Shorter tours and longer detours

R. Ravi (CMU) Joint work with Arash Haddadan (CMU)* Alantha Newman (CNRS, Grenoble)

* Thanks for slides

TSP and 2EC

• Given graph K_n with metric weight function $w: E(G) \to \mathbb{R}^+$

TSP:

Find the min weight Hamilton cycle of *G*

2EC:

Find the min weight 2-edge connected subgraph of *G*

Subtour Elimination LP

$$z_n = \sum_{e \in E(K_n)} x_e w(e)$$

$$\sum_{e \in \delta(v)} x_e = 2 \quad for \ v \in V(K_n)$$
$$\sum_{e \in \delta(S)} x_e \ge 2 \quad for \ \emptyset \subset S \subset V(K_n) \qquad S(n)$$
$$x_e \ge 0 \quad for \ e \in E(K_n)$$

Tours and shortcuts

A tour of G

- Let G be a subgraph of K_n .
- If *G* has a connected Eulerian multigraph *F*, then K_n has a Hamilton cycle of weight at most $\sum_{e \in F} w(e)$.
- Proof: Shortcut every second visit to each node. By triangle inequality we never increase the weight, and total degree decreases.

- The four-thirds conjecture Minimum weight Hamilton cycle of $K_n \leq \frac{4}{3} \cdot z_n$

- Replace tour with 2-edge-connected spanning multigraph and we call it the 2EC-four-thirds-conjecture.
 Similarly we can make a 2EC-six-fifths-conjecture.
- Both TSP and 2EC open for anything below $\frac{3}{2}$ for decades

Definition

An α -vector of G = (V, E) is a vector $v \in \mathbb{R}^{E(G)}$ where $v_e = \alpha$ for all $e \in E$.

- Example
The
$$\frac{2}{n-1}$$
-vector of K_n , (call it) $v \in S(K_n)$

- Proof ·

$$\sum_{e \in \delta(v)} v_e = \frac{2}{n-1} |\delta(v)| = 2$$
$$\sum_{e \in \delta(S)} v_e = \frac{2}{n-1} |\delta(S)| \ge 2$$

Uniform covers

- Is the α-vector for G in the convex hull of tours (or 2edge-connected multigraphs) of G?
- If yes, we say *G* has an *α*-uniform cover for TSP (or 2EC)

Relation to uniform covers

- Lemma

If the four-thirds conjecture holds, then for every $k \in \mathbb{Z}^+$,

there is an $\frac{8}{3k}$ -uniform cover for TSP on any *k*-edge-

connected *k*-regular graph.

- Proof $x = \frac{2}{k}$ for every edge of the k-regular k-EC graph is in the subtour polytope Four-thirds conjecture implies $\frac{4x}{3}$ is a convex combination of tours

A framework for approaching the conjecture

- Lemma

If for every $k \in \mathbb{Z}^+$, there is an $\frac{8}{3k}$ -uniform cover for TSP on any k-edge-connected k-regular graph, then the four-thirds conjecture follows.

Proof

x = optimal solution to the subtour elimination LP

 $t = \min \{m \in \mathbb{Z}^+: mx \text{ is integer}\}$

- Lemma

If for every $k \in \mathbb{Z}^+$, there is an $\frac{8}{3k}$ -uniform cover for TSP on any k-edge-

connected *k*-regular graph, then the four-thirds conjecture follows.

- Proof

Consider the graph H = (V, E), where E contains tx_e copies of each $e \in E$

Graph *H* is 2*t*-edge-connected and 2*t*-regular:

$$\deg_{H}(v) = \sum_{e \in \delta_{H}(v)} tx_{e} = 2t$$
$$|\delta_{H}(S)| = \sum_{e \in \delta_{H}(S)} tx_{e} \ge 2t$$

– Lemma

Proof

If for every $k \in \mathbb{Z}^+$, there is an $\frac{8}{3k}$ -uniform cover for TSP on any k-edge-

connected *k*-regular graph, then the four-thirds conjecture follows.

G is 2*t*-edge-connected and 2*t*-regular

The $\frac{8}{3(2t)}$ -vector of *G* is in the convex hull of tours of *G*

For any weight function *w*, there is a tour with weight

$$\leq \frac{4}{3t} \sum_{e \in E(H)} t x_e w(e) = \frac{4}{3} \cdot z_{LP}$$

General k	$\frac{3}{k}$ -uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$ -uniform cover for 2EC [Christofides '76, Wolsey '90]

General k	$\frac{3}{k}$ -uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$ -uniform cover for 2EC [Christofides '76, Wolsey '90]
k = 4	$\frac{8}{3k} = \frac{2}{3}$ -uniform cover for 2EC [not polytime] [Carr, Ravi '98]

General k	$\frac{3}{k}$ -uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$ -uniform cover for 2EC [Christofides '76, Wolsey '90]
k = 4	$\frac{8}{3k} = \frac{2}{3}$ -uniform cover for 2EC [not polytime] [Carr, Ravi '98]
<i>k</i> = 3	⁷ / ₉ -uniform cover for 2EC [not polytime] [Legault '17]

General k	$\frac{3}{k}$ -uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$ -uniform cover for 2EC [Christofides '76, Wolsey '90]
k = 4	$\frac{8}{3k} = \frac{2}{3}$ -uniform cover for 2EC [not polytime] [Carr, Ravi '98]
<i>k</i> = 3	⁷ / ₉ -uniform cover for 2EC [not polytime] [Legault '17]
k = 3 and G Hamiltonian	6/7-uniform cover for TSP [Boyd, Sebő '17]

General k	$\frac{3}{k}$ -uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$ -uniform cover for 2EC [Christofides '76, Wolsey '90]
k = 4	$\frac{8}{3k} = \frac{2}{3}$ -uniform cover for 2EC [not polytime] [Carr, Ravi '98]
<i>k</i> = 3	⁷ / ₉ -uniform cover for 2EC [not polytime] [Legault '17]
k = 3 and G Hamiltonian	6/7-uniform cover for TSP [Boyd, Sebő '17]
<i>k</i> = 3	$\frac{18}{19}$ -uniform cover for TSP [polytime] [This talk]
<i>k</i> = 3	$\frac{15}{17}$ -uniform cover for 2EC [polytime] [This talk]
k = 3 and G bipartite	$\frac{12}{13}$ -uniform cover for TSP [polytime]
k = 3 and G bipartite	$\frac{7}{8}$ -uniform cover for 2EC [polytime]

There is an $\frac{18}{19}$ -uniform cover for TSP on 3-edge-connected cubic graphs.

- Theorem [Boyd, Iwata, Takazawa '13]

Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

There is an $\frac{18}{19}$ -uniform cover for TSP on 3-edge-connected cubic graphs.

- Theorem [Boyd, Iwata, Takazawa '13]

Let *G* be bridgeless and cubic, then *G* has a cycle cover *C* that covers all 3-edge and 4-edge cuts of *G*.

Proof —

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$\begin{cases} 1 & C \\ 4/5 & M \\ 0 & F \end{cases} \qquad \begin{cases} 3/4 & C \\ 3/2 & M \\ 3/2 & F \end{cases}$$

- Theorem

There is an $\frac{18}{19}$ -uniform cover for TSP on 3-edge-connected cubic graphs.

- Theorem [Boyd, Iwata, Takazawa '13]

Let *G* be bridgeless and cubic, then *G* has a cycle cover *C* that covers all 3-edge and 4-edge cuts of *G*.

Proof Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$ $\frac{15}{19} \times \begin{cases} 1 & C \\ 4/5 & M \\ 0 & F \end{cases} \quad \frac{4}{19} \times \begin{cases} 3/4 & C \\ 3/2 & M \\ 3/2 & F \end{cases} = \begin{cases} 18/19 & C \\ 18/19 & M \\ 6/19 & F \end{cases}$

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$\frac{15}{19} \times \begin{bmatrix} 1 & C \\ 4/5 & M \\ 0 & F \end{bmatrix} \quad \frac{4}{19} \times \begin{cases} 3/4 & C \\ 3/2 & M \\ 3/2 & F \end{cases} = \quad \begin{cases} 18/19 & C \\ 18/19 & M \\ 6/19 & F \end{cases}$$
$$u = \begin{cases} 1 & C \\ 0 & M \\ 0 & F \end{cases} \quad v = \begin{cases} 0 & C \\ 2/5 & M \\ 0 & F \end{cases}$$

v is in the connector polytope of G/C

Proof

$$\sum_{e \in \delta(\mathcal{P})} x_e \ge |\mathcal{P}| - 1 \quad for \ \mathcal{P} \in \Pi_n$$

$$x_e \ge 0 \qquad for \ e \in E$$

$$u = \begin{cases} 1 & C \\ 0 & M \\ 0 & F \end{cases} \qquad v = \begin{cases} 0 & C \\ 2/5 & M \\ 0 & F \end{cases}$$

$$v \text{ is in the connector polytope of } G/C$$

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$\frac{15}{19} \times \begin{bmatrix} 1 & C \\ 4/5 & M \\ 0 & F \end{bmatrix} \quad \frac{4}{19} \times \begin{cases} 3/4 & C \\ 3/2 & M \\ 3/2 & F \end{cases} = \quad \begin{cases} 18/19 & C \\ 18/19 & M \\ 6/19 & F \end{cases}$$
$$u = \begin{cases} 1 & C \\ 0 & M \\ 0 & F \end{cases} \quad v = \begin{cases} 0 & C \\ 2/5 & M \\ 0 & F \end{cases}$$

v is in the connector polytope of G/C

2v = conv comb of doubled connected subgraphs of G/C

u + 2v = convex combination of tours

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$\frac{15}{19} \times \begin{cases} 1 & C \\ 4/5 & M \\ 0 & F \end{cases} + \frac{4}{19} \times \begin{bmatrix} 3/4 & C \\ 3/2 & M \\ 3/2 & F \end{bmatrix} = \begin{cases} 18/19 & C \\ 18/19 & M \\ 6/19 & F \end{cases}$$
$$u = \begin{cases} 1/2 & C \\ 1 & M \\ 1 & F \end{cases}$$

u is in the subtour polytope of *G*

3u/2 is a convex combination of tours of *G*

Tree Augmentation Problem (WTAP)

Given a tree T and non tree-edges (links), find a minimum cost set of links whose addition makes the tree 2-edge-connected

. Theorem [Cheriyan, Jordan, Ravi '99]

Let *y* be a half-integral feasible solution to the cut LP, then $\frac{4}{3}y$ can be decomposed into integral feasible solutions.

 $\min \sum_{\ell \in L} y_{\ell} c(\ell)$ $y(\delta(e)) \ge 1 \text{ for } e \in T$ $y \ge 0$

There is an $\frac{15}{17}$ -uniform cover for 2EC on 3-edge-connected cubic graphs.

- Theorem [Boyd, Iwata, Takazawa '13]

Let G be bridgeless and cubic, then G has a cycle cover C that covers all 3-edge and 4-edge cuts of G.

Theorem [Cheriyan, Jordan, Ravi '99]

Let *y* be a half-integral feasible solution to the cut LP, then $\frac{4}{3}y$ can be decomposed into integral feasible solutions.

 $\min \sum_{\ell \in L} y_{\ell} c(\ell)$ $y(\delta(e)) \ge 1 \text{ for } e \in T$ $y \ge 0$

There is an $\frac{15}{17}$ -uniform cover for 2EC on 3-edge-connected cubic graphs.

- Theorem [Boyd, Iwata, Takazawa '13]

Let *G* be bridgeless and cubic, then *G* has a cycle cover *C* that covers all 3-edge and 4-edge cuts of *G*.

Proof —

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$\begin{cases} 1 & C \\ 3/5 & M \\ 0 & F \end{cases} \qquad \begin{cases} 5/6 & C \\ 1 & M \\ 1 & F \end{cases}$$

There is an $\frac{15}{17}$ -uniform cover for 2EC on 3-edge-connected cubic graphs.

- Theorem [Boyd, Iwata, Takazawa '13]

Let *G* be bridgeless and cubic, then *G* has a cycle cover *C* that covers all 3-edge and 4-edge cuts of *G*.

Proof Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$= \begin{cases} 1 & c \\ 3/5 & M \\ 0 & F \end{cases} \quad \frac{12}{17} \times \begin{cases} 5/6 & c \\ 1 & M \\ 1 & F \end{cases} \quad = \quad \begin{cases} 13/17 & c \\ 15/17 & M \\ 12/17 & F \end{cases}$$

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$\frac{5}{17} \times \begin{bmatrix} 1 & C \\ 3/5 & M \\ 0 & F \end{bmatrix} \frac{12}{17} \times \begin{cases} 5/6 & C \\ 1 & M \\ 1 & F \end{cases} = \begin{cases} 15/17 & C \\ 15/17 & M \\ 12/17 & F \end{cases}$$
$$u = \begin{cases} 1 & C \\ 0 & M \\ 0 & F \end{cases} \quad v = \begin{cases} 0 & C \\ 2/5 & M \\ 0 & F \end{cases}$$

v is in the subtour polytope for G/C

 $\frac{3}{2}v = \text{convex combination of tours of } G/C$ $u + \frac{3}{2}v = \text{convex combination of 2ECS's of } G$

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$

$$\frac{5}{17} \times \begin{cases} 1 & C \\ 3/5 & M \\ 0 & F \end{cases} \quad \frac{12}{17} \times \begin{cases} 5/6 & C \\ 1 & M \\ 1 & F \end{cases} = \begin{cases} 15/17 & C \\ 15/17 & M \\ 12/17 & F \end{cases}$$
$$u = \begin{cases} 1/2 & C \\ 1 & M \\ 1 & F \end{cases}$$

u is in the connector polytope for *G*

u =convex combination of connected subgraphs of G

$$u = \sum_{i=1}^{k} \lambda_i T_i , \lambda \in \mathbb{R}^+, \|\lambda\|_1 = 1$$

Pick *C* as above. Let M = E(G/C), and $F = E \setminus M \cup C$ $\frac{5}{17} \times \begin{cases} 1 & C \\ 3/5 & M \\ 0 & F \end{cases} \quad \frac{12}{17} \times \begin{cases} 5/6 & C \\ 1 & M \\ 1 & F \end{cases} = \begin{cases} 15/17 & C \\ 15/17 & M \\ 12/17 & F \end{cases}$ $\sum_{i=1}^{k} \lambda_i T_i = \begin{cases} 1/2 & C \\ 1 & M \\ 1 & F \end{cases} \quad u_i = \begin{cases} 0 & T_i \\ 1/2 & \text{not in } T_i \end{cases}$

By CJR: $\frac{4}{3}u_i$ = convex combination of 1-covers of T_i

 $T_i + \frac{4}{3}u_i = \text{convex comb of 2-edge-conn multigraphs of } G$ $\sum_{i=1}^k \lambda_i (T_i + \frac{4}{3}u_i) = \text{convex comb of 2-edge-conn multigraphs of } G$ - Theorem — There is an $\frac{12}{13}$ -uniform cover for TSP on 3-edge-connected **bipartite** cubic graphs.

- Theorem

There is an $\frac{7}{8}$ -uniform cover for 2EC on 3-edge-connected **bipartite** cubic graphs.

- Lemma

Let *G* be bridgeless, cubic and **bipartite** graph, then *G* has a cycle cover *C* that covers all 3-edge, 4-edge, and **5-edge** cuts of *G*.

General k	$\frac{3}{k}$ -uniform cover for TSP [Christofides '76, Wolsey '90]
General k	$\frac{3}{k}$ -uniform cover for 2EC [Christofides '76, Wolsey '90]
k = 4	$\frac{8}{3k} = \frac{2}{3}$ -uniform cover for 2EC [not polytime] [Carr, Ravi '98]
<i>k</i> = 3	⁷ / ₉ -uniform cover for 2EC [not polytime] [Legault '17]
k = 3 and G Hamiltonian	6/7-uniform cover for TSP [Boyd, Sebő '17]
<i>k</i> = 3	$\frac{18}{19}$ -uniform cover for TSP [polytime] [This talk]
<i>k</i> = 3	$\frac{15}{17}$ -uniform cover for 2EC [polytime] [This talk]
k = 3 and G bipartite	$\frac{12}{13}$ -uniform cover for TSP [polytime]
k = 3 and G bipartite	$\frac{7}{8}$ -uniform cover for 2EC [polytime]

Node-weighted *w*

• Given graph G = (V, E), function $f: V \to \mathbb{R}^+$ define $w: E \to \mathbb{R}^+$

for
$$e = (u, v) \in E: w(e) = f(u) + f(v)$$

TSP:

Find the min weight Eulerian connected multigraph of *G* **2EC:**

Find the min weight 2-edge connected multigraph of *G*

A "BIT" beyond: A $\frac{7}{5}$ -approximation for node weight TSP on cubic 3EC graphs

Edge weights w(u,v) = w(u) + w(v). Let $W = \sum_{v} w(v)$

- Subtour bound Z = 2W (Assign $\frac{2}{3}$ everywhere)
- BIT cycle cover C costs 2W
- G/C is 5-edge connected so putting $\frac{2}{5}$ on these edges dominates a convex combination of spanning trees. Double and add to tree for a cost of $\frac{4}{5}$ on the edges of G/C. Additional cost = $\frac{4}{5}$ W
- Total cost = $(2 + \frac{4}{5})$ W $\leq (1 + \frac{2}{5})$ Z

Other Results (see arXiv)

- Node Weighted on 3-edge-connected, cubic
 - $\frac{7}{5}$ for TSP
 - $\frac{13}{10}$ for 2EC
 - Refinements for bipartite cases
- Node Weighted on 2-edge-connected, cubic
 - $\frac{4}{3}$ for 2EC

Connector

- A connector *F* of *G* is a connected spanning multigraph of *G*, where *F* has at most 2 copies of every edge in *G*.
- **Example:** A spanning tree is a connector.

Theorem: There are connectors F_1, \ldots, F_k of G such that

1.
$$x^* \ge \sum_{i=1}^t \lambda_i F_i$$
, where $\lambda_i > 0$, $\sum_{i=1}^t \lambda_i = 1$

2. Every F_i has an even number of edges crossing a 2-edge cut in G

Implication: 4/3 approximation for node-weighted 2EC in subcubic graphs

Open Problems

- Get a better than $\frac{3}{4}$ uniform cover for TSP on 4edge-connected 4-regular graphs.
- Improve $\frac{18}{19}$ uniform cover of TSP on 3-edgeconnected cubic graphs.
- Find a $(\frac{3}{2} \epsilon)$ -approximation for TSP or 2EC.

Paper at https://arxiv.org/pdf/1707.05387.pdf