Excluded t-factors in Bipartite Graphs:

A Unified Framework for
> Nonbipartite Matchings,
> Restricted 2-matchings, and
> Arborescences

Kenjiro Takazawa

Hosei University, Japan
TSP Workshop @ Banff
Sep 24-28, 2018

Matching, 2-matching, and t-matching

- $G=(V, E)$: Simple, Undirected

Definition

- $F \subseteq E$ is a matching $\Leftrightarrow|F \cap \delta v| \leq 1 \quad \forall v \in V$
$-F \subseteq E$ is a 2-matching $\Leftrightarrow|F \cap \delta v| \leq 2 \quad \forall v \in V$
- $F \subseteq E$ is a t-matching $\Leftrightarrow|F \cap \delta v| \leq t \quad \forall v \in V$

$>$ Just keep $t=1,2$ in mind
$>$ No theoretical difference in ${ }^{\forall} t \in \mathbf{Z}_{>0}$

Our Framework : What are contained ?

Our Framework

- Matching

Restriction

- Triangle-free 2-matching with edge-multiplicity
- Square-free 2-matching in bipartite graph
- Hamilton cycle

Our Result : What did we solve ?

Our Framework

Our Result

\bullet Matching

- Matroid
- Arborescence
- Triangle-free 2-matching with edge-multiplicity
- Square-free 2-matching in bipartite graph

> Min-max theorem
 > LP with dual integrality
 > Combinatorial algorithm

- Path-matching
[Cunningham, Geelen '97]
- Even factor
[Cunningham, Geelen '01]
- $K_{t, t}{ }^{-}$free t-matching
[Frank '03]
- 2-matching covering 3,4-edge cuts [Kaiser, Śkrekovski '04,08] [Boyd, Iwata, T. '13]

1. Introduction
2. Previous work

- Triangle-free 2-matching with multiplicity
- Square-free 2-matching

3. Our framework:

U-feasible t-matching
> Min-max theorem
> Combinatorial algorithm

4. Weighted

U-feasible t-matching
> LP with dual integrality
> Combinatorial algorithm

5. Summary

Triangle-free 2-matching

Definition (Triangle-free 2-matching)

- 2-matching $\boldsymbol{x} \in\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{E}$ is Triangle-free \Leftrightarrow Excluding cycles of length 3
> Allowing multiplicity 2 :
Theorem [Cornuéjols \& Pulleyblank '80]
- Max. $\Sigma x(e) \quad: \mathbf{P}$
- Max. $\Sigma w(e) x(e): \mathbf{P}$
> Min-max theorem
> LP with dual integrality
> Combinatorial algorithm
- No multiplicity ailowed:
> Max. $|F|$: Algorithm [Hartvigsen '84]
> Max. w(F): Open

> Discrete convexity [Kobayashi '14]

Square-free 2-matching in bipartite graph

Definition (Square-free 2-matching)

- 2-matching $F \subseteq E$ is Square-free
\Leftrightarrow Excluding cycles of length 4
Previous work for bipartite graphs
- Max. |F| : P
$>$ Min-max theorem [Z. Király '99, Frank '03]
> Combinatorial algorithm [Hartvigsen '06; Pap '07]
> Canonical decomposition [T. '15]
- Max. w (F) : NP-hard [Z. Király '99]
$>$ P under a certain assumption on \boldsymbol{W} (小p. 19) \checkmark LP with dual integrality [Makai '07] \checkmark Combinatorial algorithm [T. '09]

- Max. $|F|$ in nonbipartite graphs: Open
> Discrete convexity [Kobayashi, Szabó, T. '12]

1. Introduction
2. Previous work

- Triangle-free 2-matching with multiplicity
- Square-free 2-matching

3. Our framework:

U-feasible t-matching
> Min-max theorem
> Combinatorial algorithm

4. Weighted

U-feasible t-matching
> LP with dual integrality
> Combinatorial algorithm

5. Summary

Our Framework: U-feasible t-matching

- $U \subseteq \mathbf{2}^{v}$: Vertex subset family
- Each $U \in \mathcal{U}$ has a t-factor

Definition

t-matching $F \subseteq E$ is U-feasible
$\Leftrightarrow|F[U]| \leq\left\lfloor\frac{t|U|-1}{2}\right\rfloor \forall U \in U$
\Leftrightarrow Excluding t-factors in $G[U]$

- $t=1:|F[U]| \leq\left[\frac{|U|-1}{2}\right]= \begin{cases}\frac{|U|}{2}-1 & (|U|: \text { even }) \\ \frac{|| |-1}{2} & \text { (IU|:odd) }\end{cases}$
- $t=2:|F[U]| \leq\left\lfloor\frac{2|U|-1}{2}\right]=|U|-1$
[T. '17]
> $U=2^{V} \backslash\{\varnothing, V\}$
\rightarrow U-feasible 2-factor=Hamilton cycle

Our Result

Our assumption

- G: Bipartite
- $\forall U \in \mathcal{U}$ is "factor-critical" (四p. 14)

Our result

> Min-max theorem

> Combinatorial algorithm

Weighted (Assumption on w)
> LP with dual integrality
$>$ Combinatorial algorithm

- Strong assumption...? NO!!
> Square-free 2-matching
- $U=\{U: U \subseteq V,|U|=4\}$
- $t=2$
$>\boldsymbol{K}_{t, t}$-free \boldsymbol{t}-matching
> Nonbipartite matching
> Triangle-free 2-matching
Nonbipartite :"شo
> Path-matching / Even factor
(\circledast Next slides)
> Arboresence

Special Case: Triangle-free 2-matching

- $G=(V, E)$: Nonbipartite graph

- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$: Bipartite graph

$$
>\dot{V}^{\prime}=\dot{V}_{1} \cup V_{2}
$$

$$
>E^{\prime}=\left\{u_{1} v_{2}, v_{1} u_{2}: u v \in E\right\}
$$

- $t=1$
- $U=\left\{U_{1} \cup U_{2}: U \subseteq V,|U|=3\right\}$

Proposition

Triangle-free 2-matching in G \rightleftarrows U-feasible 1-matching in G^{\prime}

Special Case: Nonbipartite Matching

- $G=(V, E)$: Nonbipartite graph

- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$: Bipartite graph
$>V^{\prime}=V_{1} \cup V_{2}$
$>E^{\prime}=\left\{u_{1} v_{2}, v_{1} u_{2}: u v \in E\right\}$
- $t=1$
- $U=\left\{U_{1} \cup U_{2}: U \subseteq V,|U|\right.$ is odd $\}$

Proposition

$2 \cdot \mid m a x$ matching in G |
= |max U-feasible 1-matching in $G^{\prime} \mid$

Dipaths and even dicycles
= Even factor [Cunningham, Geelen '01]

Special Case: Arborescence

- $D=(V, E)$: (Nonbipartite) Digraph

- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$: Bipartite graph
$>V^{\prime}=A \cup V$
$>E^{\prime}=\{a v \mid v$: head of a in $D\}$
- $t=1$
- $\mathcal{U}=\{A(C) \cup V(C) \mid C$ cycle in $D\}$

Proposition

Arborescence in D \rightleftarrows U-feasible 1-matching in G^{\prime}

Algorithm

> Nonbipartite matching: Shrink odd cycles [Edmonds '65]

Shrink Augment Expand
> U-feasible t-matching: Shrink $\boldsymbol{U} \in \mathcal{U}$

$$
\begin{aligned}
& t \text {-matching s.t. } \\
& >u, v: \text { Degree } 1(=t-1) \\
& >U-\{u, v\}: \text { Degree } 2(=t)
\end{aligned}
$$

More about Shrinking/Expanding $U \in U$

Definition [Factor-criticality]

(G, \mathcal{U}, t) is factor-critical if:
$\forall U_{1}, \ldots, U_{k} \in \mathcal{U}$,
${ }^{\forall}$ feasible edge set $F \subseteq E$ in $G /\left(U_{1} \cup \cdots \cup U_{k}\right)$
$\exists F_{i} \subseteq E\left[U_{i}\right]$ for each $i=1, \ldots, k$, s.t.

$>\left|F_{i}\right|=\left\lfloor\frac{t\left|U_{i}\right|-1}{2}\right\rfloor$
$>F U F_{i}$ is a t-matching

Definition [Feasibity]

A t-matching $F \subseteq E$ in $G /\left(U_{1} \cup \cdots \cup U_{k}\right)$ is feasible if $\exists F_{i} \subseteq E\left[U_{i}\right]$ s.t. $F \cup F_{1} \cup \cdots \cup F_{k}$ is a U-feasible t-matching

$>$ \{Testing feasibility / Finding $\left.F_{i}\right\}$ depend on (G, U, t), typically done in $\mathrm{O}(1)$ or $\mathrm{O}(n)$

Min-max Theorem

Theorem

> G: Bipartite
$>(G, U, t)$ is factor-critical

- Nonbipartite matching
- Triangle-free 2-matching
- Square-free 2-matching
- Even factor
- Arborescence
- $K_{t, t}$-free t-matching
$\rightarrow \max \{|F|: F$ is a U-feasible t-matching $\}$

$$
\left.=\min \left\{t|X|+\left|E\left[C_{V-X}\right]\right|+\sum_{U \in \mathcal{U}(V-X)} \left\lvert\, \frac{t|U|-1}{2}\right.\right]\right\}
$$

Theorem [Tutte '47, Berge '58]
$\max \{|M|: M$ is a matching $\}$
$=\frac{1}{2} \min \{|V|+|X|-\operatorname{odd}(X): X \subseteq V\}$

News to Cycle Covers

Theorem [Karp, Ravi '17][van Zuylen '18+] etc.
A cubic bipartite graph has a square-free 2-factor (cycle cover excluding C_{4})

Theorem [T. 17]

In a d-regular bipartite graph ($d \geq 4$),
a 2-factor (cycle cover) excluding C_{4} and
C_{6} with ≥ 2 chords exists and can be found in $\mathrm{O}\left(n^{2} m\right)$ time
$>$ First positive result for $C_{\leq 6}$-free 2-matching

Corollary

In a d-regular bipartite graph ($d \geq 4$), if ${ }^{\forall} C_{6}$ has ≥ 2 chords, a 2-factor (cycle cover) with $\leq n / 8$ cycles exists and can be found in $\mathrm{O}\left(n^{2} m\right)$ time

Contents

1. Introduction

2. Previous work

- Triangle-free 2-matching with multiplicity
- Square-free 2-matching

3. Our framework:

U-feasible t-matching
> Min-max theorem
> Combinatorial algorithm

4. Weighted

U-feasible t-matching
> LP with dual integrality
> Combinatorial algorithm

5. Summary

LP for Square-free 2-matching

Max weight square-free 2-matching
Maximize $\quad \sum_{e \in E} w(e) x(e)$
subject to

$$
\begin{array}{ll}
\sum_{e \in \delta V} x(e) \leq 2 & (v \in V) \\
\sum_{e \in E[U]} x(e) \leq 3 \\
0 \leq x(e) \leq \mathbf{1} & (U \subseteq V,|U|=4) \\
& \left(e \in\left|\frac{t|U|-1}{2}\right|\right.
\end{array}
$$

($)$

> G: Bipartite
Assumption on w
Theorem [Makai '07, T. '09]
$>w$ is vertex-induced on \forall square \boldsymbol{U} i.e., $w\left(u_{1} v_{1}\right)+w\left(u_{2} v_{2}\right)=w\left(u_{1} v_{2}\right)+w\left(u_{2} v_{1}\right)$
\rightarrow This LP has an integral opt solution The dual LP has an integral opt solution

Our Result: LP for U-feasible t-matching

Max weight \boldsymbol{U}-feasible \boldsymbol{t}-matching
Maximize $\quad \sum_{e \in E} W(e) x(e)$
subject to

$$
\begin{array}{ll}
\sum_{e \in \delta V} x(e) \leq t & (v \in V) \\
\Sigma_{e \in E[U]} x(e) \leq\left\lfloor\frac{t|U|-1}{2}\right\rfloor & (U \in \mathcal{U}) \\
x(e) \geq 0 & (e \in E)
\end{array}
$$

Theorem

> G: Bipartite
> (G, U, t) is factor-critical
$>w$ is vertex-induced on $\forall \boldsymbol{U} \in \mathcal{U}$ i.e., in $G[U]$, the weights of
perfect matchings are identical

\rightarrow This LP has an integral opt solution The dual LP has an integral opt solution

Our Result: LP for U-feasible t-matching

Max weight \boldsymbol{U}-feasible \boldsymbol{t}-matching
Maximize $\quad \sum_{e \in E} w(e) x(e)$
subject to

$$
\begin{array}{ll}
\sum_{e \in \delta v} x(e) \leq t & (v \in V) \\
\Sigma_{e \in E[U]} \boldsymbol{x}(e) \leq\left\lfloor\left.\frac{t|U|-1}{2} \right\rvert\,\right. & (U \in U) \\
x(e) \geq 0 & (e \in E)
\end{array}
$$

Special cases

- Subtour Elimination

- Arborescence Polytope

Branching (Arborescence) Polytope

Max weight arborecence
Maximimize $\quad \Sigma_{a \in A} w(a) x(a)$
subject to

$$
\begin{array}{ll}
\sum_{a \in \delta-(v)} x(a) \leq 1 & (v \in V) \\
\boldsymbol{\Sigma}_{\boldsymbol{a} \in A[U]} \boldsymbol{x}(\boldsymbol{a}) \leq|U|-\mathbf{1} \quad(U \subseteq V) \\
\boldsymbol{x}(\boldsymbol{a}) \geq \mathbf{0}
\end{array}
$$

Theorem [Edmonds '70]
The above linear system is TDI
b-branching [Kakimura, Kamiyama, T'18]
$>$ Degree bound $1 \rightarrow b(v)$
$>$ Graphic matroid $|U|-1$
\rightarrow Sparsity matroid $b(U)-1$

Subtour Elimination for TSP

IP for TSP [Dantzig, Fulkerson, Johnson '54]
Minimize $\quad \sum_{e \in E} W(e) x(e)$
subject to

$$
\begin{array}{lc}
\sum_{e \in \delta V} x(e)=2 & (v \in V) \\
\Sigma_{e \in E[U]} x(e) \leq|U|-\mathbf{1} & (U \subseteq V) \\
x(e) \in\{\mathbf{0}, \mathbf{1}\} & (e \in E)
\end{array}
$$

Conjecture [Goemans '95] etc.

\boldsymbol{w} is metric \rightarrow Integrality gap $\leq \frac{4}{3}$
i.e., $\operatorname{OPT}(\mathrm{IP}) \leq \frac{4}{3} \mathrm{OPT}(\mathrm{LP})$

Blossom Const for Nonbipartite Matching

Max. weight matching
Maximize $\quad \sum_{e \in E} W(e) x(e)$
subject to

$$
\begin{aligned}
& \Sigma_{e \in \delta V} x(e) \leq 1 \quad(v \in V) \\
& \Sigma_{e \in E[U]} x(e) \leq \frac{|U|-1}{2}(U \subseteq V,|U| \text { is odd }) \\
& x(e) \geq 0
\end{aligned}
$$

Theorem [Cunningham, Marsh '78]
> The above linear system is TDI

Triangle-free Const for 2-matching

Max weight triangle-free 2-matching
Maximimize $\quad \sum_{e \in E} W(e) x(e)$
subject to

$$
\begin{aligned}
& \sum_{e \in \delta V} x(e) \leq 2 \quad(v \in V) \\
& \boldsymbol{\Sigma}_{\mathrm{e} \in \in[U]} x(e) \leq 2 \quad(U \subseteq V,|U|=3) \\
& x(e) \geq \mathbf{0}
\end{aligned}
$$

Theorem [Cornuéjols \& Pulleyblank '80]

Contents

1. Introduction

2. Previous work

- Triangle-free 2-matching with multiplicity
- Square-free 2-matching

3. Our framework:

U-feasible t-matching
> Min-max theorem
> Combinatorial algorithm

4. Weighted

U-feasible t-matching
> LP with dual integrality
> Combinatorial algorithm

5. Summary

Our Framework

$>\mathcal{U}$-feasible t-matching:

$$
|F[U]| \leq\left\lfloor\frac{t|U|-1}{2}\right\rfloor \forall U \in U
$$

Special Cases

> Nonbipartite matching
> Triangle-free 2-matching with edge multiplicity
> Even factor
> Arborescence
> Square-free 2-matching
$>K_{t, t}$-free t-matching
> 2-matchings covering edge cuts
> Hamilton cycles

Solved:

- G: Bipartite
- (G, \mathcal{U}, t) is factor-critical
- w is vertex-induced on $\forall U \in U$
> Min-max theorem
$>$ LP with dual integrality
> Combinatorial algorithm

2-factor Covering Edge Cuts

Definition (A-covering 2-factor)

2-factor F is A-covering ($A \subseteq \mathbb{Z}$) def $\stackrel{ }{\Leftrightarrow} F$ intersects every k-edge cut $\forall k \in A$
$>$ Hamilton cycle $=\mathbb{Z}$-covering 2 -factor

Previous work

- 2-edge connected cubic graph:
> \{3,4\}-covering 2-factor exists [Kaiser, Škrekovski '08], and can be found in $\mathrm{O}\left(n^{3}\right)$ time [Boyd, Iwata, T. '13]
> Min-weight \{3\}-covering 2-factor in $\mathrm{O}\left(n^{3}\right)$ time [BIT. '13]
- Graphs w/o \{4,5\}-covering 2-factor [Čada, Chiba, Ozeki, Vrána, Yoshimoto '13]
> Application: Approximation of min. 2-edge connected subgraph

