A Tale of Santa Claus, Hypergraphs, and Matroids

Sami Davies, Thomas Rothvoss and Yihao Zhang

▶ Input: Sets of children and gifts. Child *i* has value $p_{ij} \in \{0, p_j\}$ for gift *j*.

▶ Input: Sets of children and gifts. Child *i* has value $p_{ij} \in \{0, p_j\}$ for gift *j*.

► Goal: Assign gifts to maximize least happiest child Happiness of $i = \sum_{j \text{ assigned to } i} p_j$

▶ Input: Sets of children and gifts. Child *i* has value $p_{ij} \in \{0, p_j\}$ for gift *j*.

► Goal: Assign gifts to maximize least happiest child Happiness of $i = \sum_{j \text{ assigned to } i} p_j$

▶ Input: Sets of children and gifts. Child *i* has value $p_{ij} \in \{0, p_j\}$ for gift *j*.

► Goal: Assign gifts to maximize least happiest child Happiness of $i = \sum_{j \text{ assigned to } i} p_j$

- ▶ Input: Sets of children and gifts. Child *i* has value $p_{ij} \in \{0, p_j\}$ for gift *j*.
- ► Goal: Assign gifts to maximize least happiest child Happiness of $i = \sum_{j \text{ assigned to } i} p_j$

► Alternative name: Restricted Max Min Fair Allocation

▶ NP-hard to approximate better than 2

- ▶ NP-hard to approximate better than 2
- ▶ $O(\log \log n / \log \log \log n)$ -apx [Bansal, Sviridenko'06]
- ▶ Integrality gap is O(1) for configuration LP [Feige '08]

- ▶ NP-hard to approximate better than 2
- ▶ $O(\log \log n / \log \log \log n)$ -apx [Bansal, Sviridenko'06]
- Integrality gap is O(1) for configuration LP [Feige '08]
- ▶ Integrality gap ≤ 4 [Asadpour, Feige, Saberi '12] Based on [Haxell '95]'s hypergraph matching technique

- ▶ NP-hard to approximate better than 2
- ▶ $O(\log \log n / \log \log \log n)$ -apx [Bansal, Sviridenko'06]
- Integrality gap is O(1) for configuration LP [Feige '08]
- ► Integrality gap ≤ 4 [Asadpour, Feige, Saberi '12] Based on [Haxell '95]'s hypergraph matching technique
- ▶ Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson '15]

- ▶ NP-hard to approximate better than 2
- ▶ $O(\log \log n / \log \log \log n)$ -apx [Bansal, Sviridenko'06]
- ▶ Integrality gap is O(1) for configuration LP [Feige '08]
- ► Integrality gap ≤ 4 [Asadpour, Feige, Saberi '12] Based on [Haxell '95]'s hypergraph matching technique
- ▶ Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson '15]

Here:

An extension to **matroids**

 $\blacktriangleright \ {\bf Ground \ set} \ X$

- $\blacktriangleright \textbf{ Ground set } X$
- Independent sets $\mathcal{I} \subseteq 2^X$

- ► Ground set X
- Independent sets $\mathcal{I} \subseteq 2^X$
- $\mathcal{M} = (X, \mathcal{I})$ is **matroid** if
 - (i) Non-emptyness: $\emptyset \in \mathcal{I}$;
 - (ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
 - (iii) **Exchange property:** For all $Y, Z \in \mathcal{I}$ with |Y| < |Z| there is an element $z \in Z \setminus Y$ so that $Y \cup \{z\} \in \mathcal{I}$.

- ► Ground set X
- Independent sets $\mathcal{I} \subseteq 2^X$
- $\blacktriangleright \mathcal{M} = (X, \mathcal{I}) \text{ is matroid if}$
 - (i) Non-emptyness: $\emptyset \in \mathcal{I}$;
 - (ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
 - (iii) **Exchange property:** For all $Y, Z \in \mathcal{I}$ with |Y| < |Z| there is an element $z \in Z \setminus Y$ so that $Y \cup \{z\} \in \mathcal{I}$.
- A basis $S \subseteq X$ is a maximal independent set

- ► Ground set X
- Independent sets $\mathcal{I} \subseteq 2^X$
- $\mathcal{M} = (X, \mathcal{I})$ is **matroid** if
 - (i) Non-emptyness: $\emptyset \in \mathcal{I}$;
 - (ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
 - (iii) **Exchange property:** For all $Y, Z \in \mathcal{I}$ with |Y| < |Z| there is an element $z \in Z \setminus Y$ so that $Y \cup \{z\} \in \mathcal{I}$.
- A basis $S \subseteq X$ is a maximal independent set
- ► Base polytope $P_{B(\mathcal{M})} = \operatorname{conv}\{\chi(S) : S \text{ is basis}\}$

- ► Ground set X
- Independent sets $\mathcal{I} \subseteq 2^X$
- $\mathcal{M} = (X, \mathcal{I})$ is **matroid** if
 - (i) Non-emptyness: $\emptyset \in \mathcal{I}$;
 - (ii) Monotonicity: For $Y \in \mathcal{I}$ and $Z \subseteq Y$ one has $Z \in \mathcal{I}$;
 - (iii) **Exchange property:** For all $Y, Z \in \mathcal{I}$ with |Y| < |Z| there is an element $z \in Z \setminus Y$ so that $Y \cup \{z\} \in \mathcal{I}$.
- A basis $S \subseteq X$ is a maximal independent set
- ► Base polytope $P_{B(\mathcal{M})} = \operatorname{conv}\{\chi(S) : S \text{ is basis}\}$
- ▶ Example: Graphical matroid (E, \mathcal{I}) (G = (V, E) connected graph)
 - $\blacktriangleright \mathcal{I} = \text{subset of forests}$
 - \blacktriangleright bases = spanning trees
 - base polytope = spanning tree polytope

▶ Input: Matroid (X, \mathcal{I}) , graph $G = (X \cup R, E)$, resources R with sizes p_j

- ▶ Input: Matroid (X, \mathcal{I}) , graph $G = (X \cup R, E)$, resources R with sizes p_j
- ▶ **Goal:** Find basis *S* and assignment $\sigma : R \to S$ to maximize $\min_{i \in S} \sum_{\sigma(j)=i} p_j$

- ▶ Input: Matroid (X, \mathcal{I}) , graph $G = (X \cup R, E)$, resources R with sizes p_j
- ► **Goal:** Find basis *S* and assignment $\sigma : R \to S$ to maximize $\min_{i \in S} \sum_{\sigma(j)=i} p_j$

- ▶ Input: Matroid (X, \mathcal{I}) , graph $G = (X \cup R, E)$, resources R with sizes p_j
- ► **Goal:** Find basis *S* and assignment $\sigma : R \to S$ to maximize $\min_{i \in S} \sum_{\sigma(j)=i} p_j$

- ▶ Input: Matroid (X, \mathcal{I}) , graph $G = (X \cup R, E)$, resources R with sizes p_j
- ▶ Goal: Find basis S and assignment $\sigma : R \to S$ to maximize $\min_{i \in S} \sum_{\sigma(j)=i} p_j$

Linear program

$$\begin{array}{rcccc} x & \in & P_{B(\mathcal{M})} \\ \sum_{j \in N(i)} p_j y_{ij} & \geq & T \cdot x_i \; \forall i \in X \\ y(\delta(j)) & \leq & 1 \; \forall j \in R \\ 0 \leq y_{ij} & \leq & x_i \; \forall (i,j) \in E \end{array}$$

Theorem I

Suppose LP feasible and $p_j = 1$. Then can find solution for **Matroid Max Min Fair Allocation** of value $(\frac{1}{3} - \varepsilon) \cdot T$ in **poly-time**.

Theorem I

Suppose LP feasible and $p_j = 1$. Then can find solution for **Matroid Max Min Fair Allocation** of value $(\frac{1}{3} - \varepsilon) \cdot T$ in **poly-time**.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max Min Fair Allocation of value $(\frac{1}{3} - \varepsilon) \cdot T - \max\{p_j\}$ in poly-time.

Theorem I

Suppose LP feasible and $p_j = 1$. Then can find solution for Matroid Max Min Fair Allocation of value $(\frac{1}{3} - \varepsilon) \cdot T$ in poly-time.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max Min Fair Allocation of value $(\frac{1}{3} - \varepsilon) \cdot T - \max\{p_j\}$ in poly-time.

Theorem III

There is a poly-time $(6 + \varepsilon)$ -apx for **Santa Claus** (factor compares to value of $O(n^2)$ -size LP).

Theorem I

Suppose LP feasible and $p_j = 1$. Then can find solution for **Matroid Max Min Fair Allocation** of value $(\frac{1}{3} - \varepsilon) \cdot T$ in **poly-time**.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max Min Fair Allocation of value $(\frac{1}{3} - \varepsilon) \cdot T - \max\{p_j\}$ in poly-time.

Theorem III

There is a poly-time $(6 + \varepsilon)$ -apx for **Santa Claus** (factor compares to value of $O(n^2)$ -size LP).

► [Cheng-Mao '18] obtain $(6 + \varepsilon)$ -apx by directly modifying [AKS'15]

• Assumptions: $p_j = 1$ & LP is feasible for parameter T

• Assumptions: $p_j = 1$ & LP is feasible for parameter T

- ▶ Assumptions: $p_j = 1$ & LP is feasible for parameter T
- Consider hypergraph $\mathcal{E} = (X \dot{\cup} R, \text{size-}(\frac{1}{3} \varepsilon)T \text{ edges})$

- ▶ Assumptions: $p_j = 1$ & LP is feasible for parameter T
- Consider hypergraph $\mathcal{E} = (X \dot{\cup} R, \text{size-}(\frac{1}{3} \varepsilon)T \text{ edges})$
- ▶ Start with $S := \emptyset$, maintain hypergraph matching covering S

- ▶ Assumptions: $p_j = 1$ & LP is feasible for parameter T
- Consider hypergraph $\mathcal{E} = (X \dot{\cup} R, \text{size-}(\frac{1}{3} \varepsilon)T \text{ edges})$
- ▶ Start with $S := \emptyset$, maintain hypergraph matching covering S

- ▶ Assumptions: $p_j = 1$ & LP is feasible for parameter T
- Consider hypergraph $\mathcal{E} = (X \dot{\cup} R, \text{size-}(\frac{1}{3} \varepsilon)T \text{ edges})$
- ▶ Start with $S := \emptyset$, maintain hypergraph matching covering S

- ▶ Assumptions: $p_j = 1$ & LP is feasible for parameter T
- Consider hypergraph $\mathcal{E} = (X \dot{\cup} R, \text{size-}(\frac{1}{3} \varepsilon)T \text{ edges})$
- ▶ Start with $S := \emptyset$, maintain hypergraph matching covering S
- $\blacktriangleright \text{ Pick } i_0 \text{ s.t. } S \cup \{i_0\} \in \mathcal{I}$

General approach

- ▶ Assumptions: $p_j = 1$ & LP is feasible for parameter T
- Consider hypergraph $\mathcal{E} = (X \dot{\cup} R, \text{size-}(\frac{1}{3} \varepsilon)T \text{ edges})$
- ▶ Start with $S := \emptyset$, maintain hypergraph matching covering S
- $\blacktriangleright \text{ Pick } i_0 \text{ s.t. } S \cup \{i_0\} \in \mathcal{I}$
- Search for extension of matching starting at root i₀
 Goal: cover S' ∈ I with |S'| = |S ∪ {i₀}|

General approach

- ▶ Assumptions: $p_j = 1$ & LP is feasible for parameter T
- ► Consider hypergraph $\mathcal{E} = (X \dot{\cup} R, \text{size-}(\frac{1}{3} \varepsilon)T \text{ edges})$
- ▶ Start with $S := \emptyset$, maintain hypergraph matching covering S
- $\blacktriangleright \text{ Pick } i_0 \text{ s.t. } S \cup \{i_0\} \in \mathcal{I}$
- Search for extension of matching starting at root i₀
 Goal: cover S' ∈ I with |S'| = |S ∪ {i₀}|

- ▶ Input: Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ **Input:** Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ **Input:** Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ **Input:** Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ **Input:** Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ Input: Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ Input: Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ Input: Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ Input: Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ Input: Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

- ▶ **Input:** Hypermatching M covering $S \in \mathcal{I}$, i_0 s.t. $S \cup \{i_0\} \in \mathcal{I}$
- (1) discovered nodes $C := \{i_0\}$; add edges $A := \emptyset$; blocking edges $B := \emptyset$
- (2) REPEAT
 - (3) Find size (¹/₃ ^ε/₂)-size candidate add edges (i) disjoint to discovered resources. (ii) covering D with (S \ C)∪D ∈ I and (iii) |D| ≥ Ω_ε(|C|).
 - (4) CASE 1: Add edges intersect $\Omega_{\varepsilon}(|C|)$ edges in M. Add blocking edges to B. Expand C and continue.
 - (5) CASE 2: Find $\Omega_{\varepsilon}(|C|)$ edges disjoint to resources of M. Update $S' := S \setminus \tilde{C} \cup \tilde{D}$ (if one covers i_1 s.t. $S \cup \{i_1\} \in \mathcal{I} \to \text{done}$)

X

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \cup D \in \mathcal{I}$.

X

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

▶ We show **one** edge is possible!

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

▶ We show **one** edge is possible!

▶ blocking edges \geq add edges \Rightarrow $|W| < \frac{2}{3} \cdot T \cdot |C|$ used resources

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

▶ We show **one** edge is possible!

▶ blocking edges \geq add edges $\Rightarrow |W| < \frac{2}{3} \cdot T \cdot |C|$ used resources

• Let
$$U := \{i \in X \mid (S \setminus C) \dot{\cup} \{i\} \in \mathcal{I}\}$$
 be swapping candidates

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

- ▶ blocking edges \geq add edges \Rightarrow $|W| < \frac{2}{3} \cdot T \cdot |C|$ used resources
- Let $U := \{i \in X \mid (S \setminus C) \cup \{i\} \in \mathcal{I}\}$ be swapping candidates
- ▶ Lemma: $\sum_{i \in U} x_i \ge |C|$ (using that x in base polytope)

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \cup D \in \mathcal{I}$.

- ▶ blocking edges \geq add edges \Rightarrow $|W| < \frac{2}{3} \cdot T \cdot |C|$ used resources
- ► Let $U := \{i \in X \mid (S \setminus C) \cup \{i\} \in \mathcal{I}\}$ be swapping candidates
- ▶ Lemma: $\sum_{i \in U} x_i \ge |C|$ (using that x in base polytope)

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

- ▶ blocking edges \geq add edges $\Rightarrow |W| < \frac{2}{3} \cdot T \cdot |C|$ used resources
- ► Let $U := \{i \in X \mid (S \setminus C) \cup \{i\} \in \mathcal{I}\}$ be swapping candidates
- ▶ Lemma: $\sum_{i \in U} x_i \ge |C|$ (using that x in base polytope)

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

Lemma

Suppose $(x, y) \in LP$. Then $\exists \Theta_{\varepsilon}(|C|)$ disjoint $(\frac{1}{3} - \frac{\varepsilon}{2})$ -size hyperedges that are (i) disjoint to discovered resources; (ii) covering D with $S \setminus C \dot{\cup} D \in \mathcal{I}$.

Running time analysis

Termination:

• Define $s_t :=$ number of blocking edges in step $1, \ldots, t$

Running time analysis

Termination:

- Define $s_t :=$ number of blocking edges in step $1, \ldots, t$
- ▶ Observation: Vector (s₁, s₂, ..., s_{O(log n)}) is lexicographically decreasing!

Running time analysis

Termination:

- Define $s_t :=$ number of blocking edges in step $1, \ldots, t$
- ▶ Observation: Vector (s₁, s₂, ..., s_{O(log n)}) is lexicographically decreasing!
- ▶ First updated st drops by constant factor
 ⇒ polynomial number of iterations

 Fix 0 < δ < 1. Call gifts of size *p_j* > δ · OPT large;

Fix 0 < δ < 1. Call gifts of size
 p_j > δ · OPT large;
 small otherwise

- Fix $0 < \delta < 1$. Call gifts of size $p_j > \delta \cdot OPT$ large; Small otherwise
- ▶ $\mathcal{I} := \{S \subseteq \text{children} | S \text{ can} \\ \text{all receive one large gift} \}$ (children, \mathcal{I}) is a **matroid**!

- ▶ Fix 0 < δ < 1. Call gifts of size
 p_j > δ · OPT large;
 small otherwise
- $$\begin{split} \blacktriangleright \ \mathcal{I} &:= \{S \subseteq \text{children} | S \text{ can} \\ & \text{all receive one large gift} \} \\ & (\text{children}, \mathcal{I}) \text{ is a matroid!} \quad S \end{split}$$
- ▶ Let (children, \mathcal{I}^*) be **co-matroid**

- Fix 0 < δ < 1. Call gifts of size
 p_j > δ · OPT large;
 small otherwise
- $$\begin{split} \blacktriangleright \ \mathcal{I} &:= \{S \subseteq \text{children} | S \text{ can} \\ \text{all receive one large gift} \} \\ (\text{children}, \mathcal{I}) \text{ is a matroid!} \quad S \end{split}$$
- ▶ Let (children, \mathcal{I}^*) be **co-matroid**

Find basis S of **co-matroid** and assignment of value $(\frac{1}{3} - \varepsilon)OPT - \delta \cdot OPT$.

- Fix 0 < δ < 1. Call gifts of size
 p_j > δ · OPT large;
 small otherwise
- $$\begin{split} \blacktriangleright \ \mathcal{I} &:= \{S \subseteq \text{children} | S \text{ can} \\ \text{all receive one large gift} \} \\ (\text{children}, \mathcal{I}) \text{ is a matroid!} \quad S \end{split}$$
- ▶ Let (children, \mathcal{I}^*) be **co-matroid**

Find basis S of **co-matroid** and assignment of value $(\frac{1}{3} - \varepsilon)OPT - \delta \cdot OPT$.

Overall happiness of children is

$$\min\left\{\delta \cdot OPT, \left(\frac{1}{3} - \varepsilon - \delta\right)OPT\right\}$$

- Fix 0 < δ < 1. Call gifts of size
 p_j > δ · OPT large;
 small otherwise
- $$\begin{split} \blacktriangleright \ \mathcal{I} &:= \{S \subseteq \text{children} | S \text{ can} \\ \text{all receive one large gift} \} \\ (\text{children}, \mathcal{I}) \text{ is a matroid!} \quad S \end{split}$$
- ▶ Let (children, \mathcal{I}^*) be **co-matroid**

Find basis S of **co-matroid** and assignment of value $(\frac{1}{3} - \varepsilon)OPT - \delta \cdot OPT$.

Overall happiness of children is

$$\min\left\{\delta \cdot OPT, \left(\frac{1}{3} - \varepsilon - \delta\right)OPT\right\} \stackrel{\delta := \frac{1}{6}}{=} \left(\frac{1}{6} - \varepsilon\right)OPT$$

- Fix 0 < δ < 1. Call gifts of size
 p_j > δ · OPT large;
 small otherwise
- $$\begin{split} \blacktriangleright \ \mathcal{I} &:= \{S \subseteq \text{children} | S \text{ can} \\ \text{all receive one large gift} \} \\ (\text{children}, \mathcal{I}) \text{ is a matroid!} \quad S \end{split}$$
- ▶ Let (children, \mathcal{I}^*) be **co-matroid**

Find basis S of **co-matroid** and assignment of value $(\frac{1}{3} - \varepsilon)OPT - \delta \cdot OPT$.

Overall happiness of children is

$$\min\left\{\delta \cdot OPT, \left(\frac{1}{3} - \varepsilon - \delta\right)OPT\right\} \stackrel{\delta := \frac{1}{6}}{=} \left(\frac{1}{6} - \varepsilon\right)OPT$$

 $\Rightarrow (6 + \varepsilon)$ -apx in poly-time (also gap for $O(n^2)$ -size LP)

Open problems
Open problems

Santa Claus:

- ▶ $2 \leq \text{integrality gap for configuration LP} \leq 4$
- ▶ $2 \leq approximation ratio \leq 6$

Open problems

Santa Claus:

- ▶ 2 ≤ integrality gap for configuration $LP \le 4$
- ▶ $2 \leq approximation ratio \leq 6$

Unrelated Santa Claus: (arbitrary p_{ij})

- O(log¹⁰ n) in quasi-polynomial time [Chakrabarty, Chuzhoy, Khanna '09]
- \blacktriangleright Best known hardness: 2

Open problems

Santa Claus:

- ▶ $2 \leq \text{integrality gap for configuration LP} \leq 4$
- ▶ $2 \leq approximation ratio \leq 6$

Unrelated Santa Claus: (arbitrary p_{ij})

- O(log¹⁰ n) in quasi-polynomial time [Chakrabarty, Chuzhoy, Khanna '09]
- \blacktriangleright Best known hardness: 2

Thanks for your attention