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TSP and 2EC

* Given graph K,, with metric
weight function w: E(G) -» R”

TSP:

Find the min weight
Hamilton cycle of G

2EC:

Find the min weight 2-edge
connected subgraph of G




Subtour Elimination LP

Zy = z x.w(e)
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/ z X, =2 forveV(K,) \

e€d(v)

z Xe =22 for@cSclV(Ky,) S(Tl)
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Tours and shortcuts A tour of

* Let G be a subgraph of K,,.

e IfG has[a connected Eulerian multigraph] F,then K,, has a

Hamilton cycle of weight at most ), ¢ w(e).

* Proof: Shortcut every second visit to each node. By triangle
inequality we never increase the weight, and total degree

decreases.




Minimum weight Hamilton cycle of K,, < g © Zp

[ The four-thirds conjecture

* Replace tour with 2-edge-connected spanning
multigraph and we call it the 2EC-four-thirds-conjecture.

Similarly we can make a 2EC-six-fifths-conjecture.

* Both TSP and 2EC open for anything below% for decades



- Definition

~
An a-vector of G = (V, E) is a vector v € RE()
where v, = a foralle € E.

\_ J

~ Example N
The ﬁ-vector of K, (callit) v € S(K,,)

\ y
Proof

4 )




Uniform covers

* [s the a-vector for G in the convex hull of tours (or 2-

edge-connected multigraphs) of G?

* If yes, we say G has an a-uniform cover for TSP (or

2EQ)

/ Example

\ o

o><')
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O

Graph K, has a g-uniform cover for TSP

O

\




Relation to uniform covers

~ Lemma
If the four-thirds conjecture holds, then for every k € Z™,

. 8 .
there is an a-unlform cover for TSP on any k-edge-

connected k-regular graph.

\

— Proof

X = % for every edge of the k-regular k-EC graph is in the
subtour polytope

. . 4. 4x, L
Four-thirds conjecture implies ~ is a convex combination
of tours




A framework for approaching the
conjecture

~ Lemma \

If for every k € Z™, there is an %—uniform cover for TSP on

any k-edge-connected k-regular graph, then the four-thirds

conjecture follows.

\\ J

~— Proof \

x = optimal solution to the subtour elimination LP

t = min {m € Z*: mx is integer)




~- Lemma

If for every k € Z™, there is an %-uniform cover for TSP on any k-edge-

connected k-regular graph, then the four-thirds conjecture follows.

A\

~ Proof ~N
Consider the graph H = (V, E ), where E contains tx,

copiesofeache € E

Graph H is 2t-edge-connected and 2t-regular:

degy(v) = 2 tx, = 2t

eedy(v)

Z tx, = 2t

eedy(S)

|6 (S)]




~- Lemma

If for every k € Z™, there is an %-uniform cover for TSP on any k-edge-

connected k-regular graph, then the four-thirds conjecture follows.

A\

~ Proof ~

G is 2t-edge-connected and 2t-regular

The %—Vector of G is in the convex hull of tours of G

For any weight function w, there is a tour with weight

4
< i ter(e) = < Z1p

3
e€E(H)




What is known?

General k

%-uniform cover for TSP [Christofides 76, Wolsey ‘90]

General k

%—uniform cover for 2EC [Christofides '76, Wolsey ‘90]
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~ Theorem

.

\

~
There is an g-uniform cover for TSP on 3-edge-connected
cubic graphs.
J
~ Theorem |Boyd, Iwata, Takazawa ‘13] \
Let G be bridgeless and cubic, then ¢ has a cycle cover C
that covers all 3-edge and 4-edge cuts of G.
J




~ Theorem N

. 18 .
There is an E-umform cover for TSP on 3-edge-connected

cubic graphs.
. J

~ Theorem |Boyd, Iwata, Takazawa ‘13] \

Let G be bridgeless and cubic, then ¢ has a cycle cover C
that covers all 3-edge and 4-edge cuts of G.

g J
Proof
Pick C as above. LetM = E(G/C),andF = E\MUC
1 C (3/4 ¢
4/5 M $3/2 M
0 F (3/2 F

- J




~ Theorem N

. 18 .
There is an E-umform cover for TSP on 3-edge-connected

cubic graphs.
. J

~ Theorem |Boyd, Iwata, Takazawa ‘13] \

Let G be bridgeless and cubic, then ¢ has a cycle cover C
that covers all 3-edge and 4-edge cuts of G.

q y
Proof
Pick C as above. LetM = E(G/C),andF = E\MUC
= (1 ¢ 4, (34 c (18/19 ¢
Cxdass M —xd3/2 M = {18/19 M
19 (o r 19 3/2 F 6/19 F

- J




/Proof ~N
Pick C as above.LetM = E(G/C),and F =E\MUC

([ A ( (
= (1 ¢! 4 (3/4 C 18/19 C
ToX{4/5 M| 5x43/2 M = {18/19 M
o F, 3/2 F (6/19 F

(1 ¢ (0 ¢

u=-50 M v=<2/5 M

0 F 0 F




/ Proof ~N

Pick C as above.LetM = E(G/C),and F =E\MUC

[ A ( (
= (1 ¢ 4 3/4 C 18/19 C
19 X14/5 M 9%13/2 M = {18/19 M
o F, 3/2 F (6/19 F

(1 ¢ (0 ¢

u=+0 M v=<2/5 M

0 F 0 F

v is in the connector polytope of G/C




% Proof

C N

Z X = |Pl—1 forP ell,

e€b(P)
Xe = 0 fore€E

A8 /
(1 ¢ (0 ¢
u=+40 M =<2/5 M
KO F \O F

visin the[connector polytope]of G/C




’ Proof ~N

Pick C as above.LetM = E(G/C),and F =E\MUC

‘. A ( (
15 (1 C 4 3/4 C 18/19 C
To74/5 M 19%y3/2 M = {18/19 M
0 F 3/2 F 6/19 F

\ \ \

N\ Y,

(1 ¢ (0 ¢

u=-x0 M v=12/5 M

L0 F 0 F

v is in the connector polytope of G/C
2v = conv comb of doubled connected subgraphs of G/C

Uu + 2v = convex combination of tours

\_ J




’ Proof ~N

Pick C as above.LetM = E(G/C),and F =E\MUC
(7 R (
15 (1 C 4 3/4 C 18/19 C
1—9><< 4/5 M + Ex 3/2 M| = < 18/19 M
3/2 F 6/19 F
0 F A / ) \ /
(172 ¢
u=11 M
1 F
o—oO
u is in the subtour polytope of G
Oo—0
3u/2 is a convex combination of tours of G - :

\_ J




Tree Augmentation Problem (WTAP)

Given a tree T and non tree-edges (links), find a minimum
cost set of links whose addition makes the tree 2-edge-

connected
/ Theorem [Cheriyan, Jordan, Ravi ‘99| ~
Let y be a half-integral
feasible solution to the min z yec(£)
cut LP, then % y can be €L

decomposed into integral y(S(e)) i (1) foreeT
feasible solutions. y 2

\_ J




~ Theorem N
15

There is an E-uniform cover for 2EC on 3-edge-connected
cubic graphs.
. J
~ Theorem |Boyd, Iwata, Takazawa ‘13] \

Let G be bridgeless and cubic, then ¢ has a cycle cover C
that covers all 3-edge and 4-edge cuts of G.

G J
/ Theorem [Cheriyan, Jordan, Ravi ‘99| ~
Let y be a half-integral
feasible solution to the min z yec(£)
cut LP, then % y can be €L

decomposed into integral y(S(e)) i (1) foreeT
feasible solutions. y 2

\_ J




~ Theorem N

. 15 .
There is an E-umform cover for 2EC on 3-edge-connected

cubic graphs.
. J

~ Theorem |Boyd, Iwata, Takazawa ‘13] \

Let G be bridgeless and cubic, then ¢ has a cycle cover C
that covers all 3-edge and 4-edge cuts of G.

g J
Proof
Pick C as above. LetM = E(G/C),andF = E\MUC
1 C 5/6 C
3/5 M 1 M
0 F 1 F

- J




~ Theorem N

. 15 .
There is an E-umform cover for 2EC on 3-edge-connected

cubic graphs.
. J

~ Theorem |Boyd, Iwata, Takazawa ‘13] \

Let G be bridgeless and cubic, then ¢ has a cycle cover C
that covers all 3-edge and 4-edge cuts of G.

- y
Proof
Pick C as above. LetM = E(G/C),andF = E\MUC
s (1 ¢ 1, (5/6 C (15/17 ¢
35 M Z=xd1 M = {15/17 M
17 (o r 17 (1 F (1217 F

- J




’ Proof ~N
Pick C as above.LetM = E(G/C),andF =E\MUC
(, N
- (1 ¢, (506 C (15/17 ¢
ﬁx<3/5 M ﬁ><<1 M =  15/17 M
12/1 F
QO Fj L1 F \ /17
(1 ¢ (0 ¢
u=+<0 M v=<2/5 M
0 F 0 F
v is in the subtour polytope for G /C
3
5 v = convex combination of tours of G /C
u + gv = convex combination of 2ZECS’s of G




Proof

Pick C as above.LetM = E(G/C),and F =E\MUC

. (1 ¢
—x13/5 M

12
— X
17

(7 )
(5/6 C
i1 M

(1 F

)
(1/2
1
1

A

(15/17
- {15/17
12/17
C
M
F

u is in the connector polytope for G

C
M
F

u = convex combination of connected subgraphs of G

k
= Z AT, A€RY Al =1
=1




’ Proof

\_

. (1 ¢

—x33/5 M

17700 F
£c=1/1iTi = 9

12
— X
17

(1/2
1

1

/f N\
5/6 C
1 M
\1 F)

C

M

F

.-

By CJR: %ui = convex combination of 1-covers of T;

Pick C as above.LetM = E(G/C),and F =E\MUC

(15/17
! 15/17
12/17

0 T;
1/2 notin T;

~N

C
M
F

T; + %ui = convex comb of 2-edge-conn multigraphs of G

4
i-(=1 A (T + 3 U;) = convex comb of 2-edge-conn multigraphs of G

,/




~ Theorem \

. 12 .
There is an 1—3-un1form cover for TSP on 3-edge-connected

bipartite cubic graphs.

G J
~ Theorem \
There is an g-uniform cover for 2EC on 3-edge-connected

bipartite cubic graphs.
G J
~ Lemma N

Let G be bridgeless, cubic and bipartite graph, then G has
a cycle cover C that covers all 3-edge, 4-edge, and 5-edge
cuts of G.
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Node-weighted w

 Given graph G = (V,E), function f:V —» R*

define w: E - R*

fore = (u,v) € E:w(e) = f(u) + f(v)
TSP:
Find the min weight Eulerian connected multigraph of ¢

2EC:
Find the min weight 2-edge connected multigraph of G



A “BIT” beyond: A g -approximation for
node weight TSP on cubic 3EC graphs

Edge weights w(u,v) =w(u) + w(v). Let W = ), w(v)
* Subtour bound Z = 2W (Assign % everywhere)
* BIT cycle cover C costs 2W

. .2
* G/C is 5-edge connected so putting -on these edges
dominates a convex combination of spanning trees.

Double and add to tree for a cost of% on the edges of

G /C. Additional cost = % W%

* Total cost = (2 +§)WS(1+§)Z



Other Results (see arXiv)

* Node Weighted on 3-edge-connected, cubic
. % for TSP
+ 2 for 2EC
10

* Refinements for bipartite cases

* Node Weighted on 2-edge-connected, cubic
. % for 2EC



Connector

* A connector F of G is a connected spanning
multigraph of G, where F has at most 2 copies of

every edge in G.

Example: A spanning tree is a connector.




Theorem: There are connectors Fj, ..., F;, of G such

that
1. x* = Zf=1 AiFi ) where )li >0 ,Zf=1 /11' =1
2. Every F; has an even number of edges crossing

a 2-edge cutin G

Implication: 4/3 approximation for node-weighted
2EC in subcubic graphs



Open Problems

* Get a better than % - uniform cover for TSP on 4-
edge-connected 4-regular graphs.

* Improve 1—2 - uniform cover of TSP on 3-edge-

connected cubic graphs.

* Find a (g — €)-approximation for TSP or 2EC.

Paper at https://arxiv.org/pdf/1707.05387.pdf




