The Salesman, the Postman and (Delta-) Matroids

Improved Tours for some Fundamental Instances

Joint work with Sylvia Boyd
 University of Ottawa

András Sebő
CNRS (G-SCOP), Univ. Grenoble Alpes

Your future for 80 minutes

1. The main tools

Ratios in the vector form (Goemans, Carr, Vempala),
fundamental vertices (Boyd Carr), (Delta)-matroids (Bouchet, Cunningham)
2. Improved Tours
for fundamental vertices, path TSP, graph TSP
3. Challenges

The Salesman and the Postman

1. The main tools

$K_{n}=\left(V_{n}, E_{n}\right)$ complete graph on n nodes
tour in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$: multisubgraph of G , connected on V , all degrees even.
Notation x
T_{n} := convex hull of multiplicity vectors of tours in K_{n}
$S_{n}:=$ subtour elimination $\left\{x \in \mathbb{R}^{\mathrm{E}_{\mathrm{n}}}: x \geq 0, x(C) \geq 2\right.$ on cuts, $=$ on stars $\}$
$\in \operatorname{RR}^{\mathrm{E}}$
conv comb of \mathcal{F}
$\mathrm{x}=\mathrm{E}[\mathcal{F}]$
$\mathrm{E}\left[\mathscr{F}_{1}+\mathscr{F}_{2}\right]=$
$\mathrm{E}\left[\mathcal{F}_{1}\right]+\mathrm{E}\left[\mathscr{F}_{2}\right]$
$\mathrm{S}_{\mathrm{n}} / 2$ majorates the parity correction polyhedron :
minimizing on it we get an upper bound for parity correction, that is, for the price of converting a connected subgraph into a tour

1.1 Vector form of the integrality ratio

Theorem : Goemans (1995), Carr, Vempala (2004) $\mathrm{OPT}(\mathrm{c}) \leq \rho \mathrm{LP}(\mathrm{c}) \forall \mathrm{c} \Leftrightarrow \rho \mathrm{S}_{\mathrm{n}} \subseteq \mathrm{T}_{\mathrm{n}}$
integrality ratio

For $\rho=1$ minmax theorem for all weights \leftrightarrow polyhedral description
Why would we use the more difficult vector form ?

- The objective function disappears,
- Ugly case-checkings may be captured by the convex combination

Examples of $\frac{1}{2}$ - integer points in S_{n}

Generalized Prism :
square :

3-edge connected cubic: $\quad \mathbf{M}+\mathbf{C}$
subcubic: $e \in M \rightarrow$ path
_1/2-edges

1-edges
Conjecture: (Schalekamp, Williamson, van Zuylen) $\frac{1}{2}$ - integer have the largest ratio

Assertions with the vector form

Theorem: Wolsey, Cunningham, Shmoys-Williamson 1980-90 $\frac{3}{2} \mathrm{~S}_{\mathrm{n}} \subseteq \mathrm{T}_{\mathrm{n}}$
Proof: $\mathrm{x} \in \mathrm{S}_{\mathrm{n}}, \mathrm{x}=\mathrm{E}[\mathscr{F}] ; \frac{\mathrm{x}}{2}=\mathrm{E}[$ par. corr. $] ; \mathrm{E}[\mathcal{F}+$ par. corr $]=\frac{3 \mathrm{x}}{2}$

Conjecture (4/3)

$$
\frac{4}{3} S_{n} \subseteq T_{n}
$$

Conjecture (S. 2015) : Cubic 3-edge-connected $\quad \frac{8}{9} \underline{1} \in T_{n}$
Proof from (4/3): $\frac{2}{3} \underline{1} \in S_{n}$, so $\frac{4}{3} \frac{2}{3} \underline{1} \in T_{n}$ Already: $\frac{3}{2} \frac{2}{3} \underline{1}=\underline{1} \in T_{n}$

1.2 Fundamental families of points

Carr, Ravi 98 :
fundamental class = particular family of points to which the best ratio is reduced
square graphs (G, M) : M perfect matching $E(G) \backslash M$ is partitioned into square components.

3-edge-connected
Part of a Boyd-Carr point

Theorem : Boyd-Carr (2011) Points with square support are fundamental for the TSP
$*$

1.3 Matroids and Delta-Matroids

$$
\begin{gathered}
D=(S, \mathscr{D}), \varnothing \neq \mathscr{D} \subseteq \mathscr{P}(S) \text { is a delta-matroid if } \\
D_{1}, D_{2} \in \mathscr{D}, \quad j \in D_{1} \Delta D_{2} \quad \exists k \in D_{1} \Delta D_{2}: \\
D_{1} \Delta\{j, k\} \in \mathscr{D}
\end{gathered}
$$

Bouchet (1988)
$\mathrm{M}=(\mathrm{S}, \mathfrak{B}), \boldsymbol{B} \subseteq \mathscr{P}(\mathrm{S})$ is a matroid, and \mathfrak{B} is the set of its bases if
(i) M is a delta-matroid
(ii) All elements of \mathscr{B} have the same size.

Examples of Delta-matroids (Bouchet 1988)

vertex-sets covered by matchings
'sets of bitransitions' of Eulerian trails

The 3 bitransitions:
$\{1,4\},\{2,3\}$
$\{1,2\},\{4,3\}$
$\{1,3\},\{2,4\}$ FORBIDDEN

Choose one of the 2 bitransitions of each node as 'reference': S is the set of refs. Represent each Eulerian trail with its subset of bitransitions D in S.

Thm (Bouchet): (S, D) , where , D is the set of all such sets D , is a delta-matroid.

Greedy Algorithm

Bouchet, Cunningham, 1992

$D=(S, \mathscr{D})$ delta-matroid, membership oracle, $c \in \mathbb{R}^{n}$
$\left|c_{1}\right| \geq\left|c_{2}\right| \geq \ldots \geq\left|c_{n}\right|$. Consider the elements in this order.
If ≥ 0 and possible, fix to 1 , if ≤ 0 and possible fix to 0

Theorem (Bouchet, Cunningham): Greedy Algorithm determines the optimum of \mathscr{D} and this characterizes delta-matroids.
$\operatorname{conv}(\mathcal{D}): \pm 1-0$ constraints, «bisubmodular» right hand side.

Summarizing the tools

Remember the vector form of the integrality ratio

Boyd-Carr points and square graphs are fundamental

Half-integer points are nontrivial challenges, and possible intermediaries for the main goal

Main Goal: Improve the approximation ratio for the TSP and the st path TSP

2. Improved tours

2.1 In fundamental and 3-edge-connected cubic graphs
2.2 What blocks the s-t path TSP
2.3 Matroid Intersection for the graph TSP. Corresponding bound for uniform covers !

Guess the answer to the following problems

In square graphs,

1. what is the complexity of HAM ?
2. approx ratio for min weight Hamiltonian cycle containing all 1-edges ?
3. can Christofides-Serdyukov's $3 / 2$ be improved?
4. Is there $a<\underline{1}$ uniform cover ?
5. Is there a better ratio for $\frac{1}{2}$-integer vertices ?

All this in general in 3-edge-connected cubic graphs? And what is this good for?

Hamiltonicity

Theorem : A square graph (G,M) has a Hamiltonian cycle containing M

3 bitransitions
$(1,3),(2,4)$ forbidden

If not connected,
either or connects.

Proof =Kotzig's (1968):Eulerian trails in 4-regular graphs with forbidden bitransitions.
Directly: ‘Blow' squares into nodes s.t. the allowed 2 bitransitions are the 2 matchings

Greedy algorithm for Hamiltonian cycles ?

M perfect matching, $E(G) \backslash M$ squares
INPUT : (G, M) edge-weighted square graph, c: E(G) --> IR
TASK : Minimize c(H), H Hamiltonian cycle containing M.

1. \forall square C, compute w_{C}, the absolute value of the difference of the two p.m. of C , and order the squares in decreasing order of w_{C}.
2. In this order, choose the minimum of the two possible values if both keep connectivity (there is always at least one by 'Kotzig's theorem').

Theorem : This algorithm determines the min weight Hamiltonian cycle containing the 1-edges in polynomial time.

Proof Straightforward from Bouchet and Cunningham + what we learnt ...

Could a conjecture on
 - uniform covers in
 - cubic graphs
 be more generally useful ?

Tours
Conjectures (S. 2015)
$(s, t)-$ paths
$\mathrm{G} /\{\mathrm{s}, \mathrm{t}\}$ Cubic 3-edge-connected $1 \in \mathrm{~T}_{\mathrm{n}}$
The narrow cuts of $\frac{2}{3} \underline{1}$ are disjoint!

Anke : Let us delete the unique edges of trees in narrow cuts !
Analysis : For all narrow cuts $\mathrm{Q}, \mathrm{x}^{\mathrm{Q}}:=\operatorname{Pr}(|\mathcal{F} \cap \mathrm{Q}|=1)$; this is what you spare in each narrow cut, and you spoil only half of it for parity completion. Free reconn!

How to prove good uniform covers or ratios?

Having a good $\in T_{n}$, for instance χ_{H}, where H is a Hamiltonian cycle, look for a "not-bad" $\in T_{n}$ which is small on H and maybe larger on the rest.

This does happen sometimes: 2 "compatible Euler trails" of Geelen, Iwata, Murota)
Example : Let G square, 2 Ham cycles with a common perfect matching, otherwise disjoint: $11 / 21 / 2 \in T_{n}$

| $1 / 2$ | 1 | $1 / 2$ | $\in S_{n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 2$ | $1 / 2$ | 1 | $\in S_{n}$ |$\quad \frac{\mathbf{3}}{\mathbf{4}} \quad \frac{9}{8} \quad \frac{9}{8} \in T_{n}$

$1 / 2 \quad \frac{3}{4} \quad \frac{3}{4} \in S_{n}$
$\frac{4}{7}$
With coefficients
$\frac{3}{7}$
We get
$\frac{6}{7} \quad \frac{6}{7} \quad \frac{6}{7} \in T_{n}$

Uniform covers for 3-edge-connected cubic

Theorem: If Hamiltonian, for instance square

$$
\frac{6}{7} \underline{1} \in T_{n}
$$

Can we improve the 1 uniform cover for 3-edge-connected cubic graphs in general ?

Theorem (Haddadan, Newman, Ravi 2017) : $\frac{18}{19} \underline{\underline{1}} \in \mathrm{~T}_{\mathrm{n}}$
Proof: $\left(\frac{4}{5}, 1\right) \in T_{n}$, and as before $\frac{3}{2}\left(1 \frac{1}{2}\right)=\left(\frac{3}{2} \frac{3}{4}\right) \in T_{n}$

Half Integer Boyd-Carr points

Theorem : For $\times 1 / 2$-integer, square,

Proof: $\rho x=\lambda \chi_{H}+(1-\lambda) y$ so we can look for y in the form

$$
\begin{aligned}
& y=(\alpha+1) x-\beta \chi_{H}, \alpha \geq 0, \beta \geq 0, \text { that is, } y=x+\alpha x-\beta \chi_{H}, \text { where } \\
& y^{\prime}=\alpha x-\beta \chi_{H} \text { is a parity correction for every tree composing } x .
\end{aligned}
$$

Claim: $\exists \mathcal{F}, \mathrm{E}[\mathscr{F}]=\mathrm{x}$ so that $\frac{2}{3} \mathrm{x}-\frac{1}{6} \chi_{H} \quad$ is a parity correction for all $\mathrm{F} \in \mathcal{F}$ ≥ 0 because $H \subseteq \operatorname{supp} x$, actually for each $e \in H$ on e we have $\geq \frac{1}{6}$

Concluding with matroid intersection

- so we are done if $|\mathrm{H} \cap \mathrm{C}| \geq 6$
- If $|\mathrm{H} \cap \mathrm{C}|=2$ then $\mathrm{x}(\mathrm{C}) \geq 2$ makes us safe
- If $|\mathrm{H} \cap \mathrm{C}|=4: \frac{2}{3} \times(\mathrm{C})-\frac{1}{6} \chi_{H}(\mathrm{C})=\frac{4}{3}-\frac{2}{3}=\frac{2}{3}<1$, bad but there is a patch (Jack Patch) :

Theorem (Edmonds): $M_{1}=\left(S, B_{1}\right), M_{2}=\left(S, B_{2}\right)$ be two matroids on S If $x \in \operatorname{conv}\left(B_{1}\right), x \in \operatorname{conv}\left(B_{2}\right) \Rightarrow x \in \operatorname{conv}\left(B_{1} \cap B_{2}\right)$

Therefore, $\exists \mathcal{F}$ so that such a bad C never needs parity correction! Q.E.D.
Do these results imply anything for general graphs ?

2.2 ($\mathrm{s}, \mathrm{t})$ Path TSP

What prevents us from reaching $3 / 2$?

Gottschalk-Vygen's result with matroid intersection (Schalekamp, van Zuylen, Traub, S.)

Doubling is crazy ...

The rest of 2.2 and 2.3 had to be cancelled in lack of time

3. Challenges

Further study fundamental graphs?

G 3 -edge-connected cubic. Is $\frac{8}{9} \underline{1}$ a convex combination of tours ?
Challenges for $\frac{1}{2}$-integer vertices (prism, fundamental, cubic),
Carr, Vempala fundamental graphs?

The sufficiency of considering $\frac{1}{2}$-integer vertices

For the $\{s, t\}$-path TSP how to reconnect in a more refined way than doubling the spanning trees ?

