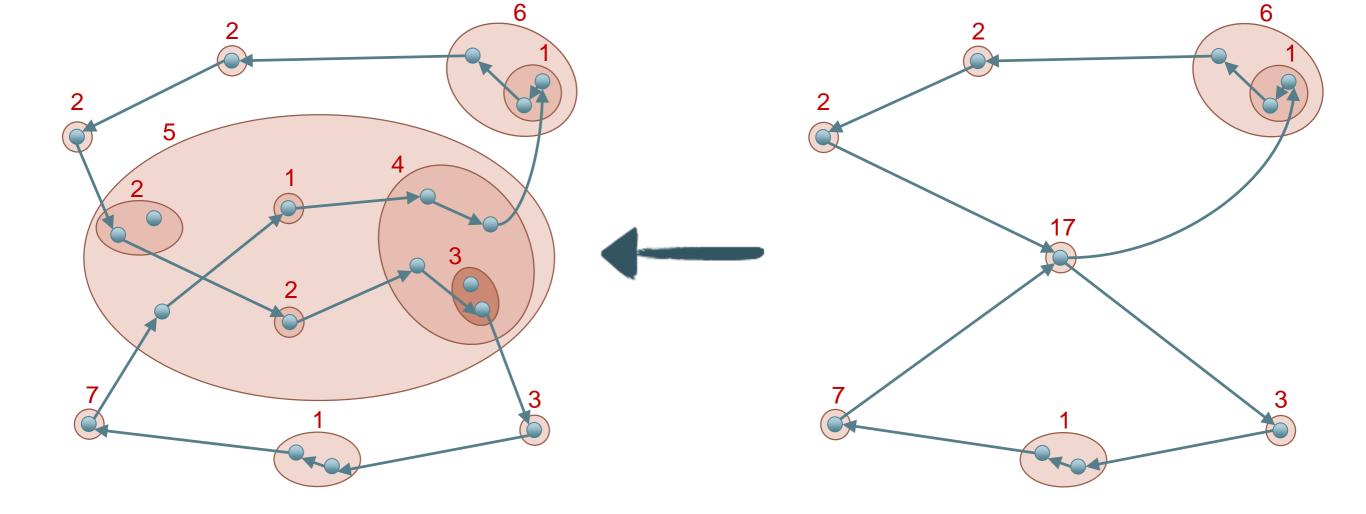
maximum cost over all possible ways to enter and exit the original set

In example:

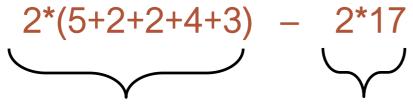
? = **5**+**2**+**2**+**1**+**4**+**3** = **17** (*path crosses every tight set*)

Fact: No matter how we enter and exit, there exists a path that enters and exits each set at most once => contraction does not increase LP-value

Generalization of the fact: if there is a path from u to v then there is one without cycles



Change of cost in example:



cost of first visit in lift

cost of first visit in tour

+ $2^{*}(5+1+4)$ - $2^{*}17 \leq 0$

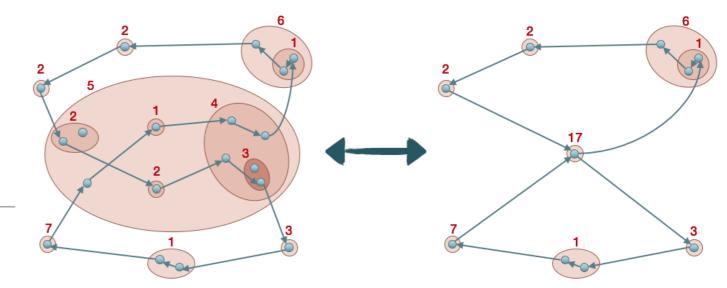
cost of 2nd visit in lift

cost of 2nd visit in tour

By design:

Fact: Lift no more expensive than tour in contracted instance

Facts about contraction



Fact: No matter how we enter and exit, there exists a path that enters and exits each set at most once => contraction does not increase LP-value

Fact: Lift no more expensive than tour in contracted instance

Lift is a subtour but may not be a tour:

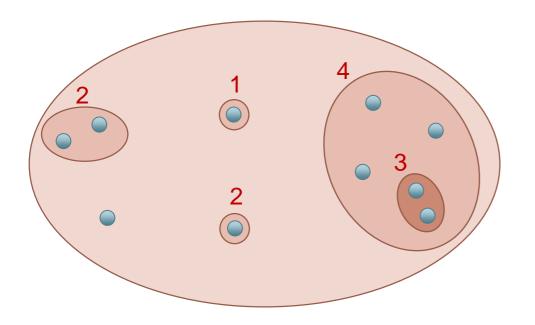
it visits all vertices outside contracted set but not inside

However, if contraction causes significant decrease in value, then we can use remaining budget to complete the lift into tour

Implementing recursive strategy

(Ir)reducible sets in ${\cal L}$

DEF: A set $S \in \mathcal{L}$ is *reducible* if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ -fraction of the sets strictly inside *S*

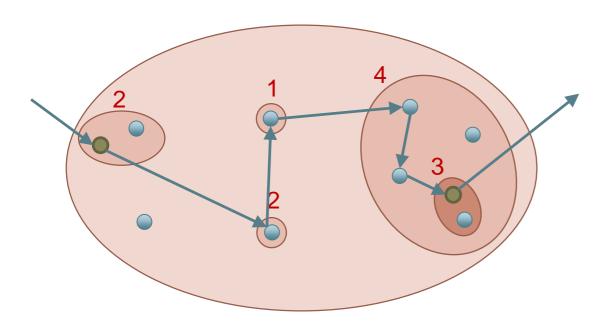


Total value inside *S* = 2+2+1+4+3 = 12

So worst way to enter/exit should cross sets of value **at most 9** to be reducible

(Ir)reducible sets in \mathcal{L}

DEF: A set $S \in \mathcal{L}$ is *reducible* if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ -fraction of the sets strictly inside *S*



Total value inside *S* = 2+2+1+4+3 = 12

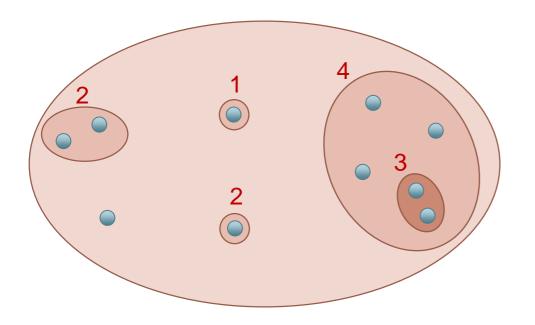
So worst way to enter/exit should cross sets of value **at most 9** to be reducible

Worst way to enter/exit crosses sets of value = 12

IRREDUCIBLE

(Ir)reducible sets in ${\cal L}$

DEF: A set $S \in \mathcal{L}$ is *reducible* if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ -fraction of the sets strictly inside *S*



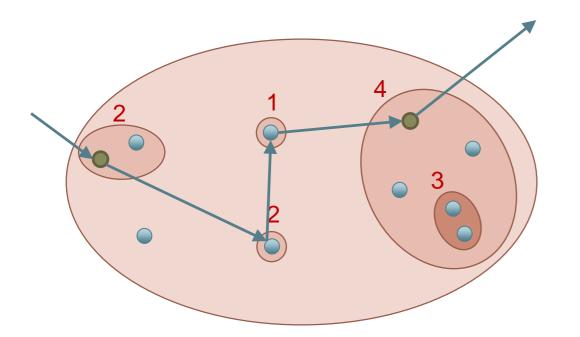
Total value inside *S* = 2+2+1+4+3 = 12

So worst way to enter/exit should cross sets of value **at most 9** to be reducible

(Ir)reducible sets in ${\cal L}$

DEF: A set $S \in \mathcal{L}$ is *reducible* if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ -fraction of the sets strictly inside *S*

We say that an instance is irreducible if no set in \mathcal{L} is *reducible*



Total value inside *S* = 2+2+1+4+3 = 12

So worst way to enter/exit should cross sets of value **at most 9** to be reducible

Worst way to enter/exit crosses sets of value = 9

REDUCIBLE

Theorem:

A ρ -approximation algorithm for irreducible instances yields a 8ρ -approximation algorithm for laminarly-weighted instances, and thus for general ATSP

Let \mathcal{A} be a ρ -approximation algorithm for irreducible instances...

	If instance is irreducible, simply run ${\cal A}$
	Otherwise select <i>minimal</i> reducible set $S \in \mathcal{L}$
Alg for reducible instances	Recursively find tour T in instance with S contracted
	Complete lift of T to a tour in original instance using \mathcal{A}

If irreducible: simply run \mathcal{A} to obtain ρ -approximate tour ($\rho < 8\rho$, so okay)

If instance is irreducible, simply run ${\cal A}$
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

S:minimal reducible set

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A} Otherwise select *minimal* reducible set $S \in \mathcal{L}$ Recursively find tour T in instance with S contracted Complete lift of T to a tour in original instance using \mathcal{A}

S:minimal reducible set \bigcirc

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A} Otherwise select *minimal* reducible set $S \in \mathcal{L}$ Recursively find tour T in instance with S contracted Complete lift of T to a tour in original instance using \mathcal{A}

S:minimal reducible set

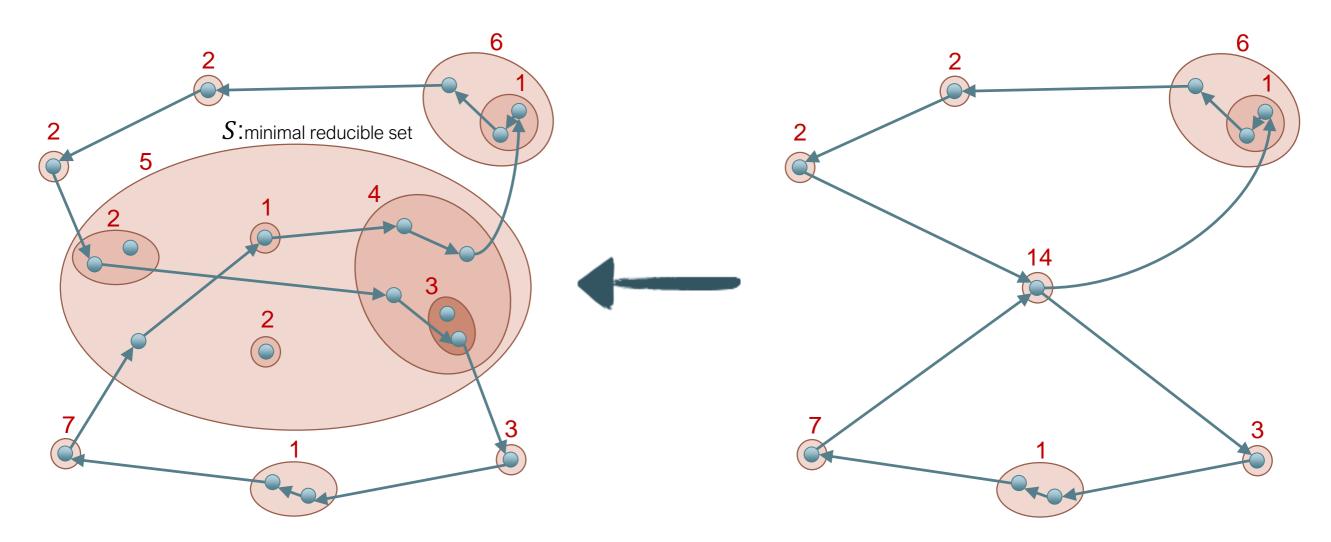
Alg for reducible instances

Recursive call returns 8ρ -approximate solution *T* on smaller instance:

$$w(T) \le 8\rho \left(OPT - \frac{1}{4} \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right) \right) = 8\rho OPT - 2\rho \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right)$$

If instance is irreducible, simply run \mathcal{A} Otherwise select *minimal* reducible set $S \in \mathcal{L}$ Recursively find tour T in instance with S contracted Complete lift of T to a tour in original instance using \mathcal{A}

Alg for reducible instances



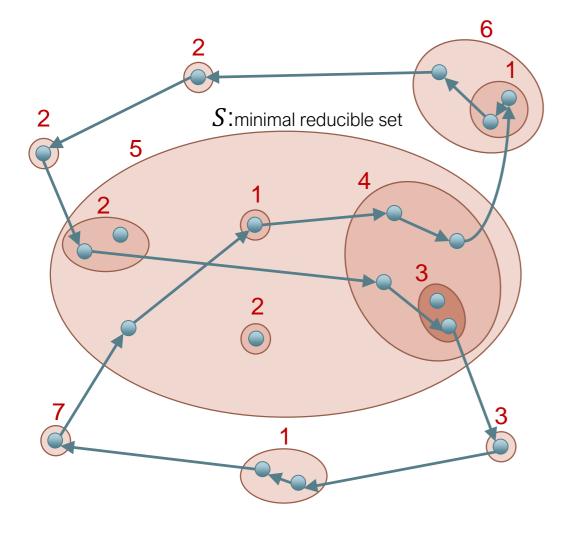
Recursive call returns 8ρ -approximate solution *T* on smaller instance:

$$w(lift) \le w(T) \le 8\rho \left(OPT - \frac{1}{4} \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right) \right) = 8\rho OPT - 2\rho \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right)$$

Remaining task: complete lift to a tour using \mathcal{A} while paying at most the above

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A} Otherwise select *minimal* reducible set $S \in \mathcal{L}$ Recursively find tour T in instance with S contracted Complete lift of T to a tour in original instance using \mathcal{A}



Task: complete to tour while paying at most $2\rho(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R)$

• We need to only connect unvisited vertices inside *S*

Simplifying assumption:

instance obtained by restricting to vertices inside S is feasible

Complete lift of T to a tour in original instance using \mathcal{A} **Task:** complete to tour while paying at most $2\rho(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R)$

We need to only connect unvisited vertices inside S

Simplifying assumption:

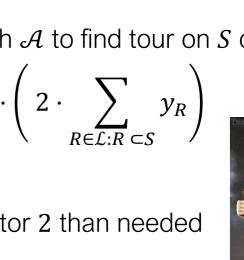
instance obtained by restricting to vertices inside S is feasible

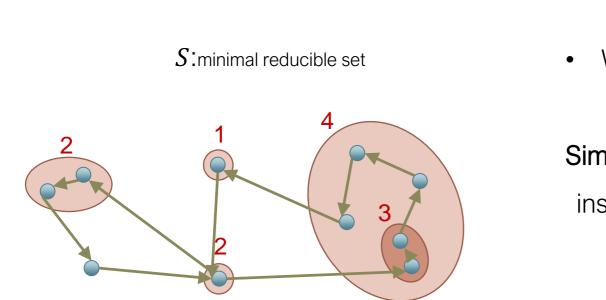
was a minimal reducible set

Solve this instance with \mathcal{A} to find tour on S of weight

$$\leq \rho \cdot \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right)$$

Better by a factor 2 than needed





An **irreducible instance** since S

Held-Karp value = 2 times dual values

= 2 ·

 y_R

 $R \in \overline{L:R} \subset S$

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}

Otherwise select *minimal* reducible set $S \in \mathcal{L}$

Recursively find tour T in instance with S contracted

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A} Otherwise select *minimal* reducible set $S \in \mathcal{L}$ Recursively find tour T in instance with S contracted Complete lift of T to a tour in original instance using \mathcal{A}

Contract and recursively find lift (subtour) of weight

$$\leq 8\rho OPT - 2\rho \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right)$$

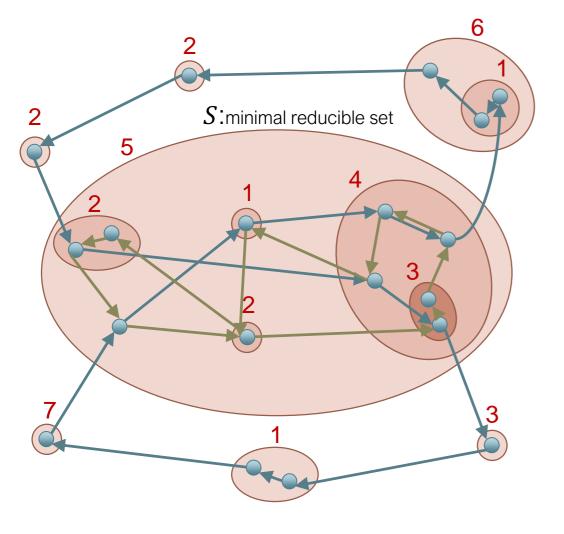
Under simplifying assumption, find tour on *S* of weight

$$\leq \rho \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right)$$

Final tour has value at most

$$\leq 8\rho OPT \ - \ \rho \left(\ 2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right)$$

Simplifying assumption not true in general: We define the operation of inducing on *S* for ATSP in paper. Makes us lose another factor of 2



CesIf instance is irreducible, simply run \mathcal{A} Otherwise select minimal reducible set $S \in \mathcal{L}$ Recursively find tour T in instance with S contractedComplete lift of T to a tour in original instance using \mathcal{A}

Contract and recursively find lift (subtour) of weight

$$\leq 8\rho OPT - 2\rho \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right)$$

Eulerian set of edges Under simplifying assumption, find tour on S of weight

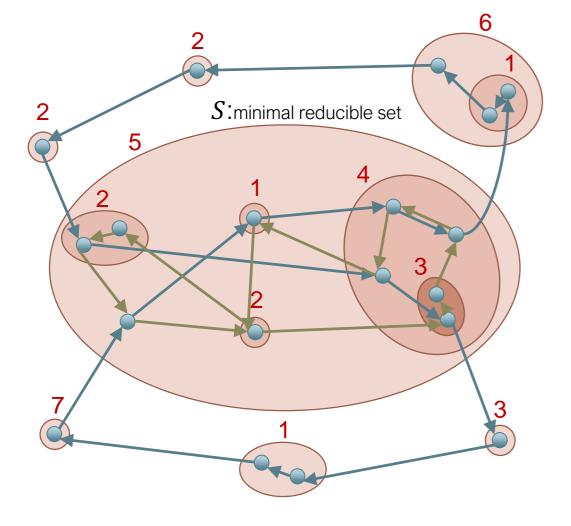
$$\leq \rho \left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_R \right) * 2$$

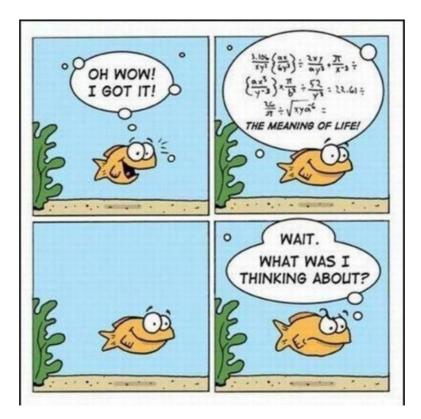
Final tour has value at most

 $\leq 8\rho OPT$

Simplifying assumption not true in general: We define the operation of inducing on *S* for ATSP in paper. Makes us lose another factor of 2

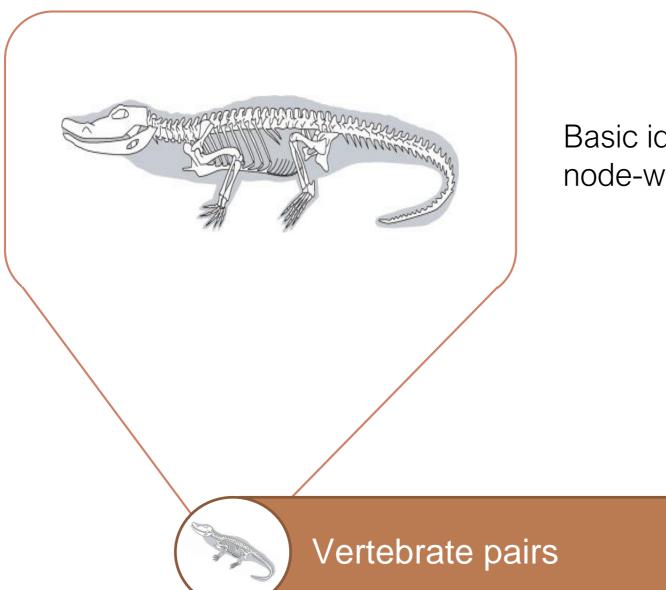
Alg for reducible instances





Theorem:

A ρ -approximation algorithm for irreducible instances yields a 8ρ -approximation algorithm for laminarly-weighted instances, and thus for general ATSP

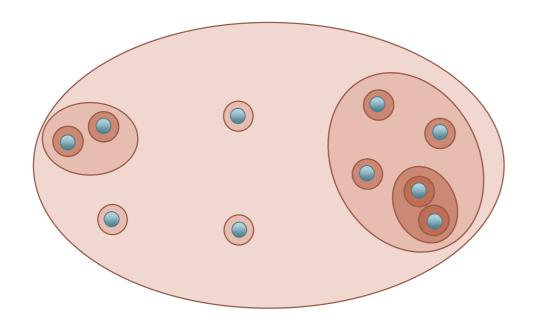


Basic idea: irreducible instances are almost node-weighted instances

Simplifying assumptions

- *L* contains all singletons (every vertex has a node-weight)
- The instance is perfectly irreducible:

the contraction of any set causes no decrease in LP-value



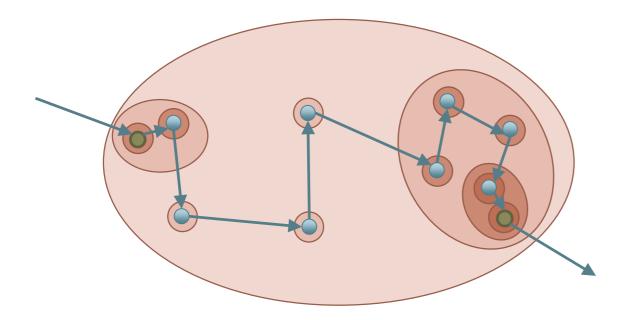
When contracting a set, the LP-decrease is proportional to #sets not crossed by path in worst way to enter/exit

Since all singletons in \mathcal{L} and no LP-decrease, worst way to enter/exit must visit all vertices!

Simplifying assumptions

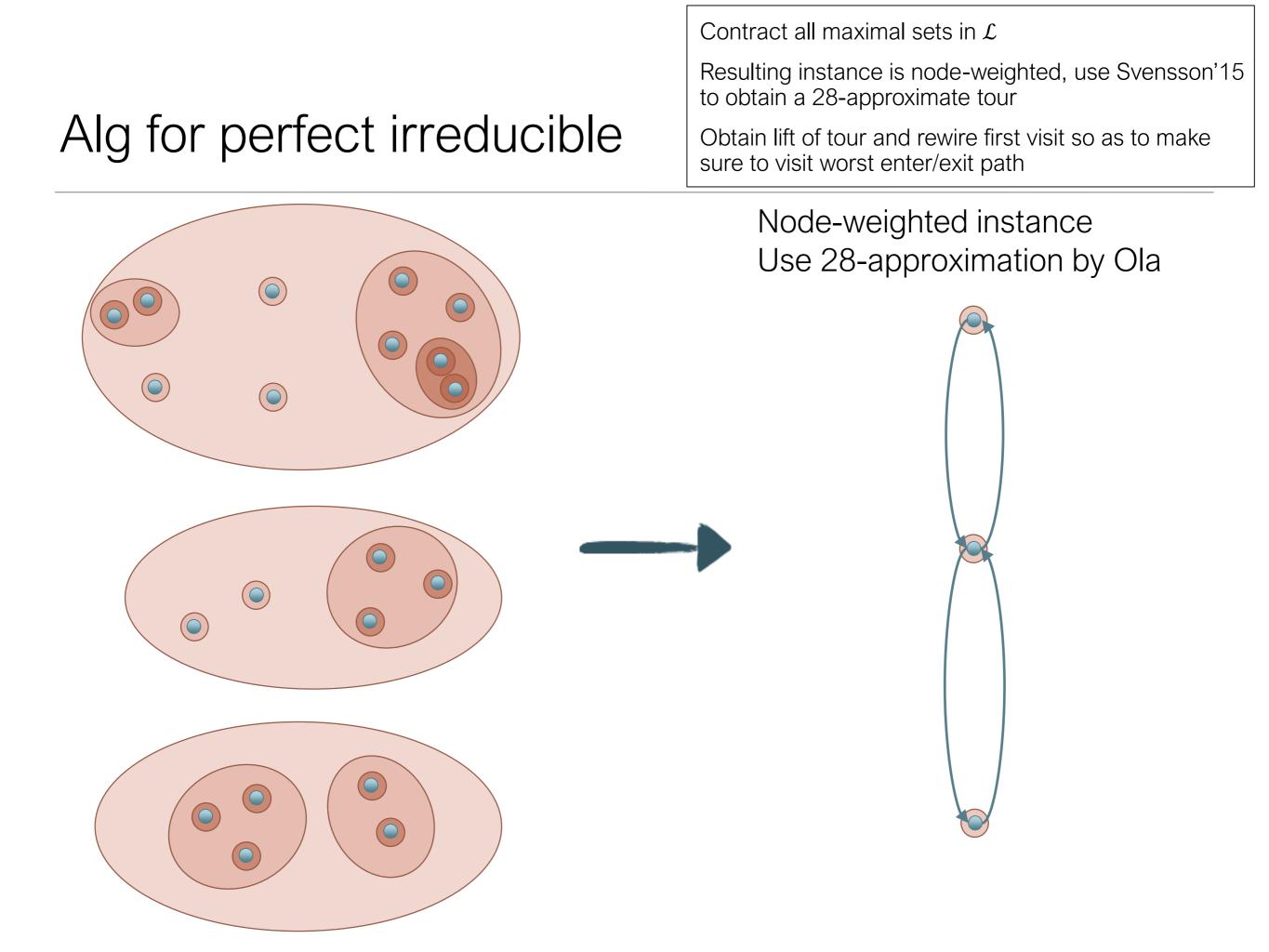
- *L* contains all singletons (every vertex has a node-weight)
- The instance is perfectly irreducible:

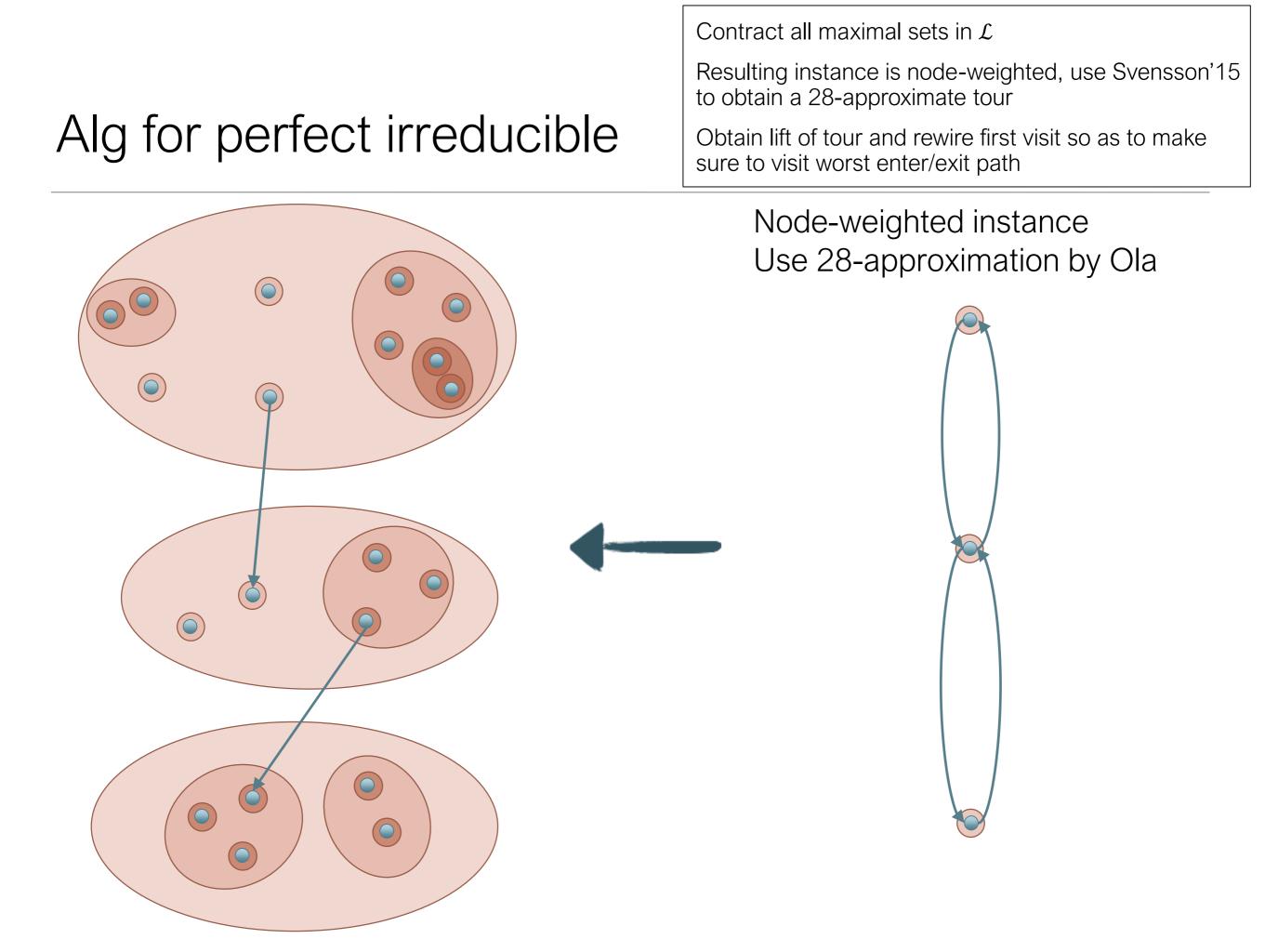
the contraction of any set causes no decrease in LP-value

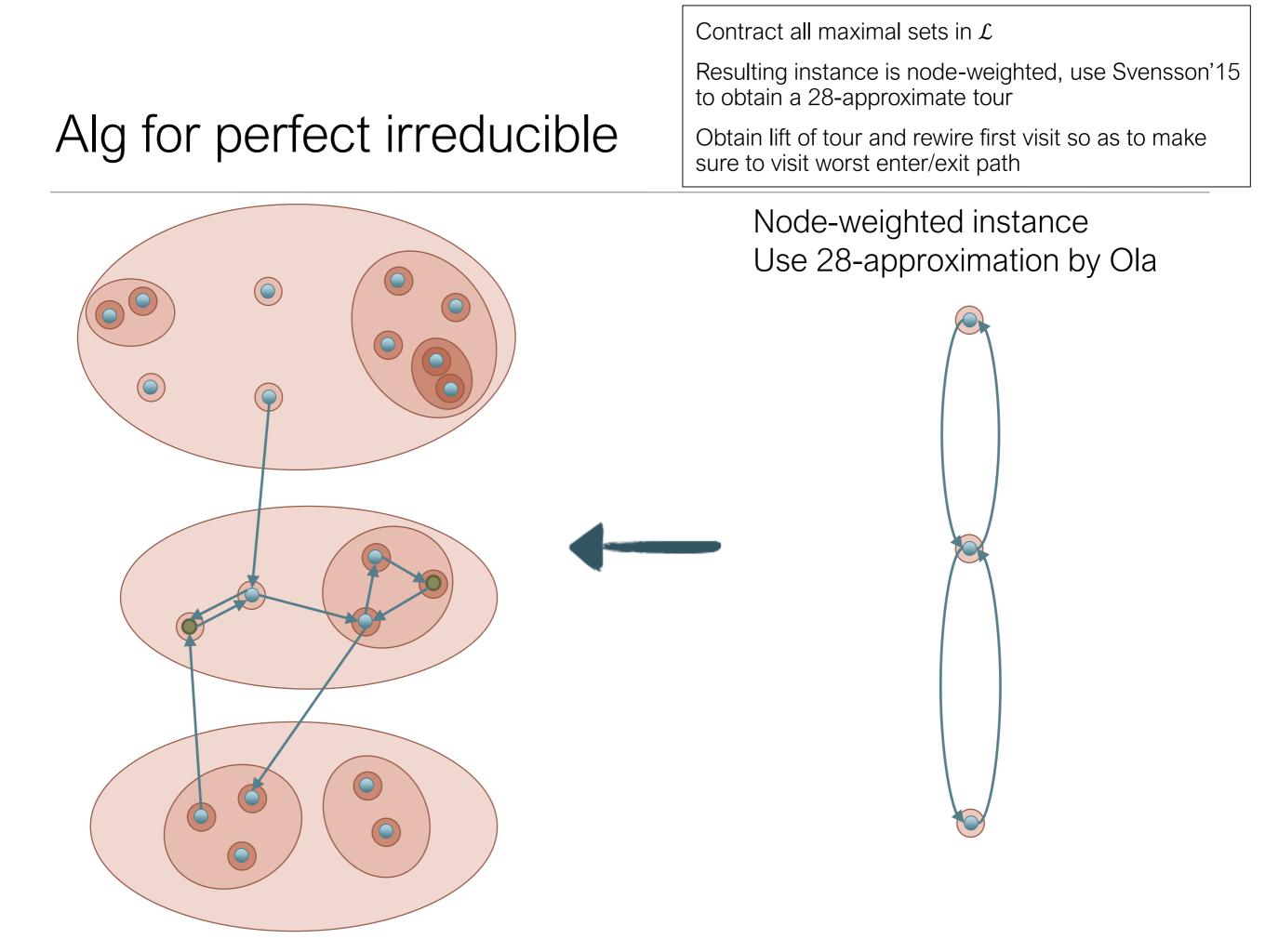


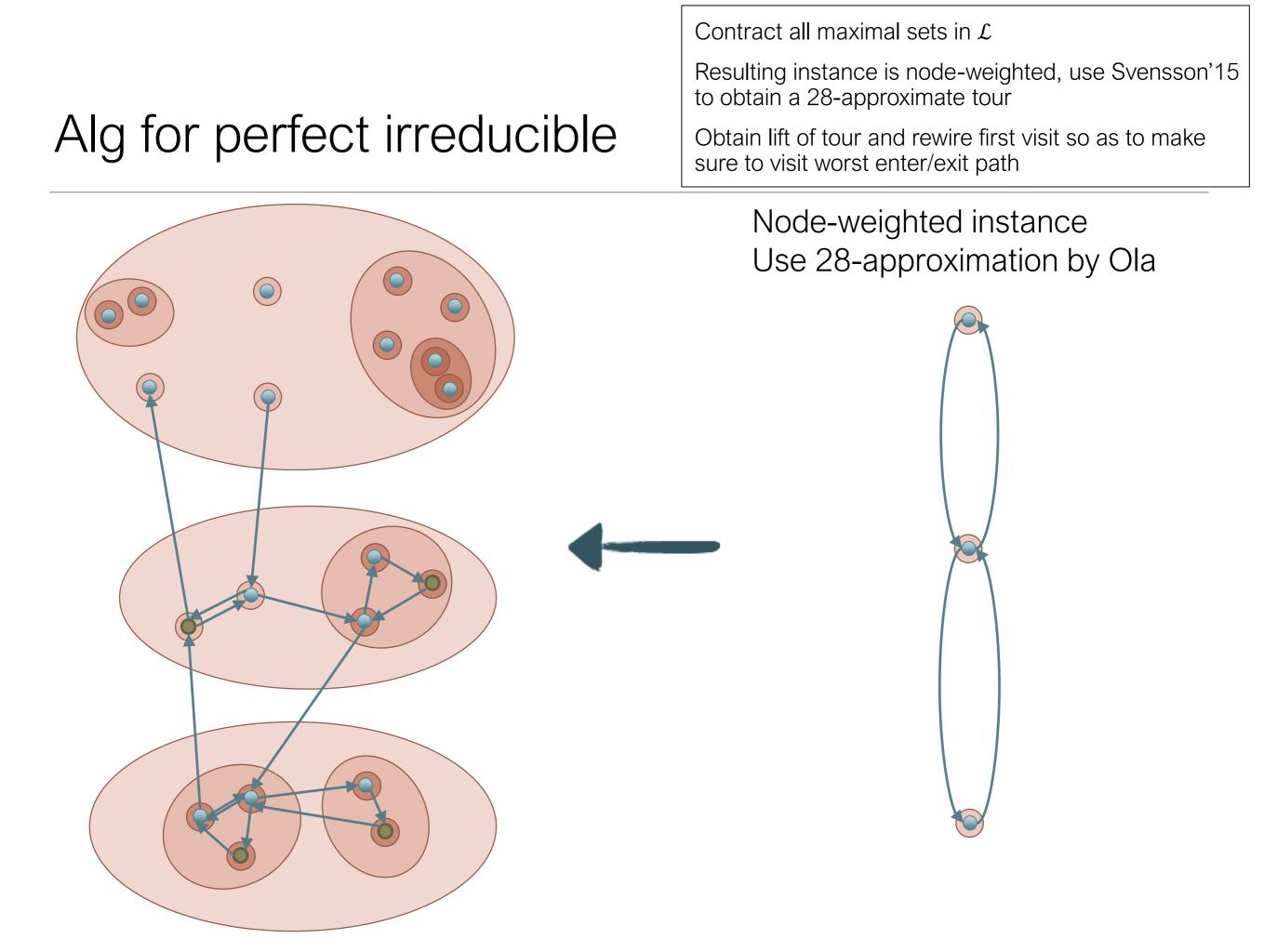
When contracting a set, the LP-decrease is proportional to #sets not crossed by path in worst way to enter/exit

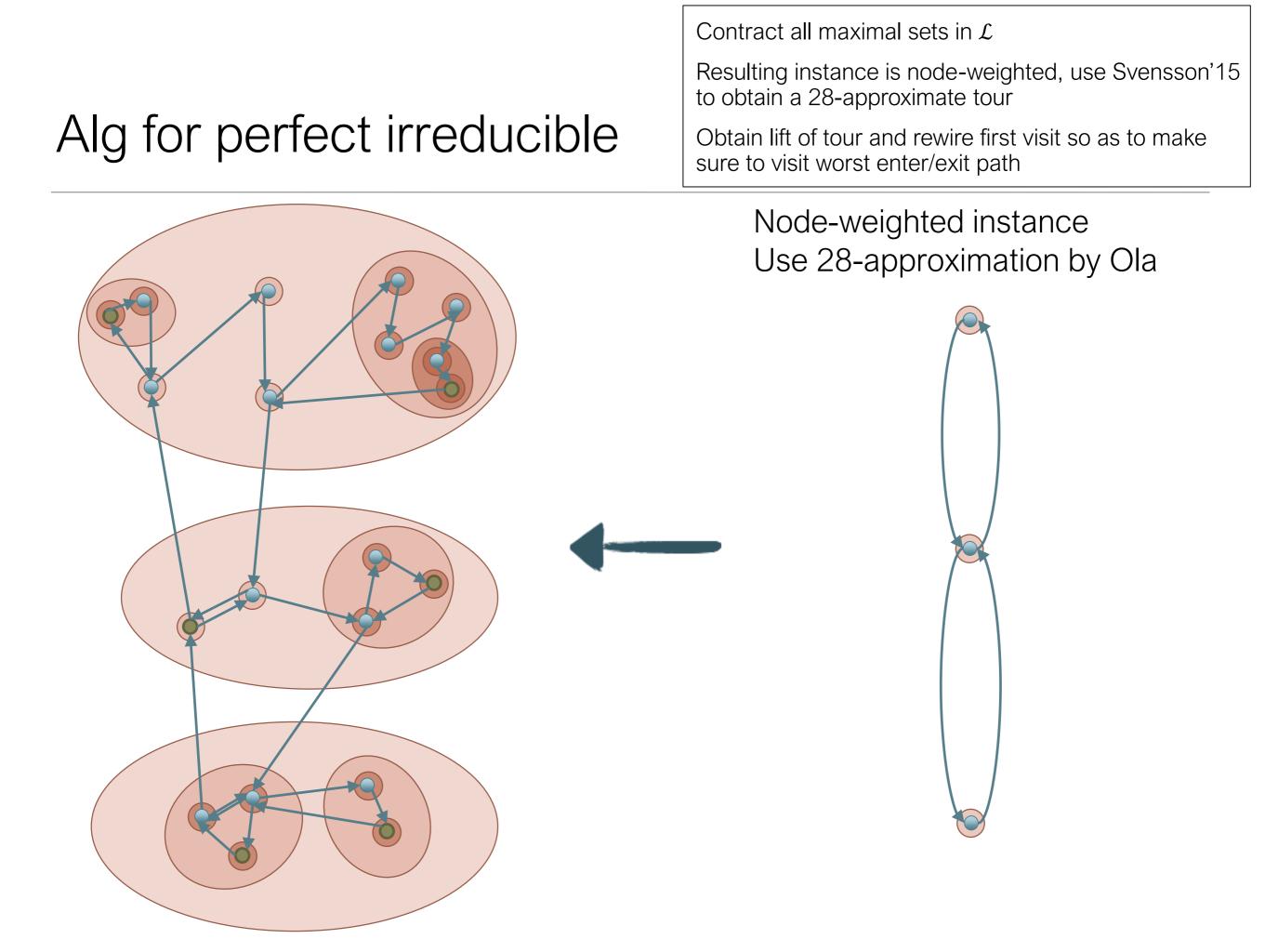
Since all singletons in \mathcal{L} and no LP-decrease, worst way to enter/exit must visit all vertices!



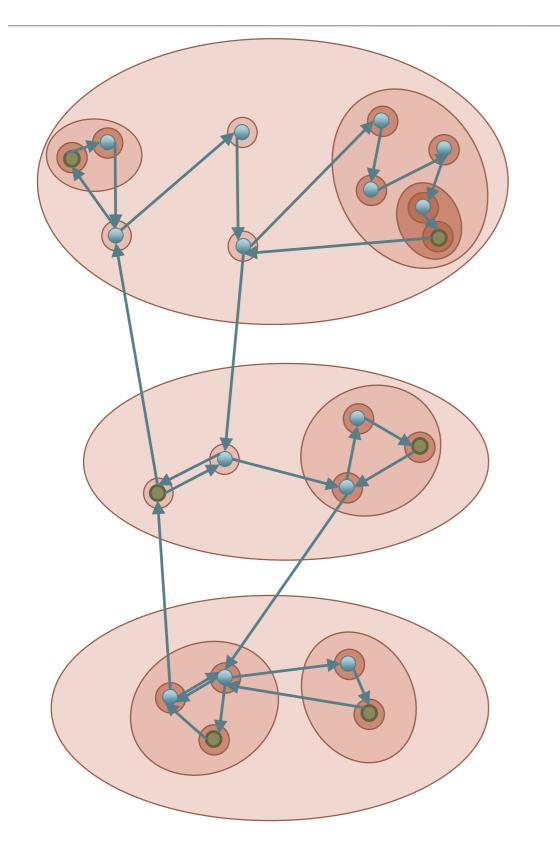








Alg for perfect irreducible



Contract all maximal sets in $\ensuremath{\mathcal{L}}$

Resulting instance is node-weighted, use Svensson'15 to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Cost of tour: w(lift) + w(paths)

 $w(lift) \leq 28 \cdot OPT$

We add 3 paths per maximal set Cost of each path bounded by the LP-value inside that set

 $w(paths) \leq 3 \cdot OPT$

Total cost $\leq 31 \cdot OPT$

In general not perfect irreducibility:

Worst enter/exit path only crosses most sets in \mathcal{L}

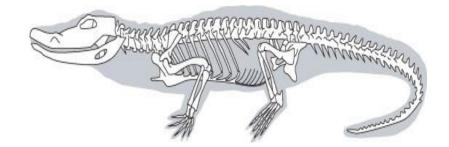
We further reduce to the case when we are given subtour *B* such that:

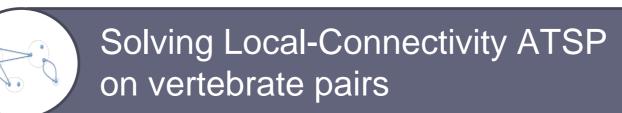
- $w(B) \leq 31 \cdot OPT$
- *B* crosses all non-singleton sets of \mathcal{L}

(to get this, we contract the sets it doesn't cross, and solve them recursively; it's okay because there are few)

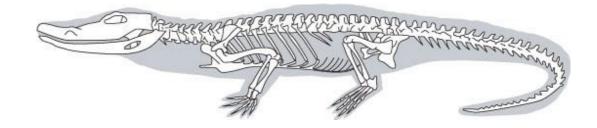


B is called the backbone and together with the instance they form a *vertebrate pair*



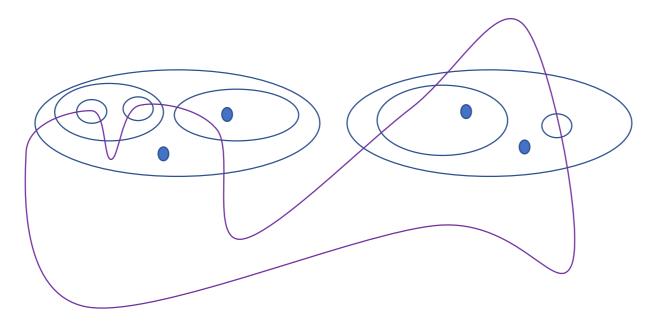


Vertebrate pairs



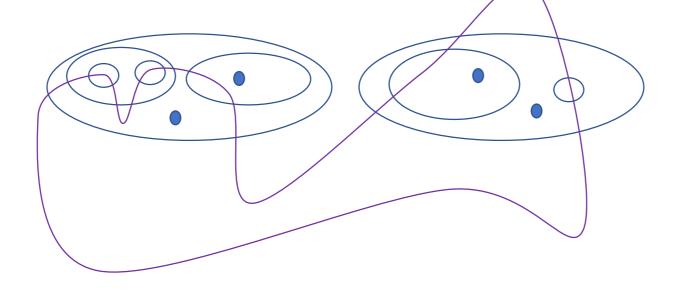
Vertebrate pair (*J*, *B*)

- $\mathcal{I} = (G, \mathcal{L}, x, y)$ instance
- B: backbone = subtour that crosses every non-singleton set in \mathcal{L}

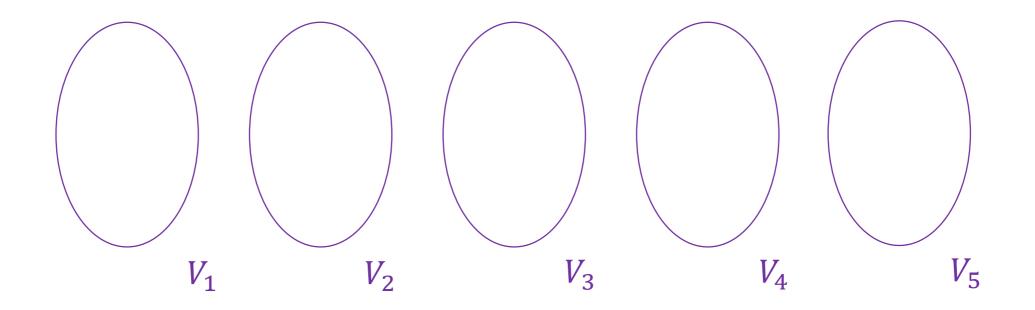


Vertebrate pairs

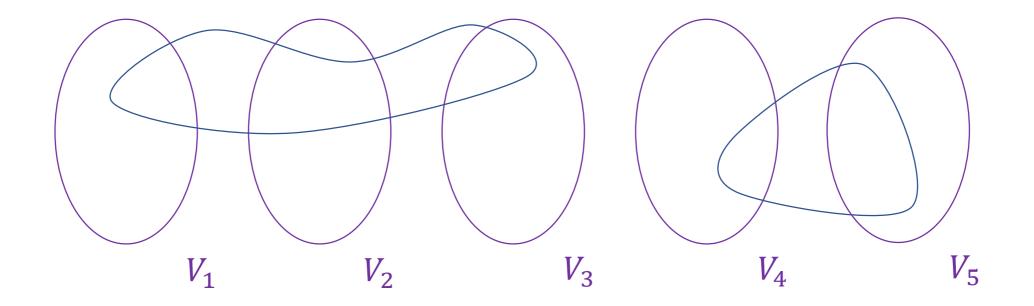
- We have reduced general ATSP to solving ATSP for a vertebrate pair (\mathcal{I}, B) with $w(B) = \Theta(OPT)$
- We want to solve Local-Connectivity ATSP on such instances and apply the reduction by (Svensson 2015)



Instance $\mathcal{I} = (G, \mathcal{L}, x, y)$ with induced weights $w: E \to \mathbb{R}_+$ Lower bound function lb: $V \to \mathbb{R}_+$ with $\sum_{v \in V} \text{lb}(v) = OPT$ Input: partition of the vertex set $V = V_1 \cup V_2 \cup \cdots \cup V_k$



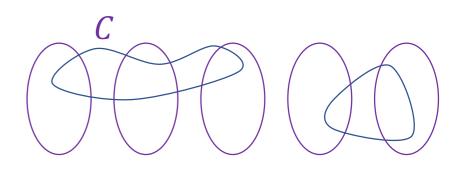
Instance $\mathcal{I} = (G, \mathcal{L}, x, y)$ with induced weights $w: E \to \mathbb{R}_+$ Lower bound function lb: $V \to \mathbb{R}_+$ with $\sum_{v \in V} \text{lb}(v) = OPT$ Input: partition of the vertex set $V = V_1 \cup V_2 \cup \cdots \cup V_k$ Output: subtour F that crosses each V_i



Instance $\mathcal{I} = (G, \mathcal{L}, x, y)$ with induced weights $w: E \to \mathbb{R}_+$ Lower bound function lb: $V \to \mathbb{R}_+$ with $\sum_{v \in V} \text{lb}(v) = OPT$ Input: partition of the vertex set $V = V_1 \cup V_2 \cup \cdots \cup V_k$ Output: subtour F that crosses each V_i

 α -light algorithm: for every component C of F, $w(E(C)) \leq \alpha \operatorname{lb}(V(C))$

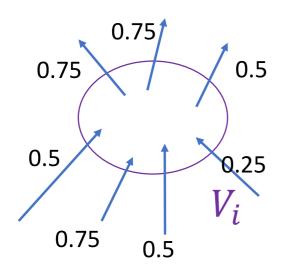
"Every component locally pays for itself"



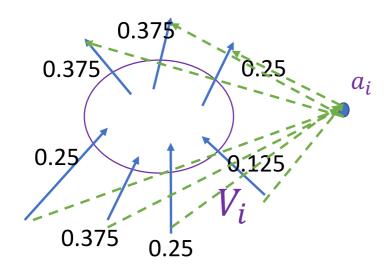
(Svensson 2015) 27-approximation for node-weighted ATSP

> Want: O(1)-light algorithm for vertebrate instances

- Instance $\mathcal{I} = (G, \mathcal{L}, x, y)$, with \mathcal{L} containing only singletons (ignore B) $w(u, v) = y_{\{u\}} + y_{\{v\}}$
- Define $lb(u) = 2y_{\{u\}} \quad \forall u \in V$
- Partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$
- Modify G and x, and solve an integer circulation problem

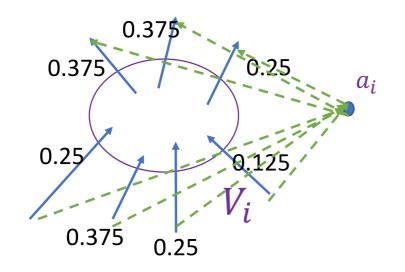


- Instance $\mathcal{I} = (G, \mathcal{L}, x, y)$, with \mathcal{L} containing only singletons (ignore B) $w(u, v) = y_{\{u\}} + y_{\{v\}}$
- Define $lb(u) = 2y_{\{u\}} \quad \forall u \in V$
- Partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$
- Modify G and x, and solve an integer circulation problem

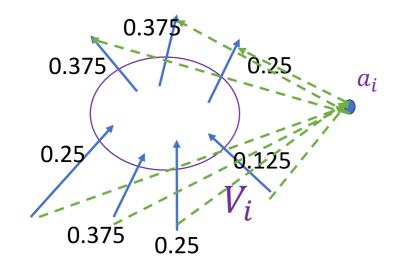


- For each V_i , create auxiliary vertex a_i
- Reroute 1 fractional unit of incoming and outgoing flow x to a_i
- Solve integer circulation problem routing =1 unit through each a_i (and ≤1 unit through each v with y_v > 0)
- Map back to original *G*

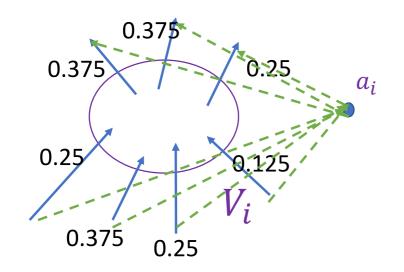
• The rerouted x is feasible for the circulation problem, of weight *OPT*



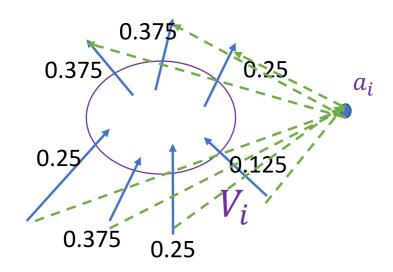
- The rerouted x is feasible for the circulation problem, of weight OPT
- Flow integrality: there exists also integer solution of weight $\leq OPT$



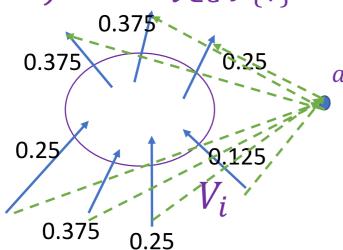
- The rerouted x is feasible for the circulation problem, of weight OPT
- Flow integrality: there exists also integer solution of weight $\leq OPT$
- After mapping back, every vertex (with $y_v > 0$) has in-degree ≤ 2



- The rerouted x is feasible for the circulation problem, of weight **OPT**
- Flow integrality: there exists also integer solution of weight $\leq OPT$
- After mapping back, every vertex (with $y_v > 0$) has in-degree ≤ 2
- For a component *C*, $w(E(C)) = \sum_{(u,v) \in E(C)} y_{\{u\}} + y_{\{v\}} \le 4 \sum_{v \in C} y_{\{v\}}$



- The rerouted x is feasible for the circulation problem, of weight OPT
- Flow integrality: there exists also integer solution of weight $\leq OPT$
- After mapping back, every vertex (with $y_v > 0$) has in-degree ≤ 2
- For a component *C*, $w(E(C)) = \sum_{(u,v) \in E(C)} y_{\{u\}} + y_{\{v\}} \le 4 \sum_{v \in C} y_{\{v\}}$
- $lb(V(C)) = 2 \sum_{v \in C} y_{\{v\}} \implies 2\text{-light algorithm}$

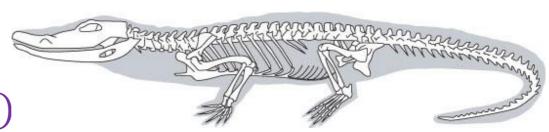


Vertebrate pair (J, B).
 Assume L has a single non-singleton component S.
 Thus,

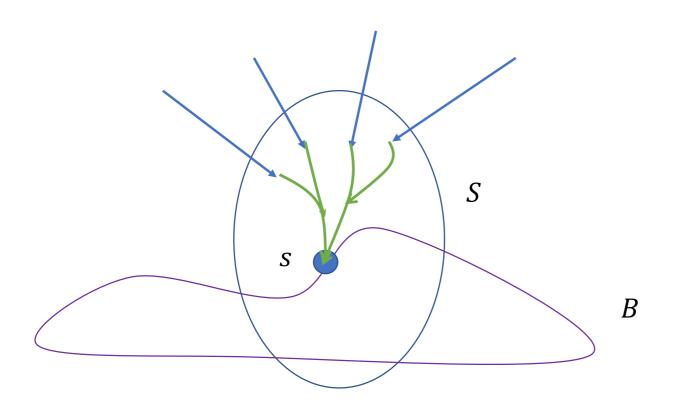
$$w(u,v) = \begin{cases} y_{\{u\}} + y_{\{v\}} + y_S & if(u,v) \in \delta(S) \\ y_{\{u\}} + y_{\{v\}} & if(u,v) \notin \delta(S) \end{cases}$$

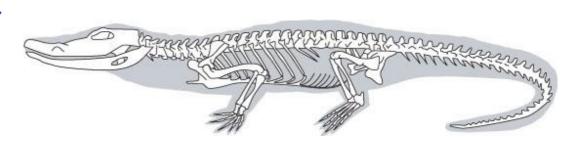
- Define $lb(u) = 2y_{\{u\}}$ as before, but on one backbone vertex $u \in V(B)$ put lb(u) = w(B) instead
- $\sum_{v \in V} \operatorname{lb}(v) = \Theta(OPT)$, since $w(B) = \Theta(OPT)$

• By assumption, $x(\delta^{in}(S)) = x(\delta^{out}(S))$



- Backbone property: there is a node $s \in V(B) \cap S$
- Flow argument: we can route the incoming 1 unit of flow of *S* to *s* (within *x*)

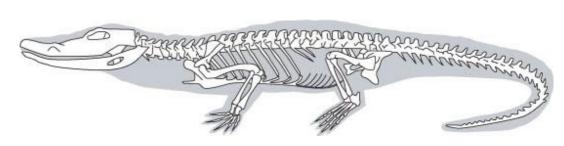




S

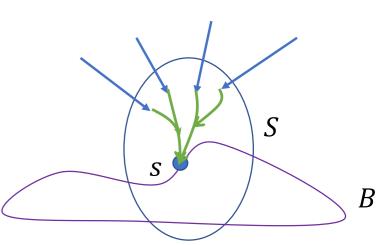
B

- Partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$
- Add backbone B as initial content of the Eulerian output set F
- Via flow splitting [Svensson, T., Vegh'16] "force" all edges entering S to proceed to $s \in V(B)$
- Create auxiliary vertices a_i as before
- Solve integral circulation problem, and add solution to F



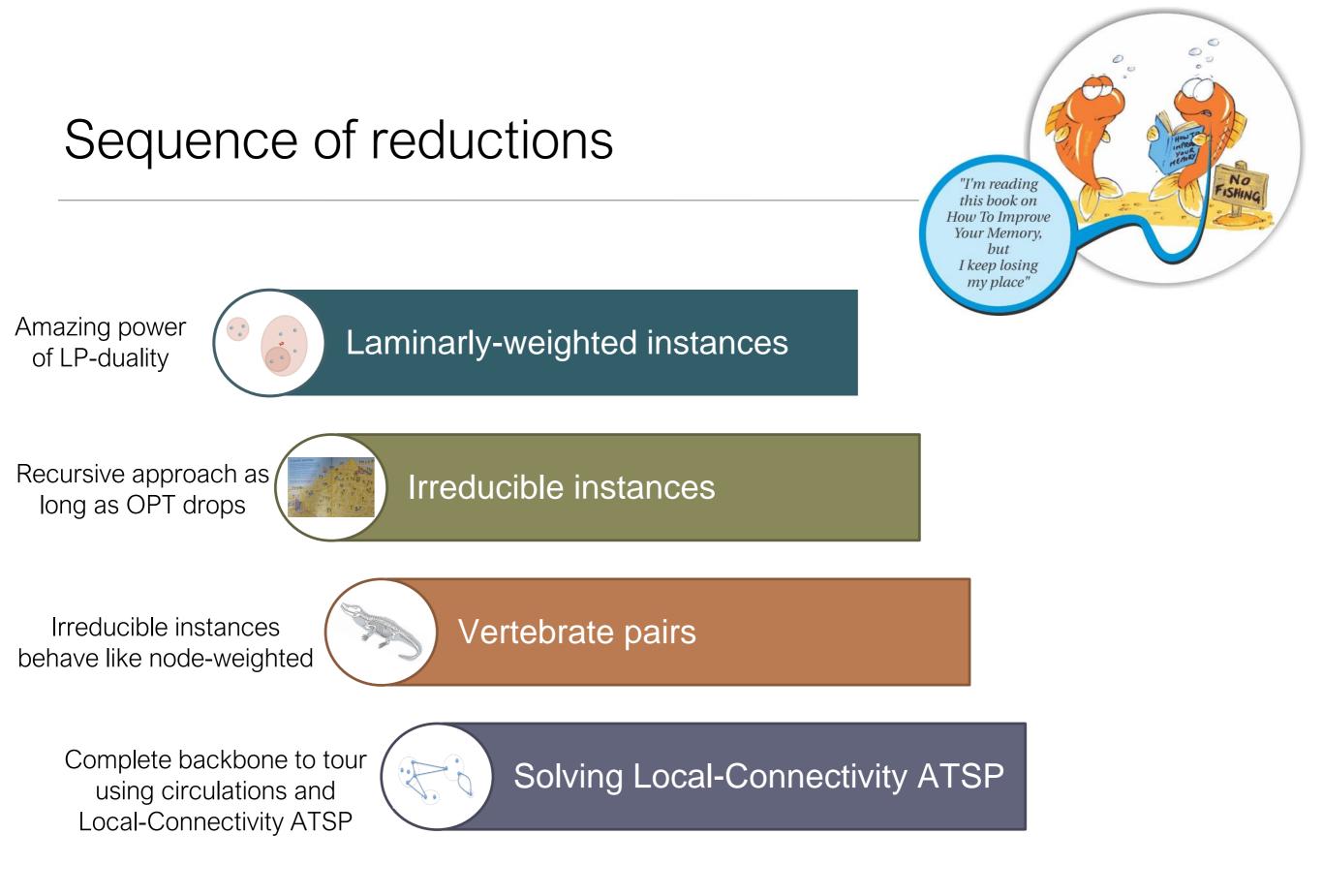
Analysis

- For all components *C* not crossing *S*, $w(E(C)) \le 2 \operatorname{lb}(V(C))$ exactly as in the node-weighted case
- Giant component C₀ containing B:
 - Contains all edges in F crossing S
 - Has lower bound $lb(V(C_0)) \ge lb(u) = \Theta(OPT)$
 - $w(E(C_0)) \le w(F) \le O(OPT)$
- Therefore solution is O(1)-light.
- Same approach extends to arbitrary \mathcal{L} : enforce that every subtour crossing a non-singleton set in $\mathcal L$ must intersect the backbone.



Summary and open problems...

Theorem: A O(1)-approximation algorithm with respect to Held-Karp relaxation



Open questions

- Is the right ratio 2?
 - Unoptimized constant = 5500
 - By optimizing our approach, we believe we can get an upper bound in the hundreds. New ideas are needed to get close to lower bound of 2
- Bottleneck ATSP: find tour with minimum max-weight edge
- Thin tree conjecture: Is there a tree T such that for every $S \subset V$ $|\delta(S) \cap T| \le O(1) x(\delta(S))$

(would also imply apx for Bottleneck ATSP [An, Kleinberg, Shmoys'10])

Thank you!