New Approximation Algorithms for (1, 2)-TSP

Anna Adamaszek and Matthias Mnich and

Katarzyna Paluch

University of Wrocław

$(1,2)-\mathbf{T S P}$

Input: A complete undirected graph G with weights one and two on the edges.

Task: Compute a traveling salesman tour of G of minimum weight.

Observation: Every instance of (1,2)-TSP satisfies the triangle inequality.

Hardness of (1, 2)-TSP

- It is one of Karp's 21 NP-complete problems.
- Proved to be APX-hard [Papadimitriou and Yannakakis 1993].
- Best known inapproximability bound for $(1,2)$-TSP is $\frac{535}{534}$ [Karpinski and Schmied 2012]

Starting point - a cycle cover

- Compute a cycle cover $C_{\min }$ of G of minimum weight, where
a cycle cover of G - a collection of cycles such that each vertex of G belongs to exactly one cycle in the collection.
- $w\left(C_{\min }\right) \leq O P T$
- Remove the heaviest edge from each cycle c of $C_{\text {min }}$.
- Patch the obtained paths in an arbitrary way so that they form a traveling salesman tour.
- From a cycle c of length k we obtain a path of weight at most $\frac{k+1}{k} w(c)$. (In the worst case a 1 -edge is replaced with a 2-edge.)
- Therefore we have a 4/3-approximation.

$$
w\left(C_{\min }\right)=3 \cdot 3=9
$$

Hartvigsen's algorithm

Computing a minimum weight cycle cover $C_{\min }$ of a graph is easy - by reducing to matchings.
[Hartvigsen] There is an $O\left(n^{3}\right)$ algorithm that, given a complete graph G with edge weights 1 and 2, computes a triangle-free cycle cover of G with minimum weight.

Approximations algorithms

- $\frac{9}{7}$ not using Hartvigsen's algorithm [Papadimitriou, Yannakakis 1993] $O\left(n^{3}\right)$
- $\frac{7}{6}$ using Hartvigsen's algorithm [Papadimitriou, Yannakakis 1993] $O\left(n^{3}\right)$
- $\frac{65}{56}$ using Hartvigsen's algorithm [Bläser, Ram 2005] $O\left(n^{3}\right)$
- $\frac{8}{7}$ local search, not using Hartvigsen's algorithm[Berman, Karpinski 2006] $O\left(n^{9}\right)$

Our results:

- $\frac{7}{6}$ not using Hartvigsen's algorithm $O\left(n^{2.5}\right)$
- $\frac{8}{7}$ using Hartvigsen's algorithm $O\left(n^{3}\right)$

Goal

The goal is to maximize the average length of a path consisting of 1 -edges.

$M_{\min }$ - a perfect matching of minimum weight

- A minimum weight perfect matching $M_{\text {min }}$ satisfies $w\left(M_{\text {min }}\right) \leq O P T / 2$ (assuming the graph has an even number of vertices).
- We can use $M_{\min }$ to connect cycles of $C_{\min }$ and form longer paths consisting of 1 -edges.
- It works only if each short cycle c of $C_{\min }$ has an incident 1-edge of $M_{\text {min }}$ connecting it with a different cycle of $C_{\text {min }}$.

$$
w\left(C_{\min }\right)=4 \cdot 4=16
$$

$$
w\left(M_{\min }\right)=8
$$

$$
\begin{aligned}
& w\left(C_{\min }\right)=4 \cdot 4=16 \\
& w\left(M_{\min }\right)=8 \\
& w(S o l) / w\left(C_{\min }\right)=\frac{20}{16}=\frac{5}{4}
\end{aligned}
$$

A good matching

We say that a matching M is good if it connects each square (and hexagon) c of $C_{\min }$ to somewhere outside of c.

The weight of a minimum weight perfect good matching is a lower bound on OPT.

Computational hardness of useful matchings

Computing a minimum weight perfect useful matching is NP-hard.

A matching that allows half-edges

A half-edge of the edge e is, informally speaking, a half of the edge e that contains exactly one of the endpoints of e.

Theorem 1 A minimum weight perfect matching with half-edges $M^{\frac{1}{2}}$ that connects each square (and hexagon) c of $C_{\text {min }}$ to some vertex not on c can be computed in polynomial time.

$$
\begin{aligned}
& w\left(C_{\text {min }}\right)=4 \cdot 4=16 \\
& w\left(M^{\frac{1}{2}}\right)=6 \cdot 1+4 \cdot \frac{1}{2}=8
\end{aligned}
$$

Bad configurations of half-edges

$$
\begin{aligned}
& w\left(C_{\min }\right)=10 \\
& w\left(M^{\frac{1}{2}}\right)=5
\end{aligned}
$$

$$
\begin{aligned}
& w\left(C_{\min }\right)=10 \\
& w\left(M^{\frac{1}{2}}\right)=5 \\
& w(\text { Sol }) / w\left(C_{\min }\right)=\frac{12}{10}=\frac{6}{5}
\end{aligned}
$$

A good matching with half-edges

To compute a minimum weight good matching with half-edges we use (a, b)-matchings and gadgets.

Given two functions $a, b: V \rightarrow N$, an (a, b)-matching is any set $M \subseteq E$ such that $a(v) \leq \operatorname{deg}_{M}(v) \leq b(v)$.

Gadgets

A 7/6-approximation algorithm

- Compute a minimum weight cycle cover $C_{\min }$ of G.
- Find a minimum cost matching with half-edges (and some additional properties) $M^{\frac{1}{2}}$.
- Based on and $M^{\frac{1}{2}}$, construct a multigraph G^{1} on vertex set $V(G)$ with at least $\frac{5}{2} \alpha_{\text {opt }}-\beta_{\text {opt }}$ edges of weight 1 from G.
- Path-3-color the edges of G^{1}. (Color the edges of G^{1} with three colors so that each color class consists of vertex-disjoint paths.)
- Extend the set of edges of G^{1} from the largest color class arbitrarily to a tour \mathcal{T} of G.

An 8/7-approximation algorithm

- Using Hartvigsen's algorithm compute a minimum weight triangle-free cycle cover $C_{\text {min }}$ of G.
- Find a minimum cost matching with half-edges (and some additional properties) $M^{\frac{1}{2}}$.
- Based on and $M^{\frac{1}{2}}$, construct a multigraph G^{1} on vertex set $V(G)$ with at least $\frac{7}{2} \alpha_{\text {opt }}-\beta_{\text {opt }}$ edges of weight 1 from G.
- Path-4-color the edges of G^{1}. (Color the edges of G^{1} with four colors so that each color class consists of vertex-disjoint paths.)
- Extend the set of edges of G^{1} from the largest color class arbitrarily to a tour \mathcal{T} of G.

Method of path-3-coloring G^{1}

We color the multigraph G^{1} cycle-wise - by considering each cycle c of $C_{\text {min }}$ in turn and coloring all edges incident to c.

An edge $e=(u, v)$ of G_{1} is safe if no matter how we color the so far uncolored edges of G_{1} edge e is guaranteed not to belong to any monochromatic cycle.

Path-3-coloring

A black square belongs to $C_{\text {min }}$, red edges to $M^{\frac{1}{2}}$.

Path-3-coloring

We color the edges of $M^{\frac{1}{2}}$.

Path-3-coloring

We direct the square - only for the purpose of coloring.

Path-3-coloring

Each colored edge is safe.

Path-3-coloring cd

Each edge already colored is safe.

Path-3-coloring cd

Each colored edge is safe.

