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Your future for 80 minutes

1. The main tools

Ratios in the vector form (Goemans, Carr, Vempala), 

fundamental vertices (Boyd Carr), (Delta)-matroids (Bouchet, Cunningham)

2. Improved Tours

for fundamental vertices,  path TSP, graph TSP

3.     Challenges



In  P
(Edmonds,Johnson 1973)

The (Chinese) Postman

The (Travelling) Salesman

NP-hard
(Karp, 1972)

Nodes = Cities
Do all the cities
and come back !

Edges = streets
Do all the streets
and come back !

The Salesman and the Postman



Kn= (Vn,En) complete graph  on n nodes 

tour  in G=(V,E):   multisubgraph of G, connected on V, all degrees even.

Tn :=   convex hull of multiplicity vectors  of tours in Kn

Sn    :=   subtour elimination 

Sn majorates the spanning tree polytope

Sn/2      majorates the parity correction polyhedron  :
. 

1. The main tools 

{ x∈IREn : x ≥ 0, x(C) ≥ 2 on cuts, = on stars }

Notation x 
∈IRE

conv comb 
of F 
x = E[F]

E[F1+ F2]=
E[F1]+ E[F2]

minimizing on it we get an upper bound for parity correction,
that is, for the price of converting a connected subgraph into a tour



1.1 Vector form of the integrality ratio

For ρ= 1    minmax theorem for all weights   ↔ polyhedral description 

Why would we use the more difficult vector form ? 

- The objective function disappears,

- Ugly case-checkings may be captured
by the convex combination 

Theorem : Goemans (1995),  Carr, Vempala (2004)
OPT ( c )  ≤ ρ LP ( c )  ∀ c    ⇔ ρ Sn   ⊆ Tn

ρ Sn
Sn

Tn

integrality ratio



Examples of 1
2

- integer points in Sn

Generalized Prism :

3-edge connected cubic :        M +  C                   subcubic:    e∈M  path  

1-edges

square :  

½ -edges

Conjecture: (Schalekamp,  Williamson, van Zuylen) 1
2

- integer have the largest ratio 



Assertions with the vector form

Theorem :  Wolsey, Cunningham, Shmoys-Williamson 1980-90  3
2

Sn   ⊆ Tn

Conjecture (4/3)               : 4
3

Sn   ⊆ Tn

Proof: x∈Sn , x = E[F] ;  x
2

=  E[par. corr.] ; E[F+par. corr] = 3x
2

Proof 2
3

1 ∈ Sn , so  4
3
2
3

1 ∈ Tn

Conjecture (S. 2015)       : Cubic 3-edge-connected      8
9

1 ∈ Tn

from (4/3) : Already:  3
2
2
3

1 = 1 ∈ Tn

Algorithm: Christofides-Serdyukov (1976)



1.2 Fundamental families of points

square graphs (G,M) :  M  perfect matching
E(G) \ M is partitioned into square components.

Theorem : Boyd-Carr (2011) Points with square support are fundamental for the TSP 

Carr, Ravi 98 :  
fundamental  class  = particular family  of points to  which the best ratio is reduced

Proof :

1 a

a 

1-a1-a 1

1 1Part of a Boyd-Carr point3-edge-connected



1.3  Matroids and Delta-Matroids

M = (S, B)  , B ⊆ P(S)  is a matroid, and B is the set of its bases if
(i) M is a delta-matroid
(ii) All elements of B have the same size. 

D = (S, D)  , ∅≠ D ⊆ P (S)  is a delta-matroid if
D1 , D2 ∈ D   ,   j ∈ D1∆D2          ∃ k ∈ D1∆D2 :

D1 ∆ {j,k} ∈ D

Bouchet (1988)



Examples of Delta-matroids (Bouchet 1988)

vertex-sets covered by matchings

‘sets of bitransitions’ of Eulerian trails
1

4
2

3

The 3 bitransitions:
{1 , 4} ,  {2 , 3}
{1 , 2} ,  {4 , 3}
{1 , 3} ,  {2 , 4} FORBIDDEN

Choose one of the 2 bitransitions of each node as `reference’:  S is the set of refs.
Represent each Eulerian trail with its subset of bitransitions D   in S.  

Thm (Bouchet): (S, D) , where , D is the set of all such sets D, is a delta-matroid.



Greedy Algorithm
Bouchet, Cunningham, 1992

D = (S, D)  delta-matroid, membership oracle,  c ∈ IRn

|c1 |  ≥ |c2| ≥ … ≥ |cn | .  Consider the elements in this order. 
If≥ 0 and  possible, fix to 1,  if ≤0 and possible fix to 0 

conv(D) :   ±1-0 constraints , « bisubmodular »     right hand side.

Theorem (Bouchet, Cunningham): Greedy Algorithm determines the optimum 
of D  and this characterizes delta-matroids.



Summarizing the tools

Remember the vector form of the integrality ratio

Boyd-Carr points and square graphs  are fundamental

Half-integer points are nontrivial challenges, and possible intermediaries
for the main goal   

Main Goal:   Improve the approximation ratio for the TSP and the st path TSP



2. Improved tours

2.1        In fundamental  and 3-edge-connected cubic graphs

2.2 What blocks the s-t path TSP    

2.3              Matroid Intersection for the graph TSP. Corresponding 
bound for uniform covers !  



Guess the answer to the following problems
In square graphs,

1. what is the complexity of  HAM  ? 

2. approx ratio for min weight Hamiltonian cycle containing all 1-edges ?

3. can Christofides-Serdyukov’s 3/2  be improved ?

4. Is there a  < 1 uniform cover ?  

5. Is there a better ratio for  1
2

-integer vertices ? 

All this in general in 3-edge-connected cubic graphs ?  And what is this good for ?

NP-hard
P

2
3/2
1

N
Y



Hamiltonicity

Theorem : A square graph  (G,M) has a Hamiltonian cycle containing M  

Proof =Kotzig’s (1968):Eulerian trails in 4-regular graphs with forbidden bitransitions.
Directly: `Blow’ squares into nodes s.t. the allowed 2 bitransitions are the 2 matchings

1
4

2
3

3 bitransitions If not connected,
(1,3), (2,4)  forbidden                                 either or   connects.

1

2 3

4

M perfect matching, E(G) \ M squares



Greedy algorithm for Hamiltonian cycles ? 

Theorem : This algorithm determines the min weight Hamiltonian cycle 
containing the 1-edges in polynomial time. 

INPUT : (G, M )  edge-weighted square graph, c : E(G) --> IR
TASK  :   Minimize c(H),  H Hamiltonian cycle containing M.

1. ∀ square C, compute wC , the absolute value of the difference of the 
two p.m.   of C, and order the squares in decreasing order of wC .

2. In this order, choose the minimum of the two possible values if both
keep connectivity (there is always at least one by ‘Kotzig’s theorem’).

M perfect matching, E(G) \ M squares

Proof Straightforward from  Bouchet and Cunningham + what we learnt  …



Could a conjecture on 
- uniform covers in
- cubic graphs

be more generally useful ? 

Cubic 3-edge-connected  8
9

1 ∈ Tn G/{s,t} Cubic 3-edge-connected  1 ∈ Tn

Conjectures (S. 2015) Tours (s,t)- paths

For (s,t)-paths it became a theorem !      The narrow cuts of  2
3

1 are disjoint ! 

Anke :  Let us delete  the unique edges of trees in narrow cuts  !

Analysis :  For all narrow cuts Q, xQ := Pr(|F∩Q|=1); this is what you spare in
each narrow cut, and you spoil only half of it for parity completion. Free reconn!



This does happen sometimes :  2 “compatible Euler trails” of Geelen, Iwata, Murota) 

How to prove good uniform covers or ratios?

Having a good ∈ Tn , for instance χH , where H  is a Hamiltonian cycle, look 
for a “not-bad” ∈ Tn which is small on H and maybe larger on the rest.

Example :  Let G square, 2 Ham cycles with a common perfect matching, 
otherwise disjoint :

With coefficients

H2

H11  ½  ½   ∈ Tn
½   1   ½   ∈ Sn

½   ½ 1   ∈ Sn 
----------------------------------------------------------------------------------

½    3
4

3
4
∈ Sn

𝟑𝟑
𝟒𝟒

9
8

9
8
∈ Tn

--

𝟑𝟑
𝟕𝟕

--

𝟒𝟒
𝟕𝟕

--

We get 𝟔𝟔
𝟕𝟕

6
7

6
7
∈ Tn

--



Uniform covers for 3-edge-connected cubic

Theorem :   If Hamiltonian, for instance square     6
7

1 ∈ Tn

Proof :     

Theorem (Haddadan, Newman, Ravi 2017) :   18
19

1 ∈ Tn

Can we improve the 1 uniform cover for 3-edge-connected cubic graphs in general ?

(1  1  0 ) ∈ Tn , ( ½   ½   1) ∈ Sn 

Proof :     ( 4
5

,  1 ) ∈ Tn , and as before 3
2

(1  1
2

) = (𝟑𝟑
𝟐𝟐

3
4

)∈ Tn

Not only breaking the general 1 bound, but the cause of « good » vector is not Hamiltonicity

E\H
H

1

1

, (𝟑𝟑
𝟒𝟒

3
4

3
2
) ∈ Tn



Half Integer Boyd-Carr points

Theorem : For  x  ½ -integer,  square,                                     10
7

x  ∈ Tn

Proof:  ρ x   = λ χH +  ( 1- λ ) y      so   we can look for y in the form 
y    = (α +1)x - β χH  , α ≥ 0, β ≥ 0,  that is,  y = x +  α x - β χH , where
y’   = α x - β χH is a parity correction for every tree composing x.   

1 ½ 

½ 

½ ½ 

1

1 1

Claim :  ∃ F ,  E [F] = x  so that   2
3

x - 1
6
χH      is a parity correction for all  F∈ F

≥ 0 because  H ⊆ supp x , actually for each e ∈ H on e we have ≥ 1
6



Concluding with matroid intersection

Theorem (Edmonds):  M1 = (S, B1) ,   M2 = (S, B2)  be two matroids on S
If  x ∈ conv (B1) , x ∈ conv (B2)  =>  x ∈ conv (B1 ∩ B2) 

Do these results imply anything for general graphs ? 

- so we are done  if  |H∩C| ≥ 6  

- If  |H∩C| = 2   then x(C) ≥ 2 makes us safe  

- If  |H∩C| = 4   :  2
3

x (C) - 1
6
χH (C)= 4

3
- 2
3

= 𝟐𝟐
𝟑𝟑

<1,
bad but there is a patch  (Jack Patch) : 

½ 

½ 

½ ½ 

1

1 1

½ 

½ 

½ ½ 

1

1 1C

Therefore, ∃ F  so that such a bad C never needs parity correction !   Q.E.D.



2.2    (s,t) Path TSP

What prevents us from reaching 3/2 ?

Gottschalk-Vygen’s result with matroid intersection
(Schalekamp, van Zuylen, Traub, S.)

The rest of 2.2 and 2.3  had to be cancelled in lack of time 

Doubling is crazy …



3. Challenges
Further study fundamental graphs?

G 3-edge-connected cubic. Is  8
9

1 a convex combination of tours ?

Challenges for 1
2

-integer vertices (prism, fundamental, cubic),

Carr, Vempala fundamental graphs ? 

The sufficiency of considering  1
2

-integer vertices

For the {s,t}-path TSP how to reconnect in a more refined way than doubling
the spanning trees ?
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