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TSP Recap

TSP: Choose a connected, Eulerian subgraph of minimum cost.

Approach 1: Choose an Eulerian subgraph then make it connected

Approach 2: Choose a connected subgraph, then make it Eulerian

Polytime solvable

How?

Spanning Trees have 
beautiful math



Christofides Approach

Consider the unit metric space: 𝑐(𝑢, 𝑣) = 1 for all u,v.

Choose a MST & add 

min-cost-matching 

on odd degree vertices

The cost of the matching is n/2 => 3/2 approximation

But, wait, does a typical tree looks like a star? 

How many odd degree vertices does it have?



Random Spanning Tree Distributions

Given a graph G=(V,E) with m edges.

Let 𝜇 be the uniform distribution over all spanning trees of G.

We can write 𝜇 as polynomial,

𝑔𝜇 𝑧𝑒1 , … , 𝑧𝑒𝑚 =

𝑇

ෑ

𝑒∈𝑇

𝑧𝑒

• For any e, 

𝑧𝑒𝜕𝑒 log 𝑔𝜇 1,… , 1 =
𝑧𝑒𝜕𝑒𝑔𝜇

𝑔𝜇
(𝟏) =

#{𝑇: 𝑒 ∈ 𝑇}

#𝑇
= ℙ𝑇∼𝜇[𝑒 ∈ 𝑇]

• We can evaluate 𝑔𝜇 at any 𝑧 ∈ ℝ𝑚. unif dist

+ + + 1

4

1

4

1

4

1

4



A Linear Algebraic View

For a pair of vertices u,v, let 𝑏𝑢,𝑣 = 1𝑢 − 1𝑣

For an edge 𝑒 = (𝑢, 𝑣) let   𝐿𝑢,𝑣 = 𝑏𝑢,𝑣𝑏𝑢,𝑣
𝑇

Also, for 𝑆 ⊆ 𝐸, let 𝐿𝑆 = σ𝑒∈𝑆 𝐿𝑒

It follows that det
𝟏𝟏T

𝑛
+ 𝐿𝑇 = 1 for all trees T.

Then, 

𝑔𝜇(𝑧) =

𝑇

det 𝐿𝑇 ෑ

𝑒∈𝑇

𝑧𝑒 =det 

𝑒

𝑧𝑒𝐿𝑒

So, 𝑔𝜇 is computable and log-concave & we can generate random trees.

0
1
0

0
−1
0

u

v
𝑏𝑢,𝑣 =

Write the (n-1)-dimensional space orthogonal to 1 in ℝ𝑛−1

Cauchy-Binet identity



Back to TSP on Unit Metric

Choose a uniformly random spanning (cost n)

Add min-cost matching.

What is 𝔼[#even-deg / #deg-2]?

• ∃ A bijection between spanning trees of 𝐾𝑛 & seq of n-2 numbers in {1,… , 𝑛}

• For any 𝑣, ℙ 𝑑𝑇 𝑣 = 2 =
𝑛 𝑛−1 𝑛−3

𝑛𝑛−2
= 1 −

1

𝑛

𝑛−3
≈

1

𝑒
.

So, 𝔼 𝑐(matching) ≤
𝑛

2
1 −

1

𝑒
<

4𝑛

3
.

Can we extend this approach to any metric?
1. How to bound c(T)?
2. How to bound ℙ 𝑑𝑇 𝑣 = 2 ?
3. How to bound 𝔼 𝑐 matching ?



First Challenge: Choosing the Right Distribution

A uniformly random spanning tree can have a cost >> OPT-TSP

Let’s allow weighted-unif distributions:

Let 𝑥 be OPT of LP.

Choose a weights s.t., for all e: ℙ𝑇∼𝜇 𝑒 ∈ 𝑇 ≈ 𝑥𝑒

Because, then 𝔼 𝑐 𝑇 ≈ σ𝑒 𝑥𝑒𝑐 𝑒 ≤ OPT.

min 

𝑒

𝑥𝑒𝑐(𝑒)

s. t. , 𝑥 𝛿 𝑆 ≥ 2 ∀𝑆 ⊆ 𝑉

𝑥 𝛿 𝑣 = 2 ∀𝑣 ∈ 𝑉
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Idea: Choose 𝑧 > 0 s.t., 𝑔𝜇(𝑧) gives the right marginals.

i.e., choose 𝑧 s.t.,

Reverse engineering, 𝑧 must be 

If 𝑦 is not in the spanning tree polytope, then OPT=−∞.

Otherwise, let 𝜆 = 𝑧 and let 𝑔𝜆∗𝜇 𝑧𝑒1 , … , 𝑧𝑒𝑚 = 𝑔𝜇 𝜆𝑒1𝑧𝑒1 , … , 𝜆𝑒𝑚𝑧𝑒𝑚 .

ℙ𝑇∼𝜆∗𝜇 𝑒 ∈ 𝑇 = 𝑦𝑒 ⇒ 𝔼𝑇∼𝜆∗𝜇 𝑐 𝑇 = OPT.

∀𝑒: 𝑧𝑒𝜕𝑒 log 𝑔𝑇 = 𝑦𝑒 ⇔ ∀𝑒: 𝜕𝑒 log 𝑔𝜇 =
𝑦𝑒

𝑧𝑒

𝑥 OPT of LP 

𝑦 = 1 −
1

𝑛
𝑥.

• Dual of max-entropy CP
• A.k.a., Gurvits’ capacity fn
• Works for any set system 

inf
𝑧>0

log
𝑔𝜇𝑇(𝑧)

ς𝑒 𝑧𝑒
𝑦𝑒
= inf

𝑧
log 𝑔𝜇 𝑧 −

𝑒

𝑦𝑒 log 𝑧𝑒
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Second Challenge: Degree Distributions

Let 𝑆 ⊆ 𝐸. We claim, for 𝑇 ∼ 𝜆 ∗ 𝜇, |𝑇 ∩ 𝑆| is very strongly concentrated.

Fact 1: σ𝑘ℙ 𝑇 ∩ 𝑆 = 𝑘 𝑡𝑘 is a real rooted polynomial (RR)

Fact 2: If σ𝑘 𝑎𝑘𝑡
𝑘 is RR ∃ Bernoullies 𝐵1, … , 𝐵𝑛 s.t.,

∀𝑘: ℙ 𝐵1 +⋯+ 𝐵𝑛 = 𝑘 ∝ 𝑎𝑘

Fact 3: If σ𝑖 𝑎𝑖𝑡
𝑖 is RR, then 𝑎1, 𝑎2, … , 𝑎𝑛 is a log-concave seq, i.e.,

∀𝑖: 𝑎𝑘
2 ≥ 𝑎𝑘−1 ⋅ 𝑎𝑘+1

[Anari-Liu-O-Vinzant’18]: Log-concavity holds for any matroid



Fact 1: σ𝑘ℙ 𝑇 ∩ 𝑆 = 𝑘 𝑡𝑘 is RR

Recall   𝑔𝜆∗𝜇 𝑧 = det σ𝑒 𝜆𝑒𝑧𝑒𝐿𝑒 . So,



𝑘

ℙ 𝑇 ∩ 𝑆 = 𝑘 𝑡𝑘 ∝ det 𝑡 

𝑒∈𝑆

𝜆𝑒𝐿𝑒 +

𝑒∉𝑆

𝜆𝑒𝐿𝑒

We can rewrite 
det(𝑡𝐴 + 𝐵) = det A det(𝑡𝐼 + 𝐴−1/2𝐵𝐴−1/2)

But this is the characteristic polynomial of 𝐴−1/2𝐵𝐴−1/2

This is a symmetric matrix so it has real eigenvalues and the roots of characteristic 
polynomial is real

𝐵 ≽ 0𝐴 ≽ 0



Fact 3: σ𝑘=0
𝑛 𝑎𝑘𝑡

𝑘 is RR=> 𝑎𝑘
2 ≥ 𝑎𝑘−1 ⋅ 𝑎𝑘+1

Cl 1: If 𝑓(𝑡) is RR then, so is 𝑓′ 𝑡

Cl 2: If 𝑓 𝑡 is RR, then so is 𝑡𝑛𝑓
1

𝑡

If a is a root of 𝑓
1

𝑡
, then 

1

𝑎
is a root of 𝑓.

Let 𝑓 𝑡 = σ𝑘 𝑎𝑘𝑡
𝑘

• 𝑔 𝑡 = 𝑓 𝑘−1 (𝑡) is RR

• ℎ 𝑡 = 𝑡𝑛−𝑘+1𝑔
1

𝑡
is RR

• ℓ 𝑡 = ℎ 𝑛−𝑘−1 (𝑡) is RR

But, ℓ 𝑡 ∝
𝑎𝑘−1
𝑛

𝑘−1

𝑡2 +
2𝑎𝑘
𝑛
𝑘

𝑡 +
𝑎𝑘+1
𝑛

𝑘+1

, so,

𝑎𝑘
2

𝑛
𝑘

≥
𝑎𝑘−1
2

𝑛
𝑘−1

⋅
𝑎𝑘+1
2

𝑛
𝑘+1



Parity of Degree Cuts

Lem: ℙ𝑇∼𝜆∗𝜇 𝑑𝑇 𝑣 = 2 ≥
1

e
.

• 𝔼 𝑑𝑇 𝑣 = σ𝑒∼𝑣 𝑥𝑒 ≈ 2.

• By log-concavity
ℙ 𝑑𝑇 𝑣 = 2 2 ≥ ℙ 𝑑𝑇 𝑣 = 1 ⋅ ℙ 𝑑𝑇 𝑣 = 3 .

This refutes the case where ℙ 𝑑𝑇 𝑣 = 1 = ℙ 𝑑𝑇 𝑣 = 3 =
1

2
.

More generally, log concavity implies sub-Gaussian tail



Third Challenge: Bounding Cost of Matching

Let 𝑇 ∼ 𝜆 ∗ 𝜇. What is the expected cost matching on odd degree vertices of T?

T locally looks like a Hamiltonian 

path  with a constant probability.



Conj: For every metric, the expected cost of M for 𝑇 ∼ 𝜆 ∗ 𝜇

is at most 𝑂𝑃𝑇
1

2
− 𝜖 .



Summary

Let 𝑥 be the LP solution

• Set 

𝜆 = argmin
𝑧

log
𝑔𝜇(𝑧)

ς𝑒 𝑧𝑒
𝑥𝑒(1−1/𝑛)

Gives, ℙ𝑇∼𝜆∗𝜇 𝑒 ≈ 𝑥𝑒 .

• Then, for any 𝑆 ⊆ 𝐸:   |𝑆 ∩ 𝑇| is log-concave, unimodal, concentrated, … for 𝑇 ∼ 𝜆 ∗ 𝜇

• Local Hamiltonian properties => 𝔼 𝑐 matching ≤ 𝑐 𝑥
1

2
− 𝜖

if we have cut metric and 𝑥 is not near integral



• Is 𝔼𝑇∼𝜆∗𝜇 𝑐 matching <
1

2
− 𝜖 OPT?

• How about half-integral instances, better than 3/2?

• A reduction from general TSP to half-integral or 1/C-integral for some 𝐶 = 𝑂 1 ?

• TSP for matroids?
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ATSP

Find a connected, Eulerian subgraph of a directed graph with minimum cost.

Follow a similar approach:

Choose a random spanning tree then make it Eulerian

What is 𝔼[c(flow)]?

min cost flow problem



Example: Local mistakes => Blow-up costs
𝒄(e) 𝒙𝒆

0
1 −

1

𝑘

1 1

𝑘

𝑚-vertices
In each blob

w.h.p. ≫
𝑚

𝑘
many edges

Set 𝑘 =
log 𝑚

𝑚
,

𝑛 blocks for 𝑛 ≫ 𝑚

So, 𝔼[𝑐(flow)] ≫ 𝑛 ⋅
𝑚

𝑘



Thin Trees

Given 𝐺 = (𝑉, 𝐸), a Tree 𝑇 is 𝛼-thin w.r.t. 𝐺 if for all 𝑆 ⊆ 𝑉,

𝑇 𝑆, ҧ𝑆 ≤ 𝛼|𝛿(𝑆)|

What is the thinness of this tree?

Example: Any bounded degree spanning tree is an 𝑂
1

𝑑
-thin tree of any 𝑑-regular 

expander graph.

Finding 
𝑓 𝑛

𝑘
-thin tree

In 𝑘-edge conn graph 

O(f(n))-approximation 
for ATSP



In Pursuit of Thin Trees

Thm [Asadpour-Goemans-Madry-O-Saberi’10]: Given a 𝑘-edge-connected graph, choose 

𝜆 s.t., for all 𝑒, ℙ𝑇∼𝜆∗𝜇 𝑒 ≤
2

𝑘
. Then,

ℙ𝑇∼𝜆∗𝜇 𝑇 is 𝑂
log 𝑛

𝑘 ⋅ log log 𝑛
−thin ≥ 1 − 𝑂

1

𝑛

Pf Idea: For every 𝑆 ⊆ 𝑉: |𝑇 ∩ 𝛿 𝑆 | is strongly concentrated around 
2|𝛿 𝑆 |

𝑘
by the log-

concavity property.

The proof follows by a careful Chernoff bound union bound.



Revised Plan

Prove that for a small 𝛼

ℙ𝑇∼𝜇[𝑇 is 𝛼-thin] > 0

Use probabilistic method? Lovasz Local lemma?
• Exponentially many bad events, i.e., cuts

• A lot of interactions between cuts

Use spectral approach?

ℙ𝑇∼𝜇[𝑇 is 𝛼-spectrally-thin] > 0



Spectrally thin trees

For a graph 𝐺, 𝑇 is 𝛼-spectrally thin if

• For all 𝑥 ∈ ℝ𝑉, 𝑥𝑇𝐿𝑇𝑥 ≤ 𝛼𝑥𝑇𝐿𝐺𝑥

• 𝐿𝑇 ≼ 𝛼𝐿𝐺

• 𝐿𝐺
−1/2

𝐿𝑇𝐿𝐺
−1/2

≼ 𝛼𝐼

Exercise: Find an 𝑂
1

log 𝑛
-spectrally-thin-tree in log 𝑛-dim hypercube

Implies 𝛼-thinness letting 𝑥 = 𝟏𝑆

Easy to check in polytime



Spectrally thin trees & Effective Resistance

Suppose 𝑇 is 𝛼-spectrally thin, i.e., 𝐿𝑇 ≼ 𝛼𝐿𝐺 . 

Then, for every 𝑒 ∈ 𝑇 we must have:  𝐿𝑒 ≼ 𝐿𝑇 ≼ 𝛼𝐿𝐺

Or,

𝐿𝐺
−1/2

𝐿𝑒𝐿𝐺
−1/2

≼ 𝛼𝐼

So, 

Tr 𝐿𝐺
−1/2

𝐿𝑒𝐿𝐺
−1/2

≤ 𝛼

Recall 𝐿𝑒 = 𝑏𝑒𝑏𝑒
𝑇 and Tr 𝐴𝐵 = Tr(𝐵𝐴)

𝑏𝑒
𝑇𝐿𝐺

−1𝑏𝑒 ≤ 𝛼

Rank 1

Reff(e) – Effective resistance of 𝑒



Properties of Effective Resistance

• Reff 𝑒 = ℙ𝑇∼𝜇[𝑒 ∈ 𝑇]

• Reff(s,t)=max
𝑥

𝑥𝑠−𝑥𝑡
2

σ𝑢∼𝑣 𝑥𝑢−𝑥𝑣
2

• For all 𝑠, 𝑡 there are at least 
1

Reff(𝑠,𝑡)
many edge disjoint paths from s to t.

s

𝑡



Claim: For any 𝑒, ℙ𝑇∼𝜇 𝑒 ∈ 𝑇 = Reff(𝑒)

ℙ𝑇∼𝜇 𝑒 ∈ 𝑇 = 𝑧𝑒𝜕𝑒 log 𝑔𝜇 𝟏 =
𝑧𝑒𝜕𝑒𝑔𝜇
𝑔𝜇

(𝟏)

=
𝑧𝑒𝜕𝑒 det σ𝑓 𝑧𝑓𝐿𝑓

det(σ𝑓 𝑧𝑓𝐿𝑓)
(𝟏)

=
𝜕x det 𝐿𝐺 + 𝑥𝐿𝑒 |𝑥=0

det(𝐿𝐺)

=
det 𝐿𝐺 𝜕𝑥 det 𝐼 + 𝑥𝐿𝐺

−1/2
𝐿𝑒𝐿𝐺

−1/2 |𝑥=0

det(𝐿𝐺)

= Tr 𝐿𝐺
−1/2

𝐿𝑒𝐿𝐺
−1/2

= 𝑏𝑒𝐿𝐺
−1𝑏𝑒



Claim: For any pair of vertices 𝑠, 𝑡, 

𝑏𝑠,𝑡𝐿𝐺
−1𝑏𝑠,𝑡 = max

𝑥

𝑥𝑠 − 𝑥𝑡
2

σ𝑢∼𝑣 𝑥𝑢 − 𝑥𝑣
2

Pf: Since 𝐿𝐺
−1/2

𝐿𝑠,𝑡𝐿𝐺
−1/2

is rank 1,

𝑏𝑠,𝑡
𝑇 𝐿𝐺

−1𝑏𝑠,𝑡 = max
𝑦

𝑦𝑇𝐿𝐺
−1/2

𝐿𝑠,𝑡𝐿𝐺
−1/2

𝑦

𝑦𝑇𝑦

= max
𝑥

𝑥𝑇𝐿𝑠,𝑡𝑥

𝑥𝑇𝐿𝐺𝑥

= max
𝑥

𝑥𝑠 − 𝑥𝑡
2

σ𝑢∼𝑣 𝑥𝑢 − 𝑥𝑣
2



Example

ℙ 1,4 ∈ 𝑇 =
3

4
What is Reff(1,4)?

max
𝑥

𝑥1 − 𝑥4
2

𝑥1 − 𝑥2
2 + 𝑥2 − 𝑥3

2 + 𝑥3 − 𝑥4
2
=

32

12 + 12 + 12 + 32
=
3

4

1 2

34



Claim: For all 𝑠, 𝑡 there are at least 
1

Reff(𝑠,𝑡)
many edge disjoint paths from s to t.

Fix any cut (𝑆, ҧ𝑆) where 𝑠 ∈ 𝑆 and 𝑡 ∉ 𝑆. We show 𝛿 𝑆 ≥
1

Reff(𝑠,𝑡)

Then, 

The converse is false because the paths may be long

sS t𝑥𝑠 − 𝑥𝑡
2 = 1



𝑢∼𝑣

𝑥𝑢 − 𝑥𝑣
2 = |𝛿 𝑆 |

Reff 𝑠, 𝑡 ≥
1

|𝛿 𝑆 |
0 1



Properties of Effective Resistance

• Reff 𝑒 = ℙ𝑇∼𝜇[𝑒 ∈ 𝑇]

• Reff(s,t)=max
𝑥

𝑥𝑠−𝑥𝑡
2

σ𝑢∼𝑣 𝑥𝑢−𝑥𝑣
2

• For all 𝑠, 𝑡 there are at least 
1

Reff(𝑠,𝑡)
many edge disjoint paths from s to t.

s

𝑡



Summary / Plan

K-edge 
connectivity

O(1/k)-thin tree

Reff(e)≤
1

𝑘

For all e

O(1/k)-spectrally 
thin tree

MSS’13

?

??



• O(1/k)-thin forest of linear size in k-edge-connected graphs

• Weak thin-tree conj: 

There is 𝑘0 s.t., every 𝑘0-edge connected graph has a 0.99-thin tree

• Strong thin-tree conj: 

There is 𝐶 > 0 s.t., every 𝑘-edge connected graph has an 𝑂
1

𝑘
-thin tree


