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What's the cheapest way to visit all 24727 pubs in the UK? 

Cook, Espinoza, Goycoolea, Helsgaun (2015)

45,495,239 meters



Find the shortest tour that visits n given cities



Traveling Salesman Problem

• Variants studied in mathematics by Hamilton 

and Kirkman already in the 1800’s

• Benchmark problem:

• one of the most studied

NP-hard optimization problems

• yet our understanding

is quite incomplete

What can be accomplished 

with efficient computation

(approximation algorithms)?



Two basic versions

2-approximation is trivial

1.5-approximation [Christofides’76] taught in undergrad 

courses, still unbeaten
u v
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3

Asymmetric: more general, no such assumption is made

u

v

3

2

Symmetric: distance(u,v) = distance(v,u)



Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph 𝐺 = (𝑉, 𝐸, 𝑤)

Output: a minimum-weight tour that visits each vertex at least once
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Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph 𝐺 = (𝑉, 𝐸, 𝑤)

Output: a minimum-weight tour that visits each vertex at least once
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Equivalently could have:

• Complete graph with Δ-inequality

• Visit each vertex exactly once



Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph 𝐺 = (𝑉, 𝐸, 𝑤)

Output: a minimum-weight connected Eulerian multigraph (𝑉, 𝐸’)
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in-degree = out-degree



Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph 𝐺 = (𝑉, 𝐸, 𝑤)

Output: a minimum-weight connected Eulerian multigraph (𝑉, 𝐸’)

Variables: 𝑥𝑢𝑣 = #times we traverse edge (𝑢, 𝑣)

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0

S

𝛿 𝑆 = set of cut edges

in-degree = out-degree



Integrality gap of the                                ?

i.e. how far off is that particular algorithm?



Pick any two…

integral

connected
Eulerian

cycle 

cover
ATSP

spanning 

tree

Held-Karp



Output: a minimum-weight connected Eulerian multigraph

Two natural approaches: begin with…



Add Eulerian graphs 
until connected

Start with spanning tree, 
then make Eulerian

log2 𝑛-approximation via repeated cycle covers

[Frieze, Galbiati, Maffioli’82]

0.99 log2 𝑛-approximation

[Bläser’03]

0.84 log2 𝑛-approximation 

[Kaplan, Lewenstein, Shafrir, Sviridenko’05]

0.67 log2 𝑛-approximation

[Feige, Singh’07]

𝑂(log 𝑛 / log log 𝑛)-approximation via thin trees

[Asadpour, Goemans, Mądry, Oveis Gharan, Saberi’10]

𝑂(1)-approximation for planar & bounded-genus graphs  

[Oveis Gharan, Saberi’11]

Integrality gap ≤ poly(log log 𝑛)
via generalization of Kadison-Singer

[Anari, Oveis Gharan’14]

Hardness

NP-hard to approximate within 1 +
1

74

[Papadimitriou, Vempala‘00, Karpinski, Lampis, Schmied’13]

Integrality gap ≥ 2

[Charikar, Goemans, Karloff’02] 

Local-Connectivity ATSP

- Defined new, easier problem

- Reduced 𝑂(1)-approximation of ATSP to it

- Solved it for unweighted graphs (easy part)

[Svensson’15]

…

Solved it for graphs with two edge weights

[Svensson, T., Vegh’16] 



Theorem: 

A 𝑂(1)-approximation algorithm with respect to Held-Karp relaxation

2-edge-weights

ATSP

2-edge-weights

Local-Connectivity ATSP

general

ATSP

general

Local-Connectivity ATSP

structured

ATSP

more structured

ATSP

really structured

ATSP

Solve
[Svensson, T., Vegh’16] 

[Svensson’15] [Svensson’15] 

really structured

Local-Connectivity ATSP

Solve

[Svensson’15] 



Outline of reductions

Laminarly-weighted instances

Irreducible instances

Vertebrate pairs

Solving Local-Connectivity ATSP



Laminarly-weighted instances

weight=1+3+2+5

By amazing power of LP-duality



Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph 𝐺 = (𝑉, 𝐸, 𝑤)

Output: a minimum-weight connected Eulerian multigraph (𝑉, 𝐸’)

Variables: 𝑥𝑢𝑣 = #times we traverse edge (𝑢, 𝑣)

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0

S

𝛿 𝑆 = set of cut edges

in-degree = out-degree



Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0
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1. Solve LP to obtain solution 

depicted in black 

2. Forget edges with LP-value = 0

• Doesn’t change LP-value

• Any tour is smaller instance is a tour in 

original instance

3. Now all edges have positive 

LP-value

LP-value = 22
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1. Solve LP to obtain solution 

depicted in black 

2. Forget edges with LP-value = 0

• Doesn’t change LP-value

• Any tour is smaller instance is a tour in 

original instance

3. Now all edges have positive 

LP-value

LP-value = 22

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0
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1. Solve LP to obtain solution 

depicted in black 

2. Forget edges with LP-value = 0

• Doesn’t change LP-value

• Any tour is smaller instance is a tour in 

original instance

3. Now all edges have positive 

LP-value

By complementarity slackness, each 

remaining edge corresponds to tight 

constraint in dual

Do these edges have structure?

LP-value = 22

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22

Dual has variables:

• 𝛼𝑣 - vertex potential for each v

• 𝑦𝑆 - value for each cut 𝑆

Sum of y-values cutting (u,v)  

+ tail potential

- head potential

is at most the edge-weight  

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22

Dual has variables:

• 𝛼𝑣 - vertex potential for each v

• 𝑦𝑆 - value for each cut 𝑆

Sum of y-values cutting (u,v)  

+ tail potential

- head potential

is at most the edge-weight  

Dual value = 

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22

Dual has variables:

• 𝛼𝑣 - vertex potential for each v

• 𝑦𝑆 - value for each cut 𝑆

Sum of y-values cutting (u,v)  

+ tail potential

- head potential

is at most the edge-weight  
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𝑺: 𝒖,𝒗 ∈𝜹(𝑺)

𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗

4         + 3 - 6 = 1

Dual value = 

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22

Dual has variables:

• 𝛼𝑣 - vertex potential for each v

• 𝑦𝑆 - value for each cut 𝑆

Sum of y-values cutting (u,v)  

+ tail potential

- head potential

is at most the edge-weight  

34
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𝑺: 𝒖,𝒗 ∈𝜹(𝑺)

𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗

2+1     + 4 - 6 = 1

Dual value = 
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Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22Dual value = 

By complementarity slackness:



𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆 + 𝛼𝑢 − 𝛼𝑣 = 𝑤 𝑢, 𝑣 =:𝑤′(𝑢, 𝑣)

for every edge (u,v) (since we only kept positive edges)

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22Dual value = 

By complementarity slackness:



𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆 = 𝑤 𝑢, 𝑣 − 𝛼𝑢 + 𝛼𝑣 =:𝑤′(𝑢, 𝑣)

for every edge (u,v) (since we only kept positive edges)

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22Dual value = 

By complementarity slackness:



𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆 = 𝑤 𝑢, 𝑣 − 𝛼𝑢 + 𝛼𝑣 =:𝑤′(𝑢, 𝑣)

for every edge (u,v) (since we only kept positive edges)

Observation:

For any Eulerian edge set F

𝑤 𝐹 = 𝑤′(𝐹)

A B

C

𝑤′ 𝐹 = 𝑤 𝐴, 𝐵 + 𝛼𝐴 − 𝛼𝐵

+ 𝑤 𝐵, 𝐶 + 𝛼𝐵 − 𝛼𝐶

+ 𝑤 𝐶, 𝐴 + 𝛼𝑐 − 𝛼𝐴

= 𝑤(𝐹)

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22Dual value = 

By complementarity slackness:



𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆 = 𝑤 𝑢, 𝑣 − 𝛼𝑢 + 𝛼𝑣 =:𝑤′(𝑢, 𝑣)

for every edge (u,v) (since we only kept positive edges)

Observation:

For any Eulerian edge set F

𝑤 𝐹 = 𝑤′(𝐹)

Thus equivalent to consider weight function 𝑤′:

𝑤′ 𝑢, 𝑣 = 

𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆

So normalize and forget about vertex potentials

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0
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LP-value = 22Dual value = 

By complementarity slackness:



𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆 = 𝑤 𝑢, 𝑣 − 𝛼𝑢 + 𝛼𝑣 =:𝑤′(𝑢, 𝑣)

for every edge (u,v) (since we only kept positive edges)

Observation:

For any Eulerian edge set F

𝑤 𝐹 = 𝑤′(𝐹)

Thus equivalent to consider weight function 𝑤′:

𝑤′ 𝑢, 𝑣 = 

𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆

So normalize and forget about vertex potentials

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0

What happened?

Something complicated with no structure

1. Drop 0-edges

2. Complementarity slackness

3. Normalize with vertex potentials

A lot of structure:

𝑤 𝑒 = 

𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆

Optimal primal and dual

x and (y,0)

Want more 

structure!

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0

A lot of structure:

𝑤 𝑒 = 

𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0



Maximize: σ𝑆⊂𝑉 2 ⋅ 𝑦𝑆

Subject to:

σ𝑺: 𝒖,𝒗 ∈𝜹(𝑺)𝒚𝑺 + 𝜶𝒖 − 𝜶𝒗 ≤ 𝒘 𝒖, 𝒗 for  all (u, v) ∈ 𝐸

y ≥ 0

A lot of structure:

𝑤 𝑒 = 

𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆

Let ℒ = {𝑆: 𝑦𝑆 > 0} be support of dual solution

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣
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𝑤 𝑒 = 

𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆

Let ℒ = {𝑆: 𝑦𝑆 > 0} be support of dual solution

Again by complementarity slackness

𝑥 𝛿 𝑆 = 2 for every 𝑆 ∈ ℒ

So every 𝑆 ∈ ℒ is a tight set!

Minimize: σ𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹 𝑺 ≥ 𝟐 for all S ⊂ 𝑉

𝑥 ≥ 0
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y ≥ 0

A lot of structure:

𝑤 𝑒 = 

𝑆: 𝑢,𝑣 ∈𝛿(𝑆)

𝑦𝑆

Let ℒ = {𝑆: 𝑦𝑆 > 0} be support of dual solution

Again by complementarity slackness

𝑥 𝛿 𝑆 = 2 for every 𝑆 ∈ ℒ

So every 𝑆 ∈ ℒ is a tight set!

By “standard” uncrossing techniques: 

ℒ is a laminar family

Any two sets are either disjoint or one is a subset of the other

No two sets intersect 

non-trivially
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• 𝑥, 𝑦 primal and dual solutions (that will be optimal by definition)
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• 𝑥, 𝑦 primal and dual solutions (that will be optimal by definition)

• ℒ = {𝑆: 𝑦𝑆 > 0} is a laminar family of tight sets (LP says that we should visit each such set once)
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𝑥 𝛿+ 𝑆 = 1



Laminarly-weighted

Laminarly-weighted instance ℐ = (𝐺, ℒ, 𝑥, 𝑦):

• 𝑥, 𝑦 primal and dual solutions (that will be optimal by definition)

• ℒ = {𝑆: 𝑦𝑆 > 0} is a laminar family of tight sets (LP says that we should visit each such set once)

• weights induced by ℒ and 𝑦:

𝑤 𝑒 = 

𝑆∈ℒ:𝑒∈𝛿(𝑆)

𝑦𝑆 for every edge 𝑒

weight=2+5+1

weight=1+3+2+5

Theorem: 

A ρ-approximation algorithm for laminarly-weighted instances

yields a ρ-approximation algorithm for general ATSP

Held-Karp lower bound = OPT = 𝟐 ⋅ σ𝑺∈𝓛𝒚𝑺 (=28 in example)



Laminarly-weighted instance ℐ = (𝐺, ℒ, 𝑥, 𝑦):

• 𝑥, 𝑦 primal and dual solutions (which will be optimal by definition)

• ℒ = {𝑆: 𝑦𝑆 > 0} is a laminar family of tight sets (LP says that we should visit each such set once)

• weights induced by ℒ and 𝑦:

𝑤 𝑒 = 

𝑆∈ℒ:𝑒∈𝛿(𝑆)

𝑦𝑆

weight=2+5+1

weight=1+3+2+5

Reduced our task to:



Basic idea:

recursively solving smaller instances

is not dangerous

if optimum drops

Irreducible instances



Let’s take a detour
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[Frieze, Galbiati, and Maffioli’82] 

Find min-cost cycle cover

“Contract“

Repeat until graph is connected



Repeated cycle cover
[Frieze, Galbiati, and Maffioli’82] 

Find min-cost cycle cover

“Contract“

Repeat until graph is connected

Cost of cycle cover ≤ 𝑶𝑷𝑻



Repeated cycle cover
[Frieze, Galbiati, and Maffioli’82] 

Find min-cost cycle cover

“Contract“

Repeat until graph is connected

Cost of cycle cover ≤ 𝑶𝑷𝑻



Repeated cycle cover
[Frieze, Galbiati, and Maffioli’82] 

Find min-cost cycle cover

“Contract“

Repeat until graph is connected

Cost of cycle cover ≤ 𝑶𝑷𝑻

Cost of cycle cover ≤ 𝑶𝑷𝑻



Repeated cycle cover
[Frieze, Galbiati, and Maffioli’82] 

Find min-cost cycle cover

“Contract“

Repeat until graph is connected

Cost of cycle cover ≤ 𝑶𝑷𝑻

Cost of cycle cover ≤ 𝑶𝑷𝑻



Repeated cycle cover
[Frieze, Galbiati, and Maffioli’82] 

Find min-cost cycle cover

“Contract“

Repeat until graph is connected

Cost of cycle cover ≤ 𝑶𝑷𝑻

Cost of cycle cover ≤ 𝑶𝑷𝑻

Cost of cycle cover ≤ 𝑶𝑷𝑻



Repeated cycle cover
[Frieze, Galbiati, and Maffioli’82] 

Find min-cost cycle cover

“Contract“

Repeat until graph is connected

Worst case:  all cycles have length 2 so need to repeat log2 𝑛 times (each time cost 𝑂𝑃𝑇𝐿𝑃)

Cost of cycle cover ≤ 𝑶𝑷𝑻

Cost of cycle cover ≤ 𝑶𝑷𝑻

Cost of cycle cover ≤ 𝑶𝑷𝑻

Total cost ≤ 𝟑 ⋅ 𝑶𝑷𝑻

𝒍𝒐𝒈𝟐 𝒏-approximation



Recursive algorithm fine if value drops

Each time we take a cycle cover we make some progress

What if the value of OPT drops by say a factor 9/10 each time?

Then total cost would be



𝑖=0

log2 𝑛
9

10

𝑖

𝑂𝑃𝑇 ≤

𝑖=0

∞
9

10

𝑖

𝑂𝑃𝑇 = 10 ⋅ 𝑂𝑃𝑇

No one has been able to pursue this strategy with cycle cover approach

We pursue it using the structure of laminarly-weighted instances



Le retour



Laminarly-weighted

Laminarly-weighted instance ℐ = (𝐺, ℒ, 𝑥, 𝑦):

• 𝑥, 𝑦 primal and dual solutions (which will be optimal by definition)

• ℒ = {𝑆: 𝑦𝑆 > 0} is a laminar family of tight sets (LP says that we should visit each such set once)

• weights induced by ℒ and 𝑦:

𝑤 𝑒 = 

𝑆∈ℒ:𝑒∈𝛿(𝑆)

𝑦𝑆 for every edge 𝑒

weight=2+5+1

weight=1+3+2+5

Held-Karp lower bound = OPT = 𝟐 ⋅ σ𝑺∈𝓛𝒚𝑺 (=28 in example)



Contraction and lift
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Contraction gives smaller instance: G, x, ℒ easy to contract 

Remains to specify y-value of new vertex/set  
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Lifting a tour in the contracted instance

1

2

2

5

4

3

6

1
2

2

7
1

3

?

6

1
2

2

7
1

3



Lifting a tour in the contracted instance
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Lift tour in contracted instance to subtour in original instance

What to do?



Lifting a tour in the contracted instance
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Lift tour in contracted instance to subtour in original instance

What to do? Simply add a shortest path

Set so that we always pay 

for the rewiring in lift
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Set so that we always pay 

for the rewiring in lift

Set y-value of new set to pay for

maximum cost over all possible ways to enter and exit the original set
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Set so that we always pay 

for the rewiring in lift

Set y-value of new set to pay for
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In example:

? = 5+2+2+1+4+3 = 17 (path crosses every tight set)
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Set so that we always pay 

for the rewiring in lift

Set y-value of new set to pay for

maximum cost over all possible ways to enter and exit the original set

In example:

? = 5+2+2+1+4+3 = 17 (path crosses every tight set)

Fact: No matter how we enter and exit, there exists a path that enters and 

exits each set at most once => contraction does not increase LP-value

Generalization of the fact: if there is a path from u to v then there is one without cycles
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Change of cost in example:

2*(5+2+2+4+3)   – 2*17                 +   2*(5+1+4)   - 2 * 17 ≤ 0          

cost of first visit in lift cost of first visit in tour cost of 2nd visit in lift cost of 2nd visit in tour

By design:

Fact: Lift no more expensive than tour in contracted instance



Facts about contraction

Fact: No matter how we enter and exit, there exists a path that enters and exits 

each set at most once => contraction does not increase LP-value

Fact: Lift no more expensive than tour in contracted instance

Negative fact: Lift is a subtour but may not be a tour: 

it visits all vertices outside contracted set but not inside

However, if contraction causes significant decrease in value, then we can use 

remaining budget to complete the lift into tour



Implementing recursive strategy



(Ir)reducible sets in ℒ

DEF: A set 𝑆 ∈ ℒ is reducible if worst way to enter/exit crosses at most a weighted 
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So worst way to enter/exit should cross sets of 

value at most 9 to be reducible
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(Ir)reducible sets in ℒ

DEF: A set 𝑆 ∈ ℒ is reducible if worst way to enter/exit crosses at most a weighted 
3

4
-

fraction of the sets strictly inside 𝑆

1

2

2
4

3

Total value inside 𝑆 = 2+2+1+4+3 = 12

So worst way to enter/exit should cross sets of 

value at most 9 to be reducible

Worst way to enter/exit crosses sets of value = 9

REDUCIBLE

We say that an instance is irreducible if no set in ℒ is reducible



Theorem: 

A 𝛒-approximation algorithm for irreducible instances

yields a 𝟖𝛒-approximation algorithm for laminarly-weighted

instances, and thus for general ATSP

Let 𝒜 be a 𝜌-approximation algorithm for irreducible instances…



If instance is irreducible, simply run 𝒜

Otherwise select minimal reducible set 𝑆 ∈ ℒ

Recursively find tour 𝑇 in instance with 𝑆 contracted

Complete lift of 𝑇 to a tour in original instance using 𝒜
Alg for reducible instances
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If irreducible: 

simply run 𝒜 to obtain 𝜌-approximate tour

(𝜌 < 8𝜌, so okay)
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𝑆:minimal reducible set



If instance is irreducible, simply run 𝒜

Otherwise select minimal reducible set 𝑆 ∈ ℒ
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𝑆:minimal reducible set



If instance is irreducible, simply run 𝒜

Otherwise select minimal reducible set 𝑆 ∈ ℒ

Recursively find tour 𝑇 in instance with 𝑆 contracted

Complete lift of 𝑇 to a tour in original instance using 𝒜
Alg for reducible instances
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Recursive call returns 8𝜌-approximate solution 𝑇 on smaller instance:

𝑤 𝑇 ≤ 8𝜌 𝑂𝑃𝑇 −
1

4
2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅 = 8𝜌𝑂𝑃𝑇 − 2𝜌 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

𝑆:minimal reducible set



If instance is irreducible, simply run 𝒜

Otherwise select minimal reducible set 𝑆 ∈ ℒ

Recursively find tour 𝑇 in instance with 𝑆 contracted

Complete lift of 𝑇 to a tour in original instance using 𝒜
Alg for reducible instances
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𝑤 𝑙𝑖𝑓𝑡 ≤

Remaining task: complete lift to a tour using 𝒜 while paying at most the above

𝑆:minimal reducible set
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Task: complete to tour while paying at most 2𝜌 2 ⋅ σ𝑅∈ℒ:𝑅 ⊂𝑆 𝑦𝑅

• We need to only connect unvisited vertices inside 𝑆

Simplifying assumption:

instance obtained by restricting to vertices inside S is feasible

𝑆:minimal reducible set
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Otherwise select minimal reducible set 𝑆 ∈ ℒ

Recursively find tour 𝑇 in instance with 𝑆 contracted

Complete lift of 𝑇 to a tour in original instance using 𝒜
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Task: complete to tour while paying at most 2𝜌 2 ⋅ σ𝑅∈ℒ:𝑅 ⊂𝑆 𝑦𝑅

• We need to only connect unvisited vertices inside 𝑆

Simplifying assumption:

instance obtained by restricting to vertices inside S is feasible

𝑆:minimal reducible set

An irreducible instance since 𝑆
was a minimal reducible set

Held-Karp value = 2 times dual values

= 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

Solve this instance with 𝒜 to find tour on 𝑆 of weight

≤ 𝜌 ⋅ 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

Better by a factor 2 than needed 
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𝑆:minimal reducible set

Contract and recursively find lift (subtour) of weight

≤ 8𝜌𝑂𝑃𝑇 − 2𝜌 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

Under simplifying assumption, find tour on S of weight

≤ 𝜌 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

Final tour has value at most

≤ 8𝜌𝑂𝑃𝑇 − 𝜌 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

Simplifying assumption not true in general: 

We define the operation of inducing on 𝑆 for ATSP in 

paper. Makes us lose another factor of 2



If instance is irreducible, simply run 𝒜

Otherwise select minimal reducible set 𝑆 ∈ ℒ

Recursively find tour 𝑇 in instance with 𝑆 contracted

Complete lift of 𝑇 to a tour in original instance using 𝒜
Alg for reducible instances

1

2

2

5

4

3

6

1
2

2

7
1

3

𝑆:minimal reducible set

Contract and recursively find lift (subtour) of weight

≤ 8𝜌𝑂𝑃𝑇 − 2𝜌 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

Under simplifying assumption, find tour on S of weight

≤ 𝜌 2 ⋅ 

𝑅∈ℒ:𝑅 ⊂𝑆

𝑦𝑅

Final tour has value at most

≤ 8𝜌𝑂𝑃𝑇 − 𝜌 2 ⋅ 
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Simplifying assumption not true in general: 

We define the operation of inducing on 𝑆 for ATSP in 

paper. Makes us lose another factor of 2

Eulerian set of edges

* 2



Theorem: 

A 𝛒-approximation algorithm for irreducible instances

yields a 𝟖𝛒-approximation algorithm for laminarly-weighted

instances, and thus for general ATSP



Basic idea: irreducible instances are almost 

node-weighted instances

Vertebrate pairs



Simplifying assumptions

• ℒ contains all singletons  (every vertex has a node-weight)

• The instance is perfectly irreducible:                                                 

the contraction of any set causes no decrease in LP-value

When contracting a set, the LP-decrease is 

proportional to #sets not crossed by path in worst 

way to enter/exit

Since all singletons in ℒ and no LP-decrease, worst 

way to enter/exit must visit all vertices!
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Resulting instance is node-weighted, use Svensson’15 
to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make 
sure to visit worst enter/exit path

Alg for perfect irreducible

Node-weighted instance

Use 28-approximation by Ola
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Contract all maximal sets in ℒ

Resulting instance is node-weighted, use Svensson’15 
to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make 
sure to visit worst enter/exit path

Alg for perfect irreducible

Cost of tour:

𝑤 𝑙𝑖𝑓𝑡 + 𝑤(𝑝𝑎𝑡ℎ𝑠)

𝑤 𝑙𝑖𝑓𝑡 ≤ 28 ⋅ 𝑂𝑃𝑇

We add 3 paths per maximal set

Cost of each path bounded by the 

LP-value inside that set

𝑤 𝑝𝑎𝑡ℎ𝑠 ≤ 3 ⋅ 𝑂𝑃𝑇

Total cost ≤ 31 ⋅ 𝑂𝑃𝑇



In general not perfect irreducibility: 

Worst enter/exit path only crosses most sets in ℒ

We further reduce to the case when we are given subtour 𝐵 such that:

• 𝑤 𝐵 ≤ 31 ⋅ 𝑂𝑃𝑇
• 𝐵 crosses all non-singleton sets of ℒ

(to get this, we contract the sets it doesn’t cross,

and solve them recursively; it’s okay because there are few)

𝐵 is called the backbone and together with 

the instance they form a vertebrate pair



Solving Local-Connectivity ATSP

on vertebrate pairs



Vertebrate pairs

Vertebrate pair ℐ, 𝐵

• ℐ = 𝐺, ℒ, 𝑥, 𝑦 instance

• 𝐵: backbone = subtour that crosses every non-singleton set in ℒ



Vertebrate pairs

• We have reduced general ATSP to 
solving ATSP for a vertebrate pair ℐ, 𝐵 with 𝑤 𝐵 = Θ 𝑂𝑃𝑇

• We want to solve Local-Connectivity ATSP on such instances 
and apply the reduction by (Svensson 2015)



Local-Connectivity ATSP (Svensson 2015)

Instance ℐ = 𝐺, ℒ, 𝑥, 𝑦 with induced weights 𝑤:𝐸 → ℝ+

Lower bound function lb: 𝑉 → ℝ+ with σ𝑣∈𝑉 lb(𝑣) = 𝑂𝑃𝑇

Input: partition of the vertex set 𝑉 = 𝑉1 ∪ 𝑉2 ∪⋯∪ 𝑉𝑘

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5
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Local-Connectivity ATSP (Svensson 2015)

Instance ℐ = 𝐺, ℒ, 𝑥, 𝑦 with induced weights 𝑤:𝐸 → ℝ+

Lower bound function lb: 𝑉 → ℝ+ with σ𝑣∈𝑉 lb(𝑣) = 𝑂𝑃𝑇

Input: partition of the vertex set 𝑉 = 𝑉1 ∪ 𝑉2 ∪⋯∪ 𝑉𝑘
Output: subtour 𝐹 that crosses each 𝑉𝑖

𝛼-light algorithm: for every component 𝐶 of 𝐹,
𝑤 𝐸(𝐶) ≤ 𝛼 lb(𝑉 𝐶 )

“Every component locally pays for itself”

𝐶



Local-Connectivity ATSP (Svensson 2015)

(Svensson 2015)
27-approximation for node-weighted ATSP

𝛼-light algorithm for 
Local-Connectivity ATSP

9𝛼-approximation for 
ATSP

Want:
O(1)-light algorithm for vertebrate instances



Local-Connectivity ATSP: 
node-weighted case

• Instance ℐ = 𝐺, ℒ, 𝑥, 𝑦 , with ℒ containing only singletons (ignore 𝐵)
𝑤 𝑢, 𝑣 = 𝑦{𝑢} + 𝑦{𝑣}

• Define lb 𝑢 = 2𝑦{𝑢} ∀𝑢 ∈ 𝑉

• Partition 𝑉 = 𝑉1 ∪ 𝑉2 ∪⋯∪ 𝑉𝑘
• Modify 𝐺 and 𝑥, and solve an integer circulation problem

𝑉𝑖

0.5

0.75 0.5

0.25

0.75

0.75

0.5



Local-Connectivity ATSP: 
node-weighted case

• Instance ℐ = 𝐺, ℒ, 𝑥, 𝑦 , with ℒ containing only singletons (ignore 𝐵)
𝑤 𝑢, 𝑣 = 𝑦{𝑢} + 𝑦{𝑣}

• Define lb 𝑢 = 2𝑦{𝑢} ∀𝑢 ∈ 𝑉

• Partition 𝑉 = 𝑉1 ∪ 𝑉2 ∪⋯∪ 𝑉𝑘
• Modify 𝐺 and 𝑥, and solve an integer circulation problem

𝑉𝑖
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0.125

0.375
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0.25

• For each 𝑉𝑖 , create auxiliary vertex 𝑎𝑖
• Reroute 1 fractional unit of incoming and 

outgoing flow 𝑥 to 𝑎𝑖
• Solve integer circulation problem

routing =1 unit through each 𝑎𝑖
(and ≤1 unit through each 𝑣 with 𝑦𝑣 > 0)

• Map back to original 𝐺

𝑎𝑖



Local-Connectivity ATSP: 
node-weighted case

• The rerouted 𝑥 is feasible for the circulation problem, of weight 𝑂𝑃𝑇
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Local-Connectivity ATSP: 
node-weighted case

• The rerouted 𝑥 is feasible for the circulation problem, of weight 𝑂𝑃𝑇

• Flow integrality: there exists also integer solution of weight ≤ 𝑂𝑃𝑇
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Local-Connectivity ATSP: 
node-weighted case

• The rerouted 𝑥 is feasible for the circulation problem, of weight 𝑂𝑃𝑇

• Flow integrality: there exists also integer solution of weight ≤ 𝑂𝑃𝑇

• After mapping back, every vertex (with 𝑦𝑣 > 0) has in-degree ≤ 2
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Local-Connectivity ATSP: 
node-weighted case

• The rerouted 𝑥 is feasible for the circulation problem, of weight 𝑂𝑃𝑇

• Flow integrality: there exists also integer solution of weight ≤ 𝑂𝑃𝑇

• After mapping back, every vertex (with 𝑦𝑣 > 0) has in-degree ≤ 2

• For a component 𝐶, 𝑤 𝐸 𝐶 = σ(𝑢,𝑣)∈𝐸(𝐶)𝑦{𝑢} + 𝑦{𝑣} ≤ 4σ𝑣∈𝐶 𝑦{v}
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Local-Connectivity ATSP: 
node-weighted case

• The rerouted 𝑥 is feasible for the circulation problem, of weight 𝑂𝑃𝑇

• Flow integrality: there exists also integer solution of weight ≤ 𝑂𝑃𝑇

• After mapping back, every vertex (with 𝑦𝑣 > 0) has in-degree ≤ 2

• For a component 𝐶, 𝑤 𝐸 𝐶 = σ(𝑢,𝑣)∈𝐸(𝐶)𝑦{𝑢} + 𝑦{𝑣} ≤ 4σ𝑣∈𝐶 𝑦{v}

• lb 𝑉 𝐶 = 2σ𝑣∈𝐶 𝑦{v} ⟹ 2-light algorithm
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Local-Connectivity ATSP:
one non-singleton set in ℒ

• Vertebrate pair  ℐ, 𝐵 .
Assume ℒ has a single non-singleton component 𝑆.
Thus,

𝑤 𝑢, 𝑣 = ൝
𝑦{𝑢} + 𝑦 𝑣 + 𝑦𝑆 𝑖𝑓 𝑢, 𝑣 ∈ 𝛿(𝑆)

𝑦{𝑢} + 𝑦{𝑣} 𝑖𝑓 𝑢, 𝑣 ∉ 𝛿(𝑆)

• Define lb 𝑢 = 2𝑦{𝑢} as before,
but on one backbone vertex 𝑢 ∈ 𝑉 𝐵 put lb 𝑢 = 𝑤(𝐵) instead

• σ𝑣∈𝑉 lb(𝑣) = Θ 𝑂𝑃𝑇 , since 𝑤 𝐵 = Θ(𝑂𝑃𝑇)



Local-Connectivity ATSP:
one non-singleton set in ℒ

• By assumption, 𝑥(𝛿𝑖𝑛 𝑆 ) = 𝑥(𝛿𝑜𝑢𝑡 𝑆 ) = 1

• Backbone property: there is a node 𝑠 ∈ 𝑉 𝐵 ∩ 𝑆

• Flow argument: we can route the incoming 1 unit of flow of 𝑆 to 𝑠

𝑆

𝐵

𝑠

(within x)



Local-Connectivity ATSP:
one non-singleton set in ℒ

• Partition 𝑉 = 𝑉1 ∪ 𝑉2 ∪⋯∪ 𝑉𝑘
• Add backbone 𝐵 as initial content of the Eulerian output set 𝐹

• Via flow splitting [Svensson, T., Vegh’16]

“force” all edges entering 𝑆 to proceed to 𝑠 ∈ 𝑉(𝐵)

• Create auxiliary vertices 𝑎𝑖 as before

• Solve integral circulation problem, and add solution to 𝐹

𝑆

𝐵
𝑠



Local-Connectivity ATSP:
one non-singleton set in ℒ

Analysis

• For all components 𝐶 not crossing S,
𝑤 𝐸 𝐶 ≤ 2 lb 𝑉 𝐶 exactly as in the node-weighted case

• Giant component 𝐶0 containing 𝐵:
• Contains all edges in F crossing 𝑆

• Has lower bound lb 𝑉 𝐶0 ≥ lb(𝑢) = Θ(𝑂𝑃𝑇)

• 𝑤 𝐸 𝐶0 ≤ 𝑤 𝐹 ≤ 𝑂(𝑂𝑃𝑇)

• Therefore solution is 𝑂(1)-light.

• Same approach extends to arbitrary ℒ: enforce that every subtour
crossing a non-singleton set in ℒ must intersect the backbone.

𝑆

𝐵
𝑠



Summary and open problems…



Theorem: 

A 𝑂(1)-approximation algorithm with respect to Held-Karp relaxation



Sequence of reductions

Laminarly-weighted instances

Irreducible instances

Vertebrate pairs

Solving Local-Connectivity ATSP

Amazing power 

of LP-duality

Recursive approach as 

long as OPT drops

Irreducible instances 

behave like node-weighted

Complete backbone to tour 

using circulations and 

Local-Connectivity ATSP



Open questions

• Is the right ratio 2?

• Unoptimized constant = 5500

• By optimizing our approach, we believe we can get an upper bound in the hundreds. 

New ideas are needed to get close to lower bound of 2

• Bottleneck ATSP: find tour with minimum max-weight edge

• Thin tree conjecture: Is there a tree 𝑇 such that for every 𝑆 ⊂ 𝑉

𝛿 𝑆 ∩ 𝑇 ≤ 𝑂 1 𝑥 𝛿 𝑆

(would also imply apx for Bottleneck ATSP [An, Kleinberg, Shmoys’10])

Thank you!


