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(1, 2)-TSP

Input: A complete undirected graph G with weights one and
two on the edges.

Task: Compute a traveling salesman tour of G of minimum
weight.

Observation: Every instance of (1, 2)-TSP satisfies the
triangle inequality.
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Hardness of(1, 2)-TSP

It is one of Karp’s 21 NP-complete problems.

Proved to be APX-hard [Papadimitriou and Yannakakis
1993].

Best known inapproximability bound for (1, 2)-TSP is 535

534

[Karpinski and Schmied 2012]
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Starting point - a cycle cover

Compute a cycle cover Cmin of G of minimum weight,
where
a cycle cover of G – a collection of cycles such that
each vertex of G belongs to exactly one cycle in the
collection.

w(Cmin) ≤ OPT

Remove the heaviest edge from each cycle c of Cmin.

Patch the obtained paths in an arbitrary way so that
they form a traveling salesman tour.

From a cycle c of length k we obtain a path of weight at
most k+1

k
w(c). (In the worst case a 1-edge is replaced

with a 2-edge.)

Therefore we have a 4/3-approximation.
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w(Cmin) = 3 · 3 = 9
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2 w(Sol) = 3 · 4 = 12
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Hartvigsen’s algorithm

Computing a minimum weight cycle cover Cmin of a graph
is easy - by reducing to matchings.

[Hartvigsen] There is an O(n3) algorithm that, given a
complete graph G with edge weights 1 and 2, computes a
triangle-free cycle cover of G with minimum weight.
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Approximations algorithms

9

7
not using Hartvigsen’s algorithm [Papadimitriou,

Yannakakis 1993] O(n3)

7

6
using Hartvigsen’s algorithm [Papadimitriou,

Yannakakis 1993] O(n3)

65

56
using Hartvigsen’s algorithm [Bläser, Ram 2005]

O(n3)

8

7
local search, not using Hartvigsen’s

algorithm[Berman, Karpinski 2006] O(n9)

Our results:
7

6
not using Hartvigsen’s algorithm O(n2.5)

8

7
using Hartvigsen’s algorithm O(n3)
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Goal

The goal is to maximize the average length of a path
consisting of 1-edges.
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Mmin- a perfect matching of minimum weight

A minimum weight perfect matching Mmin satisfies
w(Mmin) ≤ OPT/2 (assuming the graph has an even
number of vertices).

We can use Mmin to connect cycles of Cmin and form
longer paths consisting of 1-edges.

It works only if each short cycle c of Cmin has an
incident 1-edge of Mmin connecting it with a different
cycle of Cmin.
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w(Cmin) = 4 · 4 = 16

w(Mmin) = 8

New Approximation Algorithms for (1, 2)-TSP – p. 11/29



w(Cmin) = 4 · 4 = 16

w(Mmin) = 8

2

2

2

2

w(Sol)/w(Cmin) =
20

16
= 5

4
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A good matching

We say that a matching M is good if it connects each
square (and hexagon) c of Cmin to somewhere outside of c.

The weight of a minimum weight perfect good matching is a
lower bound on OPT .
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Computational hardness of useful matchings

Computing a minimum weight perfect useful matching is
NP-hard.
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A matching that allows half-edges

.
A half-edge of the edge e is, informally speaking, a half of
the edge e that contains exactly one of the endpoints of e.

Theorem 1 A minimum weight perfect matching with
half-edges M

1

2 that connects each square (and hexagon) c
of Cmin to some vertex not on c can be computed in
polynomial time.
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w(Cmin) = 4 · 4 = 16

w(M
1

2 ) = 6 · 1 + 4 · 1

2
= 8
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Bad configurations of half-edges

w(Cmin) = 10

w(M
1

2 ) = 5
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w(Cmin) = 10

w(M
1

2 ) = 5

w(Sol)/w(Cmin) =
12

10
= 6

5

2
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A good matching with half-edges

To compute a minimum weight good matching with
half-edges we use (a, b)-matchings and gadgets.

Given two functions a, b : V → N , an (a, b)-matching is any
set M ⊆ E such that a(v) ≤ degM (v) ≤ b(v).
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Gadgets
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A 7/6-approximation algorithm

Compute a minimum weight cycle cover Cmin of G.

Find a minimum cost matching with half-edges (and
some additional properties) M

1

2 .

Based on and M
1

2 , construct a multigraph G1 on vertex
set V (G) with at least 5

2
αopt − βopt edges of weight 1

from G.

Path-3-color the edges of G1. (Color the edges of G1

with three colors so that each color class consists of
vertex-disjoint paths.)

Extend the set of edges of G1 from the largest color
class arbitrarily to a tour T of G.
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An 8/7-approximation algorithm

Using Hartvigsen’s algorithm compute a minimum
weight triangle-free cycle cover Cmin of G.

Find a minimum cost matching with half-edges (and
some additional properties) M

1

2 .

Based on and M
1

2 , construct a multigraph G1 on vertex
set V (G) with at least 7

2
αopt − βopt edges of weight 1

from G.

Path-4-color the edges of G1. (Color the edges of G1

with four colors so that each color class consists of
vertex-disjoint paths.)

Extend the set of edges of G1 from the largest color
class arbitrarily to a tour T of G.
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Method of path-3-coloringG1

We color the multigraph G1 cycle-wise - by considering
each cycle c of Cmin in turn and coloring all edges incident
to c.

An edge e = (u, v) of G1 is safe if no matter how we color
the so far uncolored edges of G1 edge e is guaranteed not
to belong to any monochromatic cycle.
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Path-3-coloring

A black square belongs to Cmin, red edges to M
1

2 .
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Path-3-coloring

1 2

13

We color the edges of M
1

2 .
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Path-3-coloring
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13

We direct the square - only for the purpose of coloring.
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Path-3-coloring
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Each colored edge is safe.
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Path-3-coloring cd
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11

Each edge already colored is safe.
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Path-3-coloring cd
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Each colored edge is safe.
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