New Approximation Algorithms for (1, 2)-TSP

Anna Adamaszek and Matthias Mnich and

Katarzyna Paluch

University of Wrocław

Input: A complete undirected graph *G* with weights one and two on the edges.

<u>*Task:*</u> Compute a traveling salesman tour of G of minimum weight.

Observation: Every instance of (1, 2)-TSP satisfies the triangle inequality.

Hardness of (1, 2)-TSP

- It is one of Karp's 21 NP-complete problems.
- Proved to be APX-hard [Papadimitriou and Yannakakis 1993].
- Best known inapproximability bound for (1,2)-TSP is $\frac{535}{534}$ [Karpinski and Schmied 2012]

Starting point - a cycle cover

- Compute a cycle cover C_{min} of G of minimum weight, where
 a cycle cover of G a collection of cycles such that each vertex of G belongs to exactly one cycle in the collection.
- $w(C_{min}) \le OPT$
- Semove the heaviest edge from each cycle c of C_{min} .
- Patch the obtained paths in an arbitrary way so that they form a traveling salesman tour.
- From a cycle c of length k we obtain a path of weight at most $\frac{k+1}{k}w(c)$. (In the worst case a 1-edge is replaced with a 2-edge.)
- Therefore we have a 4/3-approximation.

$$w(C_{min}) = 3 \cdot 3 = 9$$

$$w(C_{min}) = 3 \cdot 3 = 9$$

$$w(Sol) = 3 \cdot 4 = 12$$

Hartvigsen's algorithm

Computing a minimum weight cycle cover C_{min} of a graph is easy - by reducing to matchings.

[Hartvigsen] There is an $O(n^3)$ algorithm that, given a complete graph G with edge weights 1 and 2, computes a triangle-free cycle cover of G with minimum weight.

Approximations algorithms

- $\frac{9}{7}$ not using Hartvigsen's algorithm [Papadimitriou, Yannakakis 1993]
 $O(n^3)$
- $\frac{7}{6}$ using Hartvigsen's algorithm [Papadimitriou, Yannakakis 1993] $O(n^3)$
- Iocal search, not using Hartvigsen's algorithm[Berman, Karpinski 2006] $O(n^9)$

Our results:

- $\frac{7}{6}$ not using Hartvigsen's algorithm $O(n^{2.5})$
- \mathbf{I} \mathbf{I} $\frac{8}{7}$ using Hartvigsen's algorithm $O(n^3)$

Goal

The goal is to maximize the average length of a path consisting of 1-edges.

M_{min} - a perfect matching of minimum weight

- A minimum weight perfect matching M_{min} satisfies $w(M_{min}) \leq OPT/2$ (assuming the graph has an even number of vertices).
- We can use M_{min} to connect cycles of C_{min} and form longer paths consisting of 1-edges.
- It works only if each short cycle c of C_{min} has an incident 1-edge of M_{min} connecting it with a different cycle of C_{min} .

$w(C_{min}) = 4 \cdot 4 = 16$

 $w(M_{min}) = 8$

$$w(C_{min}) = 4 \cdot 4 = 16$$

$$w(M_{min}) = 8$$

 $w(Sol)/w(C_{min}) = \frac{20}{16} = \frac{5}{4}$

A good matching

We say that a matching M is **good** if it connects each square (and hexagon) c of C_{min} to somewhere outside of c.

The weight of a minimum weight perfect good matching is a lower bound on OPT.

Computational hardness of useful matchings

Computing a minimum weight perfect useful matching is NP-hard.

A matching that allows half-edges

A *half-edge* of the edge e is, informally speaking, a half of the edge e that contains exactly one of the endpoints of e.

Theorem 1 A minimum weight perfect matching with half-edges $M^{\frac{1}{2}}$ that connects each square (and hexagon) cof C_{min} to some vertex not on c can be computed in polynomial time.

$$w(C_{min}) = 4 \cdot 4 = 16$$

$$w(M^{\frac{1}{2}}) = 6 \cdot 1 + 4 \cdot \frac{1}{2} = 8$$

Bad configurations of half-edges

- $w(C_{min}) = 10$
- $w(M^{\frac{1}{2}}) = 5$

$$w(C_{min}) = 10$$
$$w(M^{\frac{1}{2}}) = 5$$

$$w(Sol)/w(C_{min}) = \frac{12}{10} = \frac{6}{5}$$

A good matching with half-edges

To compute a minimum weight good matching with half-edges we use (a, b)-matchings and gadgets.

Given two functions $a, b : V \to N$, an (a, b)-matching is any set $M \subseteq E$ such that $a(v) \leq deg_M(v) \leq b(v)$.

Gadgets

A 7/6-approximation algorithm

- Compute a minimum weight cycle cover C_{min} of G.
- Find a minimum cost matching with half-edges (and some additional properties) $M^{\frac{1}{2}}$.
- Based on and $M^{\frac{1}{2}}$, construct a multigraph G^1 on vertex set V(G) with at least $\frac{5}{2}\alpha_{opt} \beta_{opt}$ edges of weight 1 from G.
- Path-3-color the edges of G¹. (Color the edges of G¹ with three colors so that each color class consists of vertex-disjoint paths.)
- Extend the set of edges of G^1 from the largest color class arbitrarily to a tour \mathcal{T} of G.

An 8/7**-approximation algorithm**

- Using Hartvigsen's algorithm compute a minimum weight triangle-free cycle cover C_{min} of G.
- Find a minimum cost matching with half-edges (and some additional properties) $M^{\frac{1}{2}}$.
- Based on and $M^{\frac{1}{2}}$, construct a multigraph G^1 on vertex set V(G) with at least $\frac{7}{2}\alpha_{opt} \beta_{opt}$ edges of weight 1 from G.
- Path-4-color the edges of G¹. (Color the edges of G¹ with four colors so that each color class consists of vertex-disjoint paths.)
- Extend the set of edges of G^1 from the largest color class arbitrarily to a tour \mathcal{T} of G.

Method of path-3-coloring G^1

We color the multigraph G^1 cycle-wise - by considering each cycle c of C_{min} in turn and coloring all edges incident to c.

An edge e = (u, v) of G_1 is safe if no matter how we color the so far uncolored edges of G_1 edge e is guaranteed not to belong to any monochromatic cycle.

A black square belongs to C_{min} , red edges to $M^{\frac{1}{2}}$.

We color the edges of $M^{\frac{1}{2}}$.

We direct the square - only for the purpose of coloring.

Each colored edge is safe.

Each edge already colored is safe.

Each colored edge is safe.