Shorter tours and longer detours

R. Ravi (CMU)
Joint work with
Arash Haddadan (CMU)*
Alantha Newman (CNRS, Grenoble)

* Thanks for slides

TSP and 2EC

- Given graph K_{n} with metric weight function $w: E(G) \rightarrow \mathbb{R}^{+}$ TSP:

Find the min weight Hamilton cycle of G 2EC:

Find the min weight 2-edge connected subgraph of G

Subtour Elimination LP

$$
z_{n}=\sum_{e \in E\left(K_{n}\right)} x_{e} w(e)
$$

$$
\begin{array}{cl}
\sum_{e \in \delta(v)} x_{e}=2 & \text { for } v \in V\left(K_{n}\right) \\
\sum_{e \in \delta(S)} x_{e} \geq 2 & \text { for } \emptyset \subset S \subset V\left(K_{n}\right) \\
x_{e} \geq 0 & \text { for } e \in E\left(K_{n}\right)
\end{array}
$$

Tours and shortcuts

A tour of G

- Let G be a subgraph of K_{n}.
- If G has a connected Eulerian multigraph F, then K_{n} has a Hamilton cycle of weight at most $\sum_{e \in F} w(e)$.
- Proof: Shortcut every second visit to each node. By triangle inequality we never increase the weight, and total degree decreases.

The four-thirds conjecture

 Minimum weight Hamilton cycle of $K_{n} \leq \frac{4}{3} \cdot z_{n}$- Replace tour with 2-edge-connected spanning multigraph and we call it the 2EC-four-thirds-conjecture. Similarly we can make a 2EC-six-fifths-conjecture.
- Both TSP and 2EC open for anything below $\frac{3}{2}$ for decades

Definition

An α-vector of $G=(V, E)$ is a vector $v \in \mathbb{R}^{E(G)}$ where $v_{e}=\alpha$ for all $e \in E$.

- Example

The $\frac{2}{n-1}$-vector of K_{n}, (call it) $v \in S\left(K_{n}\right)$
Proof

$$
\begin{aligned}
& \sum_{e \in \delta(v)} v_{e}=\frac{2}{n-1}|\delta(v)|=2 \\
& \sum_{e \in \delta(S)} v_{e}=\frac{2}{n-1}|\delta(S)| \geq 2
\end{aligned}
$$

Uniform covers

- Is the α-vector for G in the convex hull of tours (or 2-edge-connected multigraphs) of G ?
- If yes, we say G has an α-uniform cover for TSP (or 2EC)

Example

Graph K_{4} has a $\frac{2}{3}$-uniform cover for TSP

Relation to uniform covers

Lemma If the four-thirds conjecture holds, then for every $k \in \mathbb{Z}^{+}$, there is an $\frac{8}{3 k}$-uniform cover for TSP on any k-edgeconnected k-regular graph.

Proof
$x=\frac{2}{k}$ for every edge of the k-regular k-EC graph is in the subtour polytope

Four-thirds conjecture implies $\frac{4 x}{3}$ is a convex combination of tours

A framework for approaching the conjecture

- Lemma

If for every $k \in \mathbb{Z}^{+}$, there is an $\frac{8}{3 k}$-uniform cover for TSP on any k-edge-connected k-regular graph, then the four-thirds conjecture follows.
$x=$ optimal solution to the subtour elimination LP

$$
t=\min \left\{m \in \mathbb{Z}^{+}: m x \text { is integer }\right)
$$

Lemma

If for every $k \in \mathbb{Z}^{+}$, there is an $\frac{8}{3 k}$-uniform cover for TSP on any k-edgeconnected k-regular graph, then the four-thirds conjecture follows.

Consider the graph $H=(V, E)$, where E contains $t x_{e}$ copies of each $e \in E$

Graph H is $2 t$-edge-connected and $2 t$-regular:

$$
\begin{aligned}
\operatorname{deg}_{H}(v) & =\sum_{e \in \delta_{H}(v)} t x_{e}=2 t \\
\left|\delta_{H}(S)\right| & =\sum_{e \in \delta_{H}(S)} t x_{e} \geq 2 t
\end{aligned}
$$

Lemma

If for every $k \in \mathbb{Z}^{+}$, there is an $\frac{8}{3 k}$-uniform cover for TSP on any k-edgeconnected k-regular graph, then the four-thirds conjecture follows.
G is $2 t$-edge-connected and $2 t$-regular
The $\frac{8}{3(2 t)}$-vector of G is in the convex hull of tours of G

For any weight function w, there is a tour with weight

$$
\leq \frac{4}{3 t} \sum_{e \in E(H)} t x_{e} w(e)=\frac{4}{3} \cdot z_{L P}
$$

What is known?

General k	$\frac{3}{k}$-uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$-uniform cover for 2EC [Christofides '76, Wolsey '90]

What is known?

General k	$\frac{3}{k}$-uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$-uniform cover for 2EC [Christofides '76, Wolsey '90]
$k=4$	$\frac{8}{3 k}=\frac{2}{3}$-uniform cover for 2EC [not polytime] [Carr, Ravi '98]

What is known?

General k	$\frac{3}{k}$-uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$-uniform cover for 2EC [Christofides '76, Wolsey '90]
$k=4$	$\frac{8}{3 k}=\frac{2}{3}$-uniform cover for 2EC [not polytime] [Carr, Ravi '98]
$k=3$	$\frac{7}{9}$-uniform cover for 2EC [not polytime] [Legault '17]

What is known?

General k	$\frac{3}{k}$-uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$-uniform cover for 2EC [Christofides '76, Wolsey '90]
$k=4$	$\frac{8}{3 k}=\frac{2}{3}$-uniform cover for 2EC [not polytime] [Carr, Ravi '98]
$k=3$	$\frac{7}{9}$-uniform cover for 2EC [not polytime] [Legault '17]
$k=3$ and G Hamiltonian	$\frac{6}{7}$-uniform cover for TSP [Boyd, Sebő '17]

What is known?

General k	$\frac{3}{k}$-uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$-uniform cover for 2EC [Christofides '76, Wolsey '90]
$k=4$	$\frac{8}{3 k}=\frac{2}{3}$-uniform cover for 2EC [not polytime] [Carr, Ravi '98]
$k=3$	$\frac{7}{9}$-uniform cover for 2EC [not polytime] [Legault '17]
$k=3$ and G Hamiltonian	$\frac{6}{7}$-uniform cover for TSP [Boyd, Sebő '17]
$k=3$	$\frac{18}{19}$-uniform cover for TSP [polytime] [This talk]
$k=3$	$\frac{15}{17}$-uniform cover for 2EC [polytime] [This talk]
$k=3$ and G bipartite	$\frac{12}{13}$-uniform cover for TSP [polytime]
$k=3$ and G bipartite	$\frac{7}{8}$-uniform cover for 2EC [polytime]

Theorem
There is an $\frac{18}{19}$-uniform cover for TSP on 3-edge-connected cubic graphs.

Theorem [Boyd, Iwata, Takazawa '13]
Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

Theorem
There is an $\frac{18}{19}$-uniform cover for TSP on 3-edge-connected cubic graphs.

Theorem [Boyd, Iwata, Takazawa '13]
Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

$$
\left\{\begin{array} { l l }
{ 1 } & { C } \\
{ 4 / 5 } & { M } \\
{ 0 } & { F }
\end{array} \quad \left\{\begin{array}{ll}
3 / 4 & C \\
3 / 2 & M \\
3 / 2 & F
\end{array}\right.\right.
$$

There is an $\frac{18}{19}$-uniform cover for TSP on 3-edge-connected cubic graphs.

Theorem [Boyd, Iwata, Takazawa '13]
Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

$$
\frac{15}{19} \times\left\{\begin{array}{ll}
1 & C \\
4 / 5 & M \\
0 & F
\end{array} \quad \frac{4}{19} \times\left\{\begin{array}{ll}
3 / 4 & C \\
3 / 2 & M \\
3 / 2 & F
\end{array}= \begin{cases}18 / 19 & C \\
18 / 19 & M \\
6 / 19 & F\end{cases}\right.\right.
$$

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$ $\frac{15}{19} \times\left\{\begin{array}{ll}\left(\begin{array}{ll}1 & C \\ \mathbf{4} / 5 & M \\ 0 & F\end{array}\right. & \frac{4}{19} \times\left\{\begin{array}{ll}3 / 4 & C \\ 3 / 2 & M \\ 3 / 2 & F\end{array} \quad=\quad \begin{cases}18 / 19 & C \\ 18 / 19 & M \\ 6 / 19 & F\end{cases} \right. \\ u & = \begin{cases}1 & C \\ 0 & M \\ 0 & F\end{cases} \end{array} \quad v= \begin{cases}0 & C \\ 2 / 5 & M \\ 0 & F\end{cases} \right.$

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

v is in the connector polytope of G / C

Proof

$$
\sum_{e \in \delta(\mathcal{P})} x_{e} \geq|\mathcal{P}|-1 \quad \text { for } \mathcal{P} \in \Pi_{n}
$$

$$
x_{e} \geq 0 \quad \text { for } e \in E
$$

$$
u=\left\{\begin{array}{ll}
1 & C \\
0 & M \\
0 & F
\end{array} \quad v= \begin{cases}0 & C \\
2 / 5 & M \\
0 & F\end{cases}\right.
$$

v is in the connector polytope of G / C

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$
$\frac{15}{19} \times \begin{cases}1 & C \\ 4 / 5 & M \\ 0 & F\end{cases}$

$$
u=\left\{\begin{array}{ll}
1 & C \\
0 & M \\
0 & F
\end{array} \quad v= \begin{cases}0 & C \\
2 / 5 & M \\
0 & F\end{cases}\right.
$$

v is in the connector polytope of G / C
$2 v=$ conv comb of doubled connected subgraphs of G / C

$$
u+2 v=\text { convex combination of tours }
$$

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

$$
u= \begin{cases}1 / 2 & C \\ 1 & M \\ 1 & F\end{cases}
$$

u is in the subtour polytope of G
$3 u / 2$ is a convex combination of tours of G

Tree Augmentation Problem (WTAP)

Given a tree T and non tree-edges (links), find a minimum cost set of links whose addition makes the tree 2-edgeconnected

Theorem [Cheriyan, Jordan, Ravi '99]

Let y be a half-integral feasible solution to the cut LP, then $\frac{4}{3} y$ can be decomposed into integral feasible solutions.

$$
\begin{gathered}
\min \sum_{\ell \in L} y_{\ell} c(\ell) \\
y(\delta(e)) \stackrel{\ell}{\geq} \text { for } e \in T \\
y \geq 0
\end{gathered}
$$

Theorem
There is an $\frac{15}{17}$-uniform cover for 2EC on 3-edge-connected cubic graphs.

Theorem [Boyd, Iwata, Takazawa '13]
Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

Theorem [Cheriyan, Jordan, Ravi '99]
Let y be a half-integral feasible solution to the cut LP, then $\frac{4}{3} y$ can be decomposed into integral feasible solutions.

$$
\begin{gathered}
\min \sum_{\ell \in L} y_{\ell} c(\ell) \\
y(\delta(e)) \stackrel{\ell}{\geq} \text { for } e \in T \\
y \geq 0
\end{gathered}
$$

Theorem
There is an $\frac{15}{17}$-uniform cover for 2EC on 3-edge-connected cubic graphs.

Theorem [Boyd, Iwata, Takazawa '13]
Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

$$
\left\{\begin{array} { l l }
{ 1 } & { C } \\
{ 3 / 5 } & { M } \\
{ 0 } & { F }
\end{array} \quad \left\{\begin{array}{ll}
5 / 6 & C \\
1 & M \\
1 & F
\end{array}\right.\right.
$$

There is an $\frac{15}{17}$-uniform cover for 2EC on 3-edge-connected cubic graphs.

Theorem [Boyd, Iwata, Takazawa '13]
Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

$$
\frac{\mathbf{5}}{\mathbf{1 7}} \times\left\{\begin{array}{lll}
1 & C \\
3 / 5 & M \\
0 & F
\end{array} \quad \frac{\mathbf{1 2}}{\mathbf{1 7}} \times\left\{\begin{array}{ll}
5 / 6 & C \\
1 & M \\
1 & F
\end{array}= \begin{cases}15 / 17 & C \\
15 / 17 & M \\
12 / 17 & F\end{cases}\right.\right.
$$

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

v is in the subtour polytope for G / C
$\frac{3}{2} v=$ convex combination of tours of G / C
$u+\frac{3}{2} v=$ convex combination of 2ECS's of G

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

$$
\begin{array}{cc}
\frac{\mathbf{5}}{\mathbf{1 7}} \times\left\{\begin{array}{lll}
1 & C \\
3 / 5 & M & \mathbf{1 2} \\
0 & F
\end{array}\right) \times \frac{ \begin{cases}\mathbf{5} / \mathbf{1 7} & C \\
\mathbf{1} & \mathbf{M} \\
\mathbf{1} & \boldsymbol{F}\end{cases} }{}= & \begin{cases}15 / 17 & C \\
15 / 17 & M \\
12 / 17 & F\end{cases} \\
u & = \begin{cases}1 / 2 & C \\
1 & M \\
1 & F\end{cases}
\end{array}
$$

u is in the connector polytope for G
$u=$ convex combination of connected subgraphs of G

$$
u=\sum_{i=1}^{k} \lambda_{i} T_{i}, \lambda \in \mathbb{R}^{+},\|\lambda\|_{1}=1
$$

Proof

Pick C as above. Let $M=E(G / C)$, and $F=E \backslash M \cup C$

$$
\begin{aligned}
\frac{\mathbf{5}}{\mathbf{1 7}} \times\left\{\begin{array}{lll}
1 & C & \mathbf{1 2} \\
3 / 5 & M & \frac{\mathbf{1 7}}{\mathbf{1 7}} \times \begin{array}{ll}
\mathbf{5} / 6 & \boldsymbol{C} \\
\mathbf{1} & \mathbf{M} \\
\mathbf{1} & \boldsymbol{F}
\end{array} \\
\hline & F & = \begin{cases}15 / 17 & C \\
15 / 17 & M \\
12 / 17 & F\end{cases} \\
\sum_{i=1}^{k} \lambda_{i} T_{i} & = \begin{cases}1 / 2 & C \\
1 & M \\
1 & F\end{cases} & u_{i}
\end{array}=\left\{\begin{array}{cc}
0 & T_{i} \\
1 / 2 & \operatorname{not} \text { in } T_{i}
\end{array}\right.\right.
\end{aligned}
$$

By CJR: $\frac{4}{3} u_{i}=$ convex combination of 1 -covers of T_{i}
$T_{i}+\frac{4}{3} u_{i}=$ convex comb of 2-edge-conn multigraphs of G
$\sum_{i=1}^{k} \lambda_{i}\left(T_{i}+\frac{4}{3} u_{i}\right)=$ convex comb of 2 -edge-conn multigraphs of G

Theorem

There is an $\frac{12}{13}$-uniform cover for TSP on 3-edge-connected bipartite cubic graphs.

Theorem
There is an $\frac{7}{8}$-uniform cover for 2EC on 3-edge-connected bipartite cubic graphs.

Lemma

Let G be bridgeless, cubic and bipartite graph, then G has a cycle cover C that covers all 3 -edge, 4 -edge, and 5 -edge cuts of G.

What is known?

General k	$\frac{3}{k}$-uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$-uniform cover for 2EC [Christofides '76, Wolsey '90]
$k=4$	$\frac{8}{3 k}=\frac{2}{3}$-uniform cover for 2EC [not polytime] [Carr, Ravi '98]
$k=3$	$\frac{7}{9}$-uniform cover for 2EC [not polytime] [Legault '17]
$k=3$ and G Hamiltonian	$\frac{6}{7}$-uniform cover for TSP [Boyd, Sebő '17]
$k=3$	$\frac{18}{19}$-uniform cover for TSP [polytime] [This talk]
$k=3$	$\frac{15}{17}$-uniform cover for 2EC [polytime] [This talk]
$k=3$ and G bipartite	$\frac{12}{13}$-uniform cover for TSP [polytime]
$k=3$ and G bipartite	$\frac{7}{8}$-uniform cover for 2EC [polytime]

Node-weighted w

- Given graph $G=(V, E)$, function $f: V \rightarrow \mathbb{R}^{+}$ define $w: E \rightarrow \mathbb{R}^{+}$

$$
\text { for } e=(u, v) \in E: w(e)=f(u)+f(v)
$$

TSP:
Find the min weight Eulerian connected multigraph of G 2EC:

Find the min weight 2-edge connected multigraph of G

A "BIT" beyond: A $\frac{7}{5}$-approximation for node weight TSP on cubic 3EC graphs

Edge weights $w(u, v)=w(u)+w(v)$. Let $W=\sum_{v} w(v)$

- Subtour bound $\mathrm{Z}=2 \mathrm{~W}$ (Assign $\frac{2}{3}$ everywhere)
- BIT cycle cover C costs 2 W
- G / C is 5-edge connected so putting $\frac{2}{5}$ on these edges dominates a convex combination of spanning trees. Double and add to tree for a cost of $\frac{4}{5}$ on the edges of G / C. Additional cost $=\frac{4}{5} \mathrm{~W}$
- Total cost $=\left(2+\frac{4}{5}\right) \mathrm{W} \leq\left(1+\frac{2}{5}\right) \mathrm{Z}$

Other Results (see arXiv)

- Node Weighted on 3-edge-connected, cubic
- ${ }_{5}^{7}$ for TSP
- $\frac{13}{10}$ for 2 EC
- Refinements for bipartite cases
- Node Weighted on 2-edge-connected, cubic
- $\frac{4}{3}$ for 2EC

Connector

- A connector F of G is a connected spanning multigraph of G, where F has at most 2 copies of every edge in G.

Example: A spanning tree is a connector.

Theorem: There are connectors F_{1}, \ldots, F_{k} of G such that

1. $x^{*} \geq \sum_{i=1}^{t} \lambda_{i} F_{i}$, where $\lambda_{i}>0, \sum_{i=1}^{t} \lambda_{i}=1$
2. Every F_{i} has an even number of edges crossing a 2-edge cut in G

Implication: 4/3 approximation for node-weighted 2EC in subcubic graphs

Open Problems

- Get a better than $\frac{3}{4}$ - uniform cover for TSP on 4-edge-connected 4-regular graphs.
- Improve $\frac{18}{19}$ - uniform cover of TSP on 3-edgeconnected cubic graphs.
- Find a $\left(\frac{3}{2}-\epsilon\right)$-approximation for TSP or 2EC. Paper at https://arxiv.org/pdf/1707.05387.pdf

