A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem

Ola Svensson, Jakub Tarnawski and László A. Végh

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

What's the cheapest way to visit all 24727 pubs in the UK?

 45,495,239 meters

Cook, Espinoza, Goycoolea, Helsgaun (2015)

Find the shortest tour that visits n given cities

Traveling Salesman Problem

- Variants studied in mathematics by Hamilton and Kirkman already in the 1800's
- Benchmark problem:
- one of the most studied NP-hard optimization problems
- yet our understanding is quite incomplete

> What can be accomplished with efficient computation (approximation algorithms)?

Two basic versions

Symmetric: distance(u,v) = distance(v,u)

2-approximation is trivial
1.5-approximation [Christofides'76] taught in undergrad courses, still unbeaten

Asymmetric: more general, no such assumption is made

Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G=(V, E, w)$
Output: a minimum-weight tour that visits each vertex at least once

Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G=(V, E, w)$
Output: a minimum-weight tour that visits each vertex at least once

Equivalently could have:

- Complete graph with \triangle-inequality
- Visit each vertex exactly once

Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G=(V, E, w)$
Output: a minimum-weight connected Eulerian multigraph $\left(V, E^{\prime}\right)$

Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G=(V, E, w)$
Output: a minimum-weight connected Eulerian multigraph (V, E^{\prime})

Variables: $\quad x_{u v}=$ \#times we traverse edge (u, v)

Minimize:
Subject to:

$$
x(\delta(S)) \geq 2
$$

$$
x \geq 0
$$

Integrality gap of the

i.e. how far off is that particular algorithm?

Pick any two...

Two natural approaches: begin with...

Output: a minimum-weight consected Eutgrian multigraph

Add Eulerian graphs until connected

$\log _{2} n$-approximation via repeated cycle covers [Frieze, Galbiati, Maffioli'82]
$0.99 \log _{2} n$-approximation
[Bläser'03]
$0.84 \log _{2} n$-approximation
[Kaplan, Lewenstein, Shafrir, Sviridenko'05]
$0.67 \log _{2} n$-approximation
[Feige, Singh'07]

Local-Connectivity ATSP

- Defined new, easier problem
- Reduced O (1)-approximation of ATSP to it
- Solved it for unweighted graphs (easy part)
[Svensson'15]
...
Solved it for graphs with two edge weights [Svensson, T., Vegh'16]

Start with spanning tree, then make Eulerian

$O(\log n / \log \log n)$-approximation via thin trees [Asaur, Goemans, Mądrỳ, Qxeis Gharan, Saberi' 10]
O (1)-approximation for planar \& bounded-genus graphs
[Oveis Gharan, Saberi'11]
Integrality gap poly $(\log \log n)$
via generalization of Kadison-Singer
[Anari, Oveis Gharan'14]

NP-hard to approximate within $1+\frac{1}{74}$
[Papadimitriou, Vempala‘00, Karpinski, Lampis, Schmied'13]
Integrality gap $=2$
[Charikar, Goemarts, Karloff'02]

Theorem:

Outline of reductions

Laminarly-weighted instances

Vertebrate pairs

Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G=(V, E, w)$
Output: a minimum-weight connected Eulerian multigraph (V, E^{\prime})

Variables: $\quad x_{u v}=$ \#times we traverse edge (u, v)

Minimize:
Subject to:

$$
x(\delta(S)) \geq 2
$$

$$
x \geq 0
$$

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

1. Solve LP to obtain solution depicted in black
2. Forget edges with LP-value $=0$

- Doesn't change LP-value
- Any tour is smaller instance is a tour in original instance

3. Now all edges have positive LP-value

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

1. Solve LP to obtain solution depicted in black
2. Forget edges with LP-value $=0$

- Doesn't change LP-value
- Any tour is smaller instance is a tour in original instance

3. Now all edges have positive LP-value

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

1. Solve LP to obtain solution depicted in black
2. Forget edges with LP-value $=0$

- Doesn't change LP-value
- Any tour is smaller instance is a tour in original instance

3. Now all edges have positive LP-value

Do these edges have structure?

By complementarity slackness, each remaining edge corresponds to tight constraint in dual

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{s c V} 2 \cdot y_{S}$
Subject to:

$$
\begin{gathered}
\Sigma_{s:(u, v) \in \delta(S)} y_{S}+\alpha_{u}-\alpha_{v} \leq \boldsymbol{w}(u, v) \text { for all }(u, v) \in E \\
/ \mathrm{y} \geq 0
\end{gathered}
$$

Sum of y-values cutting (u, v) + tail potential - head potential
is at most the edge-weight

Dual has variables:

- α_{v} - vertex potential for each v
- y_{S} - value for each cut S

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Dual value $=L P$-value $=22$

Maximize: $\sum_{s \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{gathered}
\Sigma_{s:(u, v) \in \delta(S)} y_{S}+\alpha_{u}-\alpha_{v} \leq \boldsymbol{w}(u, v) \text { for all }(u, v) \in E \\
/ \mathrm{y} \geq 0
\end{gathered}
$$

Sum of y-values cutting (u, v) + tail potential

- head potential
is at most the edge-weight

Dual has variables:

- α_{v} - vertex potential for each v
- y_{S} - value for each cut S

Minimize: $\sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{gathered}
\sum_{\boldsymbol{S}:(u, v) \in \delta(\boldsymbol{S})} \boldsymbol{y}_{\boldsymbol{s}}+\boldsymbol{\alpha}_{\boldsymbol{u}}-\boldsymbol{\alpha}_{v} \leq \boldsymbol{w}(u, v) \\
\mathrm{y} \geq 0
\end{gathered} \text { for all }(\mathrm{u}, \mathrm{v}) \in E
$$

Sum of y-values cutting (u, v)

+ tail potential
- head potential
is at most the edge-weight

Dual has variables:

- α_{v} - vertex potential for each v
- y_{S} - value for each cut S

$$
\begin{gathered}
\sum_{s:(u, v) \in \delta(S)} y_{s}+\alpha_{u}-\alpha_{v} \leq w(u, v) \\
4+3-6=1
\end{gathered}
$$

Minimize: $\sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Dual value $=$ LP-value $=22$

Maximize: $\sum_{s c V} 2 \cdot y_{S}$
Subject to:

$$
\begin{gathered}
\Sigma_{S:(u, v) \in \delta(S)} y_{S}+\boldsymbol{\alpha}_{u}-\boldsymbol{\alpha}_{v} \leq \boldsymbol{w}(\boldsymbol{u}, \boldsymbol{v}) \\
/ \mathrm{y} \geq 0
\end{gathered}
$$

Sum of y-values cutting (u, v)

+ tail potential
- head potential
is at most the edge-weight

Dual has variables:

- α_{v} - vertex potential for each v
- y_{S} - value for each cut S

$$
\begin{gathered}
\sum_{s:(u, v) \in \delta(S)} y_{s}+\alpha_{u}-\alpha_{v} \leq w(u, v) \\
2+1+4-6=1
\end{gathered}
$$

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{s c V} 2 \cdot y_{S}$
Subject to:

$$
\begin{aligned}
\Sigma_{S:(u, v) \in \delta(S)} y_{S}+\boldsymbol{\alpha}_{u}-\boldsymbol{\alpha}_{v} & \leq \boldsymbol{w}(u, v) \text { for all }(u, v) \in E \\
y & \geq 0
\end{aligned}
$$

Dual value $=L P$-value $=22$

By complementarity slackness:

$$
\sum_{s:(u, v) \in \delta(S)} y_{S}+\alpha_{u}-\alpha_{v}=w(u, v)
$$

for every edge (u, v) (since we only kept positive edges)

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{aligned}
\Sigma_{S:(u, v) \in \delta(S)} y_{S}+\boldsymbol{\alpha}_{u}-\boldsymbol{\alpha}_{v} & \leq \boldsymbol{w}(u, v) \text { for all }(u, v) \in E \\
y & \geq 0
\end{aligned}
$$

Dual value $=L P$-value $=22$

By complementarity slackness:

$$
\sum_{s:(u, v) \in \delta(S)} y_{S}=w(u, v)-\alpha_{u}+\alpha_{v}
$$

for every edge (u, v) (since we only kept positive edges)

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Dual value $=$ LP-value $=22$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{gathered}
\sum_{S:(u, v) \in \delta(S)} y_{S}+\alpha_{u}-\alpha_{v} \leq \boldsymbol{w}(u, v) \text { for all }(\mathrm{u}, \mathrm{v}) \in E \\
y \geq 0
\end{gathered}
$$

By complementarity slackness:

$$
\sum_{s:(u, v) \in \delta(S)} y_{S}=w(u, v)-\alpha_{u}+\alpha_{v}=: w^{\prime}(u, v)
$$

for every edge (u, v) (since we only kept positive edges)

Observation:

For any Eulerian edge set F

$$
w(F)=w^{\prime}(F)
$$

$$
\text { (A) } \quad \begin{aligned}
w^{\prime}(F) & =w(A, B)+\alpha_{A}-\alpha_{B} \\
& +w(B, C)+\alpha_{B}-\alpha_{C} \\
& +w(C, A)+\alpha_{c}-\alpha_{A} \\
& =w(F)
\end{aligned}
$$

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Dual value $=$ LP-value $=22$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{aligned}
\sum_{S:(u, v) \in \delta(S)} y_{S}+\alpha_{u}-\alpha_{v} & \leq \boldsymbol{w}(u, v) \text { for all }(\mathrm{u}, \mathrm{v}) \in E \\
\mathrm{y} & \geq 0
\end{aligned}
$$

By complementarity slackness:

$$
\sum_{s:(u, v) \in \delta(S)} y_{S}=w(u, v)-\alpha_{u}+\alpha_{v}=: w^{\prime}(u, v)
$$

for every edge (u, v) (since we only kept positive edges)

Observation:

For any Eulerian edge set F

$$
w(F)=w^{\prime}(F)
$$

Thus equivalent to consider weight function w^{\prime} :

$$
w^{\prime}(u, v)=\sum_{s:(u, v) \in \delta(S)} y_{S}
$$

So normalize and forget about vertex potentials

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Dual value $=$ LP-value $=22$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{aligned}
\sum_{S:(u, v) \in \delta(S)} y_{S}+\alpha_{u}-\alpha_{v} & \leq \boldsymbol{w}(u, v) \text { for all }(\mathrm{u}, \mathrm{v}) \in E \\
\mathrm{y} & \geq 0
\end{aligned}
$$

By complementarity slackness:

$$
\sum_{s:(u, v) \in \delta(S)} y_{S}=w(u, v)-\alpha_{u}+\alpha_{v}=: w^{\prime}(u, v)
$$

for every edge (u,v) (since we only kept positive edges)

Observation:

For any Eulerian edge set F

$$
w(F)=w^{\prime}(F)
$$

Thus equivalent to consider weight function w^{\prime} :

$$
w^{\prime}(u, v)=\sum_{s:(u, v) \in \delta(S)} y_{S}
$$

So normalize and forget about vertex potentials

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{gathered}
\sum_{S:(u, v) \in \delta(S)} y_{\boldsymbol{S}}+\alpha_{u}-\alpha_{v} \leq \boldsymbol{w}(u, v) \text { for all }(u, v) \in E \\
y \geq 0
\end{gathered}
$$

What happened?

Something complicated with no structure

A lot of structure:

$$
w(e)=\sum_{s:(u, v) \in \delta(S)} y_{S}
$$

1. Drop 0-edges
2. Complementarity slackness
3. Normalize with vertex potentials

Minimize: $\sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{s c V} 2 \cdot y_{S}$

Subject to:

$$
\Sigma_{S:(u, v) \in \delta(S)} \boldsymbol{y}_{S}+\boldsymbol{\alpha}_{u}-\boldsymbol{\alpha}_{v} \leq \boldsymbol{w}(u, v) \text { for all }(u, v) \in E
$$

$$
y \geq 0
$$

A lot of structure:

$$
w(e)=\sum_{s:(u, v) \in \delta(S)} y_{S}
$$

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\sum_{S:(u, v) \in \delta(S)} y_{\boldsymbol{S}}+\boldsymbol{\alpha}_{\boldsymbol{u}}-\boldsymbol{\alpha}_{v} \leq \boldsymbol{w}(u, v) \text { for all }(\mathrm{u}, \mathrm{v}) \in E
$$

$$
y \geq 0
$$

Let $\mathcal{L}=\left\{S: y_{S}>0\right\}$ be support of dual solution

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{S \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{aligned}
\sum_{S:(u, v) \in \delta(S)} y_{S}+\alpha_{u}-\alpha_{v} & \leq w(u, v) \text { for all }(\mathrm{u}, \mathrm{v}) \in E \\
y & \geq 0
\end{aligned}
$$

A lot of structure:

$$
w(e)=\sum_{S:(u, v) \in \delta(S)} y_{S}
$$

Let $\mathcal{L}=\left\{S: y_{S}>0\right\}$ be support of dual solution

Again by complementarity slackness

$$
x(\delta(S))=2 \text { for every } S \in \mathcal{L}
$$

So every $S \in \mathcal{L}$ is a tight set!

Minimize: $\quad \sum_{u v \in E} w(u, v) x_{u v}$
Subject to: $x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)$ for all $v \in V$

$$
\begin{aligned}
x(\delta(S)) & \geq 2 \quad \text { for all } \mathrm{S} \subset V \\
x & \geq 0
\end{aligned}
$$

Maximize: $\sum_{s \subset V} 2 \cdot y_{S}$
Subject to:

$$
\begin{aligned}
\Sigma_{s:(u, v) \in \delta(S)} y_{s}+\alpha_{u}-\alpha_{v} & \leq \boldsymbol{w}(u, v) \text { for all }(u, v) \in E \\
y & \geq 0
\end{aligned}
$$

A lot of structure:

$$
w(e)=\sum_{S:(u, v) \in \delta(S)} y_{S}
$$

Let $\mathcal{L}=\left\{S: y_{S}>0\right\}$ be support of dual solution
Again by complementarity slackness

$$
x(\delta(S))=2 \text { for every } S \in \mathcal{L}
$$

So every $S \in \mathcal{L}$ is a tight set!

By "standard" uncrossing techniques:
\mathcal{L} is a laminar family
Any two sets are either disjoint or one is a subset of the other

No two sets intersect non-trivially

Laminarly-weighted

Laminarly-weighted instance $\mathcal{J}=(G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (that will be optimal by definition)

Laminarly-weighted

Laminarly-weighted instance $\mathcal{J}=(G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (that will be optimal by definition)
- $\mathcal{L}=\left\{S: y_{S}>0\right\}$ is a laminar family of tight sets (LP says that we should visit each such set once)

Laminarly-weighted

Laminarly-weighted instance $\mathcal{J}=(G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (that will be optimal by definition)
- $\mathcal{L}=\left\{S: y_{S}>0\right\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
- weights induced by \mathcal{L} and y :

$$
w(e)=\sum_{S \in \mathcal{L}: e \in \delta(S)} y_{S} \quad \text { for every edge } e
$$

Held-Karp lower bound $=\mathrm{OPT}=2 \cdot \sum_{S \in \mathcal{L}} y_{S} \quad$ (=28 in example)

Theorem:

A ρ-approximation algorithm for laminarly-weighted instances yields a ρ-approximation algorithm for general ATSP

Reduced our task to:

Laminarly-weighted instance $\mathcal{J}=(G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (which will be optimal by definition)
- $\mathcal{L}=\left\{S: y_{S}>0\right\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
- weights induced by \mathcal{L} and y :

$$
w(e)=\sum_{S \in \mathcal{L}: e \in \delta(S)} y_{S}
$$

Let's take a detour

Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$

Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$

Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover \leq OPT

Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover \leq OPT

Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover \leq OPT
Cost of cycle cover $\leq \boldsymbol{O P T}$

Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Worst case: all cycles have length 2 so need to repeat $\log _{2} n$ times (each time cost $O P T_{L P}$)

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover \leq OPT
Cost of cycle cover $\leq \boldsymbol{O P T}$

Total cost $\leq \mathbf{3} \cdot \boldsymbol{O P T}$

$\log _{2} n$-approximation

Recursive algorithm fine if value drops

Each time we take a cycle cover we make some progress

What if the value of OPT drops by say a factor 9/10 each time?

Then total cost would be

$$
\sum_{i=0}^{\log _{2} n}\left(\frac{9}{10}\right)^{i} O P T \leq \sum_{i=0}^{\infty}\left(\frac{9}{10}\right)^{i} O P T=10 \cdot O P T
$$

No one has been able to pursue this strategy with cycle cover approach
We pursue it using the structure of laminarly-weighted instances

Le retour

Laminarly-weighted

Laminarly-weighted instance $\mathcal{J}=(G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (which will be optimal by definition)
- $\mathcal{L}=\left\{S: y_{S}>0\right\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
- weights induced by \mathcal{L} and y :

$$
w(e)=\sum_{S \in \mathcal{L}: e \in \delta(S)} y_{S} \quad \text { for every edge } e
$$

Held-Karp lower bound $=$ OPT $=2 \cdot \sum_{S \in \mathcal{L}} \boldsymbol{y}_{\boldsymbol{S}} \quad$ (=28 in example)

Contraction and lift

Contraction of tight sets in \mathcal{L}

Contraction of tight sets in \mathcal{L}

Contraction gives smaller instance: G, x, \mathcal{L} easy to contract
Remains to specify y-value of new vertex/set

Contraction of tight sets in \mathcal{L}

Contraction gives smaller instance: G, x, \mathcal{L} easy to contract
Remains to specify y-value of new vertex/set

Contraction of tight sets in \mathcal{L}

Contraction gives smaller instance: $\mathrm{G}, \mathrm{x}, \mathcal{L}$ easy to contract
Remains to specify y-value of new vertex/set

Lifting a tour in the contracted instance

Lifting a tour in the contracted instance

Lift tour in contracted instance to subtour in original instance

Lifting a tour in the contracted instance

\because
What to do?
Simply add a shortest path

Lift tour in contracted instance to subtour in original instance

maximuneost over all possible ways to enter and exit the original set

Set y-value of new set to pay for maximum cost over all possible ways to enter and exit the original set

In example:

$$
?=5+2+2+1+4+3=17 \quad \text { (path crosses every tight set) }
$$

Set y-value of new set to pay for maximum cost over all possible ways to enter and exit the original set

In example:

$$
?=5+2+2+1+4+3=17 \quad \text { (path crosses every tight set) }
$$

Fact: No matter how we enter and exit, there exists a path that enters and exits each set at most once => contraction does not increase LP-value

Generalization of the fact: if there is a path from u to v then there is one without cycles

Change of cost in example:

By design:

Fact: Lift no more expensive than tour in contracted instance

Facts about contraction

Fact: No matter how we enter and exit, there exists a path that enters and exits each set at most once => contraction does not increase LP-value

Fact: Lift no more expensive than tour in contracted instance

Lift is a subtour but may not be a tour:
it visits all vertices outside contracted set but not inside

However, if contraction causes significant decrease in value, then we can use remaining budget to complete the lift into tour

Implementing recursive strategy

(Ir)reducible sets in \mathcal{L}

DEF: A set $S \in \mathcal{L}$ is reducible if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ fraction of the sets strictly inside S

Total value inside $S=2+2+1+4+3=12$
So worst way to enter/exit should cross sets of value at most 9 to be reducible

(Ir)reducible sets in \mathcal{L}

DEF: A set $S \in \mathcal{L}$ is reducible if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ fraction of the sets strictly inside S

Total value inside $S=2+2+1+4+3=12$
So worst way to enter/exit should cross sets of value at most 9 to be reducible

Worst way to enter/exit crosses sets of value $=12$
IRREDUCIBLE

(Ir)reducible sets in \mathcal{L}

DEF: A set $S \in \mathcal{L}$ is reducible if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ fraction of the sets strictly inside S

Total value inside $S=2+2+1+4+3=12$
So worst way to enter/exit should cross sets of value at most 9 to be reducible

(Ir)reducible sets in \mathcal{L}

DEF: A set $S \in \mathcal{L}$ is reducible if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$ fraction of the sets strictly inside S

We say that an instance is irreducible if no set in \mathcal{L} is reducible

Total value inside $S=2+2+1+4+3=12$
So worst way to enter/exit should cross sets of value at most 9 to be reducible

Worst way to enter/exit crosses sets of value $=9$

Theorem:

A ρ-approximation algorithm for irreducible instances yields a $\mathbf{8} \rho$-approximation algorithm for laminarly-weighted instances, and thus for general ATSP

Let \mathcal{A} be a ρ-approximation algorithm for irreducible instances...

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Recursive call returns 8ρ-approximate solution T on smaller instance:

$$
w(T) \leq 8 \rho\left(O P T-\frac{1}{4}\left(2 \cdot \sum_{R \in \mathcal{L : R} \subset S} y_{R}\right)\right)=8 \rho O P T-2 \rho\left(2 \cdot \sum_{R \in \mathcal{L : R} \subset S} y_{R}\right)
$$

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Recursive call returns 8ρ-approximate solution T on smaller instance:

$$
w(l i f t) \leq w(T) \leq 8 \rho\left(O P T-\frac{1}{4}\left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_{R}\right)\right)=8 \rho O P T-2 \rho(2 \cdot \underbrace{\sum_{R \in \mathcal{L}: R} \subset S} y_{R}),
$$

Remaining task: complete lift to a tour using \mathcal{A} while paying at most the above

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Task: complete to tour while paying at most $2 \rho\left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_{R}\right)$

- We need to only connect unvisited vertices inside S

Simplifying assumption:

instance obtained by restricting to vertices inside S is feasible

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Task: complete to tour while paying at most $2 \rho\left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_{R}\right)$

- We need to only connect unvisited vertices inside S

Simplifying assumption:

instance obtained by restricting to vertices inside S is feasible

An irreducible instance since S was a minimal reducible set

Held-Karp value $=2$ times dual values

$$
=2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_{R}
$$

Solve this instance with \mathcal{A} to find tour on S of weight

$$
\leq \rho \cdot\left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_{R}\right)
$$

Better by a factor 2 than needed

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Contract and recursively find lift (subtour) of weight

$$
\leq 8 \rho O P T-2 \rho\left(2 \cdot \sum_{R \in \mathcal{L : R \subset S}} y_{R}\right)
$$

Under simplifying assumption, find tour on S of weight

$$
\leq \rho\left(2 \cdot \sum_{R \in \mathcal{L : R} \subset S} y_{R}\right)
$$

Final tour has value at most

$$
\leq 8 \rho O P T-\rho\left(2 \cdot \sum_{R \in \mathcal{L}: R \subset S} y_{R}\right)
$$

Simplifying assumption not true in general:
We define the operation of inducing on S for ATSP in paper. Makes us lose another factor of 2

Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Contract and recursively find lift (subtour) of weight

$$
\leq 8 \rho O P T-2 \rho\left(2 \cdot \sum_{R \in \mathcal{C : R} \subset S} y_{R}\right)
$$

Eulerian set of edges

Under simplifying assumption, find tour on S of weight

$$
\leq \rho\left(2 \cdot \sum_{R \in L: R \subset S} y_{R}\right) * 2
$$

Final tour has value at most

$$
\leq 8 \rho O P T
$$

Simplifying assumption not true in general:

We define the operation of inducing on S for ATSP in paper. Makes us lose another factor of 2

Theorem:

A ρ-approximation algorithm for irreducible instances yields a 8p-approximation algorithm for laminarly-weighted instances, and thus for general ATSP

Simplifying assumptions

- \mathcal{L} contains all singletons (every vertex has a node-weight)
- The instance is perfectly irreducible:
the contraction of any set causes no decrease in LP-value

When contracting a set, the LP-decrease is proportional to \#sets not crossed by path in worst way to enter/exit

Since all singletons in \mathcal{L} and no LP-decrease, worst way to enter/exit must visit all vertices!

Simplifying assumptions

- \mathcal{L} contains all singletons (every vertex has a node-weight)
- The instance is perfectly irreducible:
the contraction of any set causes no decrease in LP-value

When contracting a set, the LP-decrease is proportional to \#sets not crossed by path in worst way to enter/exit

Since all singletons in \mathcal{L} and no LP-decrease, worst way to enter/exit must visit all vertices!

Alg for perfect irreducible

Contract all maximal sets in \mathcal{L}
Resulting instance is node-weighted, use Svensson'15 to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Node-weighted instance Use 28-approximation by Ola

Alg for perfect irreducible

Contract all maximal sets in \mathcal{L}
Resulting instance is node-weighted, use Svensson'15 to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Node-weighted instance Use 28-approximation by Ola

Alg for perfect irreducible

Contract all maximal sets in \mathcal{L}
Resulting instance is node-weighted, use Svensson'15 to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Node-weighted instance Use 28-approximation by Ola

Alg for perfect irreducible

Contract all maximal sets in \mathcal{L}
Resulting instance is node-weighted, use Svensson'15 to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Node-weighted instance Use 28-approximation by Ola

Alg for perfect irreducible

Contract all maximal sets in \mathcal{L}
Resulting instance is node-weighted, use Svensson'15 to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Node-weighted instance Use 28-approximation by Ola

Alg for perfect irreducible

Contract all maximal sets in \mathcal{L}
Resulting instance is node-weighted, use Svensson'15 to obtain a 28 -approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Cost of tour:

$$
\begin{aligned}
& w(\text { lift })+w(\text { paths }) \\
& w(\text { lift }) \leq 28 \cdot O P T
\end{aligned}
$$

We add 3 paths per maximal set Cost of each path bounded by the LP-value inside that set

$$
w(\text { paths }) \leq 3 \cdot O P T
$$

Total cost $\leq 31 \cdot$ OPT

In general not perfect irreducibility:
Worst enter/exit path only crosses most sets in \mathcal{L}

We further reduce to the case when we are given subtour B such that:

- $w(B) \leq 31 \cdot O P T$
- $\quad B$ crosses all non-singleton sets of \mathcal{L}
(to get this, we contract the sets it doesn't cross, and solve them recursively; it's okay because there are few)

B is called the backbone and together with the instance they form a vertebrate pair

Vertebrate pairs

Vertebrate pair (\mathcal{J}, B)

- J $=(G, \mathcal{L}, x, y)$ instance
- B : backbone = subtour that crosses every non-singleton set in \mathcal{L}

Vertebrate pairs

- We have reduced general ATSP to solving ATSP for a vertebrate pair (\mathcal{J}, B) with $w(B)=\Theta(O P T)$
- We want to solve Local-Connectivity ATSP on such instances and apply the reduction by (Svensson 2015)

Local-Connectivity ATSP (Svensson 2015)

Instance $\mathcal{J}=(G, \mathcal{L}, x, y)$ with induced weights $w: E \rightarrow \mathbb{R}_{+}$ Lower bound function $\mathrm{lb}: V \rightarrow \mathbb{R}_{+}$with $\sum_{v \in V} \mathrm{lb}(v)=O P T$ Input: partition of the vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$

V_{1}

Local-Connectivity ATSP (Svensson 2015)

Instance $\mathcal{J}=(G, \mathcal{L}, x, y)$ with induced weights $w: E \rightarrow \mathbb{R}_{+}$ Lower bound function $\mathrm{lb}: V \rightarrow \mathbb{R}_{+}$with $\sum_{v \in V} \mathrm{lb}(v)=O P T$ Input: partition of the vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$
Output: subtour F that crosses each V_{i}

Local-Connectivity ATSP (Svensson 2015)

Instance $\mathcal{J}=(G, \mathcal{L}, x, y)$ with induced weights $w: E \rightarrow \mathbb{R}_{+}$ Lower bound function $\mathrm{lb}: V \rightarrow \mathbb{R}_{+}$with $\sum_{v \in V} \mathrm{lb}(v)=O P T$ Input: partition of the vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$
Output: subtour F that crosses each V_{i}
α-light algorithm: for every component C of F,

$$
w(E(C)) \leq \alpha \operatorname{lb}(V(C))
$$

"Every component locally pays for itself"

Local-Connectivity ATSP (Svensson 2015)

(Svensson 2015)
27-approximation for node-weighted ATSP

Want:
$\mathrm{O}(1)$-light algorithm for vertebrate instances

Local-Connectivity ATSP: node-weighted case

- Instance $\mathcal{J}=(G, \mathcal{L}, x, y)$, with \mathcal{L} containing only singletons (ignore B)

$$
w(u, v)=y_{\{u\}}+y_{\{v\}}
$$

- Define $\operatorname{lb}(u)=2 y_{\{u\}} \forall u \in V$
- Partition $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$
- Modify G and x, and solve an integer circulation problem

Local-Connectivity ATSP: node-weighted case

- Instance $\mathcal{J}=(G, \mathcal{L}, x, y)$, with \mathcal{L} containing only singletons (ignore B)

$$
w(u, v)=y_{\{u\}}+y_{\{v\}}
$$

- Define $\operatorname{lb}(u)=2 y_{\{u\}} \forall u \in V$
- Partition $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$
- Modify G and x, and solve an integer circulation problem

- For each V_{i}, create auxiliary vertex a_{i}
- Reroute 1 fractional unit of incoming and outgoing flow x to a_{i}
- Solve integer circulation problem routing $=1$ unit through each a_{i} (and ≤ 1 unit through each v with $y_{v}>0$)
- Map back to original G

Local-Connectivity ATSP: node-weighted case

- The rerouted x is feasible for the circulation problem, of weight $O P T$

Local-Connectivity ATSP: node-weighted case

- The rerouted x is feasible for the circulation problem, of weight $O P T$
- Flow integrality: there exists also integer solution of weight $\leq O P T$

Local-Connectivity ATSP: node-weighted case

- The rerouted x is feasible for the circulation problem, of weight $O P T$
- Flow integrality: there exists also integer solution of weight $\leq O P T$
- After mapping back, every vertex (with $y_{v}>0$) has in-degree ≤ 2

Local-Connectivity ATSP: node-weighted case

- The rerouted x is feasible for the circulation problem, of weight OPT
- Flow integrality: there exists also integer solution of weight $\leq O P T$
- After mapping back, every vertex (with $y_{v}>0$) has in-degree ≤ 2
- For a component $C, w(E(C))=\sum_{(u, v) \in E(C)} y_{\{u\}}+y_{\{v\}} \leq 4 \sum_{v \in C} y_{\{v\}}$

Local-Connectivity ATSP: node-weighted case

- The rerouted x is feasible for the circulation problem, of weight $O P T$
- Flow integrality: there exists also integer solution of weight $\leq O P T$
- After mapping back, every vertex (with $y_{v}>0$) has in-degree ≤ 2
- For a component $C, w(E(C))=\sum_{(u, v) \in E(C)} y_{\{u\}}+y_{\{v\}} \leq 4 \sum_{v \in C} y_{\{v\}}$
- $\operatorname{lb}(V(C))=2 \sum_{v \in C} y_{\{\mathrm{v}\}} \Rightarrow 2$-light algorithm

Local-Connectivity ATSP: one non-singleton set in \mathcal{L}

- Vertebrate pair (J, B).

Assume \mathcal{L} has a single non-singleton component S.
Thus,

$$
w(u, v)= \begin{cases}y_{\{u\}}+y_{\{v\}}+y_{S} & \text { if }(u, v) \in \delta(S) \\ y_{\{u\}}+y_{\{v\}} & \text { if }(u, v) \notin \delta(S)\end{cases}
$$

- Define $\mathrm{lb}(u)=2 y_{\{u\}}$ as before, but on one backbone vertex $u \in V(B)$ put $\operatorname{lb}(u)=w(B)$ instead
- $\sum_{v \in V} \operatorname{lb}(v)=\Theta(O P T)$, since $w(B)=\Theta(O P T)$

Local-Connectivity ATSP: one non-singleton set in \mathcal{L}

- By assumption, $x\left(\delta^{\text {in }}(S)\right)=x\left(\delta^{\text {out }}(S)\right)$
- Backbone property: there is a node $s \in V(B) \cap S$
- Flow argument: we can route the incoming 1 unit of flow of S to s (within x)

Local-Connectivity ATSP: one non-singleton set in \mathcal{L}

- Partition $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$
- Add backbone B as initial content of the Eulerian output set F
- Via flow splitting [Svensson, T., Vegh'16] "force" all edges entering S to proceed to $s \in V(B)$
- Create auxiliary vertices a_{i} as before
- Solve integral circulation problem, and add solution to F

Local-Connectivity ATSP: one non-singleton set in \mathcal{L}

Analysis

- For all components C not crossing S, $w(E(C)) \leq 2 \mathrm{lb}(V(C))$ exactly as in the node-weighted case
- Giant component C_{0} containing B :
- Contains all edges in F crossing S
- Has lower bound $\operatorname{lb}\left(V\left(C_{0}\right)\right) \geq \operatorname{lb}(u)=\Theta(O P T)$
- $w\left(E\left(C_{0}\right)\right) \leq w(F) \leq O(O P T)$
- Therefore solution is $O(1)$-light.

- Same approach extends to arbitrary \mathcal{L} : enforce that every subtour crossing a non-singleton set in \mathcal{L} must intersect the backbone.

Summary and open problems...

Theorem:

A $O(1)$-approximation algorithm with respect to Held-Karp relaxation

Sequence of reductions

Laminarly-weighted instances

Irreducible instances behave like node-weighted

Complete backbone to tour using circulations and Local-Connectivity ATSP

Open questions

- Is the right ratio 2 ?
- \quad Unoptimized constant $=5500$
- By optimizing our approach, we believe we can get an upper bound in the hundreds. New ideas are needed to get close to lower bound of 2
- Bottleneck ATSP: find tour with minimum max-weight edge
- Thin tree conjecture: Is there a tree T such that for every $S \subset V$

$$
|\delta(S) \cap T| \leq O(1) x(\delta(S))
$$

(would also imply apx for Bottleneck ATSP [An, Kleinberg, Shmoys'10])

