A Tale of Santa Claus, Hypergraphs, and Matroids

Sami Davies, Thomas Rothvoss and Yihao Zhang
w
UNIVERSITY of
WASHINGTON

The Santa Claus Problem

- Input: Sets of children and gifts. Child i has value $p_{i j} \in\left\{0, p_{j}\right\}$ for gift j.

The Santa Claus Problem

- Input: Sets of children and gifts. Child i has value $p_{i j} \in\left\{0, p_{j}\right\}$ for gift j.
- Goal: Assign gifts to maximize least happiest child Happiness of $i=\sum_{j \text { assigned to } i} p_{j}$

The Santa Claus Problem

- Input: Sets of children and gifts. Child i has value $p_{i j} \in\left\{0, p_{j}\right\}$ for gift j.
- Goal: Assign gifts to maximize least happiest child Happiness of $i=\sum_{j \text { assigned to } i} p_{j}$

The Santa Claus Problem

- Input: Sets of children and gifts. Child i has value $p_{i j} \in\left\{0, p_{j}\right\}$ for gift j.
- Goal: Assign gifts to maximize least happiest child Happiness of $i=\sum_{j \text { assigned to } i} p_{j}$

The Santa Claus Problem

- Input: Sets of children and gifts. Child i has value $p_{i j} \in\left\{0, p_{j}\right\}$ for gift j.
- Goal: Assign gifts to maximize least happiest child Happiness of $i=\sum_{j \text { assigned to } i} p_{j}$

- Alternative name: Restricted Max Min Fair Allocation

What is known

What is known

- NP-hard to approximate better than 2

What is known

- NP-hard to approximate better than 2
- $O(\log \log n / \log \log \log n)$-apx [Bansal, Sviridenko'06]
- Integrality gap is $O(1)$ for configuration LP [Feige '08]

What is known

- NP-hard to approximate better than 2
- $O(\log \log n / \log \log \log n)$-apx [Bansal, Sviridenko'06]
- Integrality gap is $O(1)$ for configuration LP [Feige '08]
- Integrality gap ≤ 4 [Asadpour, Feige, Saberi '12]

Based on [Haxell '95]'s hypergraph matching technique

What is known

- NP-hard to approximate better than 2
- $O(\log \log n / \log \log \log n)$-apx [Bansal, Sviridenko'06]
- Integrality gap is $O(1)$ for configuration LP [Feige '08]
- Integrality gap ≤ 4 [Asadpour, Feige, Saberi '12]

Based on [Haxell '95]'s hypergraph matching technique

- Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson '15]

What is known

- NP-hard to approximate better than 2
- $O(\log \log n / \log \log \log n)$-apx [Bansal, Sviridenko'06]
- Integrality gap is $O(1)$ for configuration LP [Feige '08]
- Integrality gap ≤ 4 [Asadpour, Feige, Saberi '12]

Based on [Haxell '95]'s hypergraph matching technique

- Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson '15]

Here:

- An extension to matroids

Matroid 101

Matroid 101

- Ground set X

Matroid 101

- Ground set X
- Independent sets $\mathcal{I} \subseteq 2^{X}$

Matroid 101

- Ground set X
- Independent sets $\mathcal{I} \subseteq 2^{X}$
- $\mathcal{M}=(X, \mathcal{I})$ is matroid if
(i) Non-emptyness: $\emptyset \in \mathcal{I}$;
(ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
(iii) Exchange property: For all $Y, Z \in \mathcal{I}$ with $|Y|<|Z|$ there is an element $z \in Z \backslash Y$ so that $Y \cup\{z\} \in \mathcal{I}$.

Matroid 101

- Ground set X
- Independent sets $\mathcal{I} \subseteq 2^{X}$
- $\mathcal{M}=(X, \mathcal{I})$ is matroid if
(i) Non-emptyness: $\emptyset \in \mathcal{I}$;
(ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
(iii) Exchange property: For all $Y, Z \in \mathcal{I}$ with $|Y|<|Z|$ there is an element $z \in Z \backslash Y$ so that $Y \cup\{z\} \in \mathcal{I}$.
- A basis $S \subseteq X$ is a maximal independent set

Matroid 101

- Ground set X
- Independent sets $\mathcal{I} \subseteq 2^{X}$
- $\mathcal{M}=(X, \mathcal{I})$ is matroid if
(i) Non-emptyness: $\emptyset \in \mathcal{I}$;
(ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
(iii) Exchange property: For all $Y, Z \in \mathcal{I}$ with $|Y|<|Z|$ there is an element $z \in Z \backslash Y$ so that $Y \cup\{z\} \in \mathcal{I}$.
- A basis $S \subseteq X$ is a maximal independent set
- Base polytope $P_{B(\mathcal{M})}=\operatorname{conv}\{\chi(S): S$ is basis $\}$

Matroid 101

- Ground set X
- Independent sets $\mathcal{I} \subseteq 2^{X}$
- $\mathcal{M}=(X, \mathcal{I})$ is matroid if
(i) Non-emptyness: $\emptyset \in \mathcal{I}$;
(ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
(iii) Exchange property: For all $Y, Z \in \mathcal{I}$ with $|Y|<|Z|$ there is an element $z \in Z \backslash Y$ so that $Y \cup\{z\} \in \mathcal{I}$.
- A basis $S \subseteq X$ is a maximal independent set
- Base polytope $P_{B(\mathcal{M})}=\operatorname{conv}\{\chi(S): S$ is basis $\}$
- Example: Graphical matroid $(E, \mathcal{I})(G=(V, E)$ connected graph)
- $\mathcal{I}=$ subset of forests
- bases = spanning trees
- base polytope $=$ spanning tree polytope

Matroid Max Min Fair Allocation

- Input: Matroid (X, \mathcal{I}), graph $G=(X \dot{\cup} R, E)$, resources R with sizes p_{j}

Matroid Max Min Fair Allocation

- Input: Matroid (X, \mathcal{I}), graph $G=(X \dot{\cup} R, E)$, resources R with sizes p_{j}
- Goal: Find basis S and assignment $\sigma: R \rightarrow S$ to maximize $\min _{i \in S} \sum_{\sigma(j)=i} p_{j}$

Matroid Max Min Fair Allocation

- Input: Matroid (X, \mathcal{I}), graph $G=(X \dot{\cup} R, E)$, resources R with sizes p_{j}
- Goal: Find basis S and assignment $\sigma: R \rightarrow S$ to maximize $\min _{i \in S} \sum_{\sigma(j)=i} p_{j}$

Matroid Max Min Fair Allocation

- Input: Matroid (X, \mathcal{I}), graph $G=(X \dot{\cup} R, E)$, resources R with sizes p_{j}
- Goal: Find basis S and assignment $\sigma: R \rightarrow S$ to maximize $\min _{i \in S} \sum_{\sigma(j)=i} p_{j}$

Matroid Max Min Fair Allocation

- Input: Matroid (X, \mathcal{I}), graph $G=(X \dot{\cup} R, E)$, resources R with sizes p_{j}
- Goal: Find basis S and assignment $\sigma: R \rightarrow S$ to maximize $\min _{i \in S} \sum_{\sigma(j)=i} p_{j}$

Linear program

$$
\begin{aligned}
x & \in P_{B(\mathcal{M})} \\
\sum_{j \in N(i)} p_{j} y_{i j} & \geq T \cdot x_{i} \forall i \in X \\
y(\delta(j)) & \leq 1 \forall j \in R \\
0 \leq y_{i j} & \leq x_{i} \forall(i, j) \in E
\end{aligned}
$$

Our contributions

Our contributions

Theorem I

Suppose LP feasible and $p_{j}=1$. Then can find solution for Matroid Max Min Fair Allocation of value $\left(\frac{1}{3}-\varepsilon\right) \cdot T$ in poly-time.

Our contributions

Theorem I

Suppose LP feasible and $p_{j}=1$. Then can find solution for Matroid Max Min Fair Allocation of value $\left(\frac{1}{3}-\varepsilon\right) \cdot T$ in poly-time.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max Min Fair Allocation of value $\left(\frac{1}{3}-\varepsilon\right) \cdot T-\max \left\{p_{j}\right\}$ in poly-time.

Our contributions

Theorem I

Suppose LP feasible and $p_{j}=1$. Then can find solution for Matroid Max Min Fair Allocation of value $\left(\frac{1}{3}-\varepsilon\right) \cdot T$ in poly-time.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max Min Fair Allocation of value $\left(\frac{1}{3}-\varepsilon\right) \cdot T-\max \left\{p_{j}\right\}$ in poly-time.

Theorem III

There is a poly-time $(6+\varepsilon)$-apx for Santa Claus (factor compares to value of $O\left(n^{2}\right)$-size LP).

Our contributions

Theorem I

Suppose LP feasible and $p_{j}=1$. Then can find solution for Matroid Max Min Fair Allocation of value $\left(\frac{1}{3}-\varepsilon\right) \cdot T$ in poly-time.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max Min Fair Allocation of value $\left(\frac{1}{3}-\varepsilon\right) \cdot T-\max \left\{p_{j}\right\}$ in poly-time.

Theorem III

There is a poly-time $(6+\varepsilon)$-apx for Santa Claus (factor compares to value of $O\left(n^{2}\right)$-size LP).

- [Cheng-Mao '18] obtain $(6+\varepsilon)$-apx by directly modifying [AKS'15]

General approach

- Assumptions: $p_{j}=1 \&$ LP is feasible for parameter T

General approach

- Assumptions: $p_{j}=1 \&$ LP is feasible for parameter T

General approach

- Assumptions: $p_{j}=1 \& \mathrm{LP}$ is feasible for parameter T
- Consider hypergraph $\mathcal{E}=\left(X \cup \dot{\cup}\right.$, size- $\left(\frac{1}{3}-\varepsilon\right) T$ edges $)$

General approach

- Assumptions: $p_{j}=1 \& \mathrm{LP}$ is feasible for parameter T
- Consider hypergraph $\mathcal{E}=\left(X \dot{\cup} R\right.$, size- $\left(\frac{1}{3}-\varepsilon\right) T$ edges $)$
- Start with $S:=\emptyset$, maintain hypergraph matching covering S

General approach

- Assumptions: $p_{j}=1 \& \mathrm{LP}$ is feasible for parameter T
- Consider hypergraph $\mathcal{E}=\left(X \dot{\cup} R\right.$, size- $\left(\frac{1}{3}-\varepsilon\right) T$ edges $)$
- Start with $S:=\emptyset$, maintain hypergraph matching covering S

General approach

- Assumptions: $p_{j}=1 \& \mathrm{LP}$ is feasible for parameter T
- Consider hypergraph $\mathcal{E}=\left(X \dot{\cup} R\right.$, size- $\left(\frac{1}{3}-\varepsilon\right) T$ edges $)$
- Start with $S:=\emptyset$, maintain hypergraph matching covering S

General approach

- Assumptions: $p_{j}=1 \&$ LP is feasible for parameter T
- Consider hypergraph $\mathcal{E}=\left(X \dot{\cup} R\right.$, size- $\left(\frac{1}{3}-\varepsilon\right) T$ edges $)$
- Start with $S:=\emptyset$, maintain hypergraph matching covering S
- Pick i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$

General approach

- Assumptions: $p_{j}=1 \& \mathrm{LP}$ is feasible for parameter T
- Consider hypergraph $\mathcal{E}=\left(X \dot{\cup} R\right.$, size- $\left(\frac{1}{3}-\varepsilon\right) T$ edges $)$
- Start with $S:=\emptyset$, maintain hypergraph matching covering S
- Pick i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
- Search for extension of matching starting at root i_{0}

Goal: cover $S^{\prime} \in \mathcal{I}$ with $\left|S^{\prime}\right|=\left|S \cup\left\{i_{0}\right\}\right|$

General approach

- Assumptions: $p_{j}=1 \& \mathrm{LP}$ is feasible for parameter T
- Consider hypergraph $\mathcal{E}=\left(X \dot{\cup} R\right.$, size- $\left(\frac{1}{3}-\varepsilon\right) T$ edges $)$
- Start with $S:=\emptyset$, maintain hypergraph matching covering S
- Pick i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
- Search for extension of matching starting at root i_{0}

Goal: cover $S^{\prime} \in \mathcal{I}$ with $\left|S^{\prime}\right|=\left|S \cup\left\{i_{0}\right\}\right|$

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

One phase of the augmentation

- Input: Hypermatching M covering $S \in \mathcal{I}$, i_{0} s.t. $S \cup\left\{i_{0}\right\} \in \mathcal{I}$
(1) discovered nodes $C:=\left\{i_{0}\right\}$; add edges $A:=\emptyset$; blocking edges $B:=\emptyset$
(2) REPEAT
(3) Find size $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with $(S \backslash C) \dot{U} D \in \mathcal{I}$ and (iii) $|D| \geq \Omega_{\varepsilon}(|C|)$.
(4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
(5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S^{\prime}:=S \backslash \tilde{C} \cup \tilde{D}$ (if one covers i_{1} s.t. $S \dot{\cup}\left\{i_{1}\right\} \in \mathcal{I} \rightarrow$ done)

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

R 000000000000000

X

Expansion property

Lemma

Suppose $(x, y) \in L P$ ．Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$－size hyperedges that are（i）disjoint to discovered resources；（ii）covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$ ．
－We show one edge is possible！

R 0ロロロロロロロロロロロロロロ

X

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!
- blocking edges \geq add edges $\Rightarrow|W|<\frac{2}{3} \cdot T \cdot|C|$ used resources

$$
|W|<\frac{2}{3} T|C|
$$

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!
- blocking edges \geq add edges $\Rightarrow|W|<\frac{2}{3} \cdot T \cdot|C|$ used resources
- Let $U:=\{i \in X \mid(S \backslash C) \dot{\cup}\{i\} \in \mathcal{I}\}$ be swapping candidates

$$
|W|<\frac{2}{3} T|C|
$$

X

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!
- blocking edges \geq add edges $\Rightarrow|W|<\frac{2}{3} \cdot T \cdot|C|$ used resources
- Let $U:=\{i \in X \mid(S \backslash C) \dot{\cup}\{i\} \in \mathcal{I}\}$ be swapping candidates
- Lemma: $\sum_{i \in U} x_{i} \geq|C|$ (using that x in base polytope)

$$
|W|<\frac{2}{3} T|C|
$$

X

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!
- blocking edges \geq add edges $\Rightarrow|W|<\frac{2}{3} \cdot T \cdot|C|$ used resources
- Let $U:=\{i \in X \mid(S \backslash C) \dot{\cup}\{i\} \in \mathcal{I}\}$ be swapping candidates
- Lemma: $\sum_{i \in U} x_{i} \geq|C|$ (using that x in base polytope)

X

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!
- blocking edges \geq add edges $\Rightarrow|W|<\frac{2}{3} \cdot T \cdot|C|$ used resources
- Let $U:=\{i \in X \mid(S \backslash C) \dot{\cup}\{i\} \in \mathcal{I}\}$ be swapping candidates
- Lemma: $\sum_{i \in U} x_{i} \geq|C|$ (using that x in base polytope)

$$
\sum_{i \in U} \sum_{j \in W} y_{i j}
$$

R

X

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!
- blocking edges \geq add edges $\Rightarrow|W|<\frac{2}{3} \cdot T \cdot|C|$ used resources
- Let $U:=\{i \in X \mid(S \backslash C) \cup \dot{\cup}\{i\} \in \mathcal{I}\}$ be swapping candidates
- Lemma: $\sum_{i \in U} x_{i} \geq|C|$ (using that x in base polytope) $\frac{2}{3} T|C|>|W| \geq \sum_{i \in U} \sum_{j \in W} y_{i j}$

Expansion property

Lemma

Suppose $(x, y) \in L P$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $\left(\frac{1}{3}-\frac{\varepsilon}{2}\right)$-size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \backslash C \dot{\cup} D \in \mathcal{I}$.

- We show one edge is possible!
- blocking edges \geq add edges $\Rightarrow|W|<\frac{2}{3} \cdot T \cdot|C|$ used resources
- Let $U:=\{i \in X \mid(S \backslash C) \dot{\cup}\{i\} \in \mathcal{I}\}$ be swapping candidates
- Lemma: $\sum_{i \in U} x_{i} \geq|C|$ (using that x in base polytope)
$\frac{2}{3} T|C|>|W| \geq \sum_{i \in U} \sum_{j \in W} y_{i j} \geq \frac{2}{3} T \cdot \sum_{i \in U} x_{i} \geq \frac{2}{3} T \cdot|C| \rightarrow$ Contradiction!

Running time analysis

Termination:

- Define $s_{t}:=$ number of blocking edges in step $1, \ldots, t$

Running time analysis

Termination:

- Define $s_{t}:=$ number of blocking edges in step $1, \ldots, t$
- Observation: Vector $\left(s_{1}, s_{2}, \ldots, s_{O(\log n)}\right)$ is lexicographically decreasing!

Running time analysis

Termination:

- Define $s_{t}:=$ number of blocking edges in step $1, \ldots, t$
- Observation: Vector $\left(s_{1}, s_{2}, \ldots, s_{O(\log n)}\right)$ is lexicographically decreasing!
- First updated s_{t} drops by constant factor \Rightarrow polynomial number of iterations

Application to Santa Claus

Application to Santa Claus

 children gifts- Fix $0<\delta<1$. Call gifts of size $p_{j}>\delta \cdot O P T$ large;

Application to Santa Claus

children gifts

- Fix $0<\delta<1$. Call gifts of size $p_{j}>\delta \cdot O P T$ large;
small otherwise

Application to Santa Claus

Application to Santa Claus

- Fix $0<\delta<1$. Call gifts of size $p_{j}>\delta \cdot O P T$ large;
small otherwise
- $\mathcal{I}:=\{S \subseteq$ children $\mid S$ can all receive one large gift $\}$ (children, \mathcal{I}) is a matroid! $\quad S \in \mathcal{I}^{*}$
- Let (children, \mathcal{I}^{*}) be co-matroid

Application to Santa Claus

- Fix $0<\delta<1$. Call gifts of size $p_{j}>\delta \cdot O P T$ large; small otherwise
- $\mathcal{I}:=\{S \subseteq$ children $\mid S$ can all receive one large gift $\}$ (children, \mathcal{I}) is a matroid! $\quad S \in \mathcal{I}^{*}$
- Let (children, \mathcal{I}^{*}) be co-matroid children gifts

- Find basis S of co-matroid and assignment of value $\left(\frac{1}{3}-\varepsilon\right) O P T-\delta \cdot O P T$.

Application to Santa Claus

- Fix $0<\delta<1$. Call gifts of size $p_{j}>\delta \cdot O P T$ large; small otherwise
- I $:=\{S \subseteq$ children $\mid S$ can all receive one large gift $\}$ (children, \mathcal{I}) is a matroid! $\quad S \in \mathcal{I}^{*}$
- Let (children, \mathcal{I}^{*}) be co-matroid
children gifts

- Find basis S of co-matroid and assignment of value $\left(\frac{1}{3}-\varepsilon\right) O P T-\delta \cdot O P T$.
- Overall happiness of children is

$$
\min \left\{\delta \cdot O P T,\left(\frac{1}{3}-\varepsilon-\delta\right) O P T\right\}
$$

Application to Santa Claus

- Fix $0<\delta<1$. Call gifts of size $p_{j}>\delta \cdot O P T$ large; small otherwise
- I $:=\{S \subseteq$ children $\mid S$ can all receive one large gift $\}$ (children, \mathcal{I}) is a matroid! $\quad S \in \mathcal{I}^{*}$
- Let (children, \mathcal{I}^{*}) be co-matroid children gifts

- Find basis S of co-matroid and assignment of value $\left(\frac{1}{3}-\varepsilon\right) O P T-\delta \cdot O P T$.
- Overall happiness of children is

$$
\min \left\{\delta \cdot O P T,\left(\frac{1}{3}-\varepsilon-\delta\right) O P T\right\} \stackrel{\delta:=\frac{1}{6}}{=}\left(\frac{1}{6}-\varepsilon\right) O P T
$$

Application to Santa Claus

children gifts

- Fix $0<\delta<1$. Call gifts of size $p_{j}>\delta \cdot O P T$ large; small otherwise
- I $:=\{S \subseteq$ children $\mid S$ can all receive one large gift $\}$ (children, \mathcal{I}) is a matroid! $S \in \mathcal{I}^{*}$
- Let (children, \mathcal{I}^{*}) be co-matroid

- Find basis S of co-matroid and assignment of value $\left(\frac{1}{3}-\varepsilon\right) O P T-\delta \cdot O P T$.
- Overall happiness of children is

$$
\begin{gathered}
\min \left\{\delta \cdot O P T,\left(\frac{1}{3}-\varepsilon-\delta\right) O P T\right\} \stackrel{\delta:=\frac{1}{6}}{=}\left(\frac{1}{6}-\varepsilon\right) O P T \\
\Rightarrow(6+\varepsilon) \text {-apx in poly-time (also gap for } O\left(n^{2}\right) \text {-size LP) }
\end{gathered}
$$

Open problems

Open problems

Santa Claus:

- $2 \leq$ integrality gap for configuration $\mathrm{LP} \leq 4$
- $2 \leq$ approximation ratio ≤ 6

Open problems

Santa Claus:

- $2 \leq$ integrality gap for configuration $\mathrm{LP} \leq 4$
- $2 \leq$ approximation ratio ≤ 6

Unrelated Santa Claus: (arbitrary $p_{i j}$)

- $O\left(\log ^{10} n\right)$ in quasi-polynomial time [Chakrabarty, Chuzhoy, Khanna '09]
- Best known hardness: 2

Open problems

Santa Claus:

- $2 \leq$ integrality gap for configuration $\mathrm{LP} \leq 4$
- $2 \leq$ approximation ratio ≤ 6

Unrelated Santa Claus: (arbitrary $p_{i j}$)

- $O\left(\log ^{10} n\right)$ in quasi-polynomial time [Chakrabarty, Chuzhoy, Khanna '09]
- Best known hardness: 2

Thanks for your attention

