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TSP	and	2EC

• Given	graph	𝐾"	with		metric	
weight	function	𝑤:𝐸(𝐺) → ℝ,

TSP:

Find	the	min	weight	
Hamilton	cycle	of	𝐺

2EC:

Find	the	min	weight	2-edge	
connected	subgraph	of	𝐺



Subtour	Elimination	LP

𝑧" = 	 : 𝑥<𝑤(𝑒)
�

<∈@(AB)

												 : 𝑥< = 2						𝑓𝑜𝑟	𝑣 ∈ 𝑉 𝐾"

�

<∈I(J)

												 : 𝑥< ≥ 2						𝑓𝑜𝑟	∅ ⊂ 𝑆 ⊂ 𝑉(𝐾")
�

<∈I(O)

																							𝑥<	≥ 0							𝑓𝑜𝑟	𝑒 ∈ 𝐸(𝐾")

𝑆(𝑛)



Tours	and	shortcuts

• Let	𝐺 be	a	subgraph	of	𝐾".	

• If	𝐺	has	a	connected	Eulerian	multigraph	𝐹,	then	𝐾" has	a	
Hamilton	cycle	of	weight	at	most	∑ 𝑤(𝑒)�

<∈U .

• Proof:	Shortcut	every	second	visit	to	each	node.	By	triangle	
inequality	we	never	increase	the	weight,	and	total	degree	
decreases.

A	tour	of	𝐺



• Replace	tour	with	2-edge-connected	spanning	
multigraph	and	we	call	it	the	2EC-four-thirds-conjecture.	
Similarly	we	can	make	a	2EC-six-fifths-conjecture.

• Both	TSP	and	2EC	open	for	anything	below	W
X
for	decades

The	four-thirds	conjecture
Minimum	weight	Hamilton	cycle	of		𝐾" ≤

f
W
⋅ 𝑧"



The	 X
"hi

-vector	of	𝐾", (call	it) 𝑣 ∈ 𝑆(𝐾")

Example

: 𝑣< =
2

𝑛 − 1 𝛿 𝑣 = 2
�

<∈I(J)

: 𝑣< =
�

<∈I(O)

2
𝑛 − 1 𝛿 𝑆 ≥ 2

Proof

An	𝛼-vector	of	𝐺 = (𝑉, 𝐸)	is	a	vector		𝑣 ∈ ℝ@ r 	
where	𝑣< = 𝛼 for	all	𝑒 ∈ 𝐸.

Definition



Uniform	covers
• Is	the	𝛼-vector	for	𝐺 in	the	convex	hull	of	tours	(or	2-
edge-connected	multigraphs)	of		𝐺?

• If	yes,	we	say	𝐺 has	an	𝛼-uniform	cover	for	TSP	(or	
2EC)

Example
Graph	𝐾f has	a	

X
W
-uniform	cover	for	TSP



Relation	to	uniform	covers

Lemma
If	the	four-thirds	conjecture	holds,	then	for	every	𝑘 ∈ ℤ,,	

there	is	an	 z
W{
-uniform	cover	for	TSP	on	any	𝑘-edge-

connected	𝑘-regular	graph.

Proof
𝑥 =	X

{
for	every	edge	of	the	k-regular	k-EC	graph	is	in	the	

subtour polytope

Four-thirds	conjecture	implies	f|
W
is	a	convex	combination	

of	tours



A	framework	for	approaching	the	
conjecture
Lemma
If	for	every	𝑘 ∈ ℤ,,	there	is	an	 z

W{
-uniform	cover	for	TSP	on	

any	𝑘-edge-connected	𝑘-regular	graph,	then	the	four-thirds	

conjecture	follows.

Proof
𝑥 =	optimal	solution	to	the	subtour	elimination	LP

𝑡 = min 	{𝑚 ∈ ℤ,: 	𝑚𝑥	 is	integer)



Consider	the	graph	𝐻 = 𝑉, 𝐸	 ,	where	𝐸 contains	𝑡𝑥<
copies	of	each	𝑒 ∈ 𝐸

Graph	𝐻	is	2𝑡-edge-connected	and	2𝑡-regular:

deg� 𝑣 = 	 : 𝑡𝑥< = 2𝑡
�

<∈I�(J)

𝛿�(𝑆) 			= 	 : 𝑡𝑥< ≥ 2𝑡
�

<∈I�(O)

Lemma
If	for	every	𝑘 ∈ ℤ,,	there	is	an	 z

W{
-uniform	cover	for	TSP	on	any	𝑘-edge-

connected	𝑘-regular	graph,	then	the	four-thirds	conjecture	follows.

Proof



𝐺	is	2𝑡-edge-connected	and	2𝑡-regular

The	 z
W(X�)

-vector	of	𝐺 is	in	the	convex	hull	of	tours	of	𝐺

For	any	weight	function	𝑤,	there	is	a	tour	with	weight	

≤
4
3𝑡 : 𝑡𝑥<𝑤 𝑒 = 	

4
3 ⋅ 𝑧��

�

<∈@ �

Lemma
If	for	every	𝑘 ∈ ℤ,,	there	is	an	 z

W{
-uniform	cover	for	TSP	on	any	𝑘-edge-

connected	𝑘-regular	graph,	then	the	four-thirds	conjecture	follows.

Proof
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{
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𝑘 = 4 z
W{
= X

W
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𝑘 = 3 �
�
-uniform cover	for	2EC	[not	polytime]	[Legault ‘17]	

𝑘 = 3	and	𝐺
Hamiltonian

�
�
-uniform cover	for	TSP	[Boyd,	Sebő ‘17]	

𝑘 = 3 iz
i�
-uniform	cover	for	TSP	[polytime]	[This	talk]

𝑘 = 3 i�
i�
-uniform	cover	for	2EC	[polytime]	[This	talk]
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iX
iW
-uniform	cover	for	TSP	[polytime]

𝑘 = 3	and	𝐺
bipartite

�
z
-uniform	cover	for	2EC	[polytime]



There	is	an	iz
i�
-uniform	cover	for	TSP	on	3-edge-connected	

cubic	graphs.

Theorem
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i�
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There	is	an	iz
i�
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𝟏𝟓
𝟏𝟗×																										

𝟒
𝟏𝟗×																											=
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𝟏					 𝑪
𝟒/𝟓 𝑴
𝟎					 𝑭

																				�
3/4 𝐶
	3/2 𝑀
3/2 𝐹

																				�
18/19 𝐶
	18/19 𝑀
6/19 		𝐹

𝑢 = �
1					 𝐶
0					 𝑀
0					 𝐹

𝑣 = �
0					 𝐶
2/5 𝑀
0					 𝐹
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𝑢 = �
1					 𝐶
0					 𝑀
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𝑣 = �
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𝟏𝟓
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𝟒
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											 : 𝑥< ≥ 𝒫 − 1						𝑓𝑜𝑟	𝒫 ∈ Π"

�

<∈I(𝒫)

																							𝑥<	≥ 0																	𝑓𝑜𝑟	𝑒 ∈ 𝐸
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�
𝟏					 𝑪
𝟒/𝟓 𝑴
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																				�
3/4 𝐶
	3/2 𝑀
3/2 𝐹

																				�
18/19 𝐶
	18/19 𝑀
6/19 		𝐹

𝑢 = �
1					 𝐶
0					 𝑀
0					 𝐹

𝑣 = �
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𝟏𝟓
𝟏𝟗×																													

𝟒
𝟏𝟗×																													=

Pick	𝐶	as	above.	Let	𝑀 = 𝐸(𝐺 𝐶⁄ ),	and	𝐹 = 𝐸 ∖ 𝑀 ∪ 𝐶

�
1					 𝐶
4/5 𝑀
0					 𝐹

					+ 														�
𝟑/𝟒 𝑪
	𝟑/𝟐 𝑴
𝟑/𝟐 𝑭

																				�
18/19 𝐶
	18/19 𝑀
6/19 		𝐹

𝑢 = �
1/2					 𝐶
1									 𝑀
1										 𝐹

																																																			

𝑢 is	in	the	subtour polytope	of	𝐺

3𝑢/2 is	a	convex	combination	of	tours	of	𝐺

Proof



Let	𝑦 be	a	half-integral	
feasible	solution	to	the	
cut	LP,		then	f

W
𝑦 can	be	

decomposed	into	integral	
feasible	solutions.

min:𝑦ℓ𝑐(ℓ)
�

ℓ∈�
				𝑦 𝛿 𝑒 ≥ 1			for	𝑒 ∈ 𝑇

𝑦 ≥ 0						

Tree	Augmentation	Problem	(WTAP)

Given	a	tree	T	and	non	tree-edges	(links),	find	a	minimum	
cost	set	of	links	whose	addition	makes	the	tree	2-edge-
connected

Theorem	[Cheriyan,	Jordan,	Ravi	‘99]
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�
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𝟓
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�
𝟏					 𝑪
𝟑/𝟓 𝑴
𝟎					 𝑭

																	�
5/6 𝐶
	1				 𝑀
1				 𝐹

																				�
15/17 		𝐶
	15/17 		𝑀
12/17 		𝐹

𝑢 = �
1						 𝐶
0					 𝑀
0						 𝐹

𝑣 = �
0					 𝐶
2/5 𝑀
0					 𝐹

𝑣 is	in	the	subtour	polytope	for	𝐺 𝐶⁄

3
2𝑣 = convex	combination	of	tours	of 𝐺 𝐶⁄

𝑢 + W
X
𝑣 =	convex	combination	of	2ECS’s	of	𝐺

Proof



𝟓
𝟏𝟕×																									

𝟏𝟐
𝟏𝟕×																													=

Pick	𝐶	as	above.	Let	𝑀 = 𝐸(𝐺 𝐶⁄ ),	and	𝐹 = 𝐸 ∖ 𝑀 ∪ 𝐶

�
1					 𝐶
3/5 𝑀
0					 𝐹

																	�
𝟓/𝟔 𝑪
	𝟏				 𝑴
𝟏				 𝑭

																				�
15/17 		𝐶
	15/17 		𝑀
12/17 		𝐹

𝑢 = �
1/2						 𝐶
1										 𝑀
1											 𝐹

𝑢 is	in	the	connector	polytope	for	𝐺

𝑢 = convex	combination	of	connected	subgraphs	of	𝐺

𝑢 = 	: 𝜆¼𝑇¼
{

¼½i
	 , 𝜆 ∈ ℝ,, 𝜆 i = 1

Proof



𝟓
𝟏𝟕×																									

𝟏𝟐
𝟏𝟕×																													=

Pick	𝐶	as	above.	Let	𝑀 = 𝐸(𝐺 𝐶⁄ ),	and	𝐹 = 𝐸 ∖ 𝑀 ∪ 𝐶

�
1					 𝐶
3/5 𝑀
0					 𝐹

																	�
𝟓/𝟔 𝑪
	𝟏				 𝑴
𝟏				 𝑭

																				�
15/17 		𝐶
	15/17 		𝑀
12/17 		𝐹

∑ 𝜆¼𝑇¼{
¼½i 	= �

1/2						 𝐶
1										 𝑀
1											 𝐹

													𝑢¼ = ¾ 0 𝑇¼
1/2 not	in		𝑇¼

By	CJR:			f
W
𝑢¼ =	convex	combination	of	1-covers	of	𝑇¼

𝑇¼ +
f
W
𝑢¼ =	convex	comb	of	2-edge-conn	multigraphs	of	𝐺

∑ 𝜆¼(𝑇¼+
f
W
𝑢¼){

¼½i =	convex	comb	of	2-edge-conn	multigraphs	of	𝐺

Proof



There	is	an	iX
iW
-uniform	cover	for	TSP	on	3-edge-connected	

bipartite cubic	graphs.

Theorem

There	is	an	�
z
-uniform	cover	for	2EC	on	3-edge-connected	

bipartite	cubic	graphs.

Theorem

Let	𝐺	be	bridgeless,	cubic	and	bipartite graph,	then	𝐺 has	
a	cycle	cover	𝐶 that	covers	all	3-edge,	4-edge,	and	5-edge
cuts	of	𝐺.

Lemma
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General 𝑘 W

{
-uniform	cover for	TSP	[Christofides	’76,	Wolsey	‘90]

General	𝑘 W
{
-uniform	cover for	2EC	[Christofides	’76,	Wolsey	‘90]

𝑘 = 4 z
W{
= X

W
-uniform	cover	for 2EC	[not	polytime] [Carr,	Ravi	’98]

𝑘 = 3 �
�
-uniform cover	for	2EC	[not	polytime]	[Legault ‘17]	

𝑘 = 3	and	𝐺
Hamiltonian

�
�
-uniform cover	for	TSP	[Boyd,	Sebő ‘17]	

𝑘 = 3 iz
i�
-uniform	cover	for	TSP	[polytime]	[This	talk]

𝑘 = 3 i�
i�
-uniform	cover	for	2EC	[polytime]	[This	talk]

𝑘 = 3	and	𝐺
bipartite	

iX
iW
-uniform	cover	for	TSP	[polytime]

𝑘 = 3	and	𝐺
bipartite

�
z
-uniform	cover	for	2EC	[polytime]





A	“BIT”	beyond:	A	�
�
	-approximation	for		

node	weight	TSP	on	cubic	3EC	graphs	
Edge	weights	w(u,v)	=	w(u)	+	w(v).	Let	𝑊 = ∑ 𝑤(𝑣)�

J

• Subtour bound	Z	=	2W	(Assign	X
W
everywhere)

• BIT	cycle	cover	C	costs	2W
• 𝐺 𝐶⁄ is	5-edge	connected	so	putting	X

�
on	these	edges	

dominates	a	convex	combination	of	spanning	trees.	
Double	and	add	to	tree	for	a	cost	of	f

�
on	the	edges	of	

𝐺 𝐶⁄ .	Additional	cost	=	f
�
W

• Total	cost	=	(2	+	f
�
)	W	≤ (1	+	X

�
) Z



Other	Results	(see	arXiv)

• Node	Weighted	on	3-edge-connected,	cubic
• �
�
for	TSP

• iW
iÀ
for	2EC

• Refinements	for	bipartite	cases

• Node	Weighted	on	2-edge-connected,	cubic
• f
W
for	2EC





Implication:	4/3	approximation	for	node-weighted	
2EC	in	subcubic graphs



Open	Problems

• Get	a	better	than	W
f
	- uniform	cover	for	TSP	on	4-

edge-connected	4-regular	graphs.

• Improve	iz
i�
	- uniform	cover	of	TSP	on	3-edge-

connected	cubic	graphs.

• Find	a	(W
X
− 𝜖)-approximation	for	TSP	or	2EC.

Paper	at	https://arxiv.org/pdf/1707.05387.pdf


