Random Spanning Trees Effective Resistances \& TSP

Shayan Oveis Gharan
University of Washington

Outline

- Thin Trees
- Spectrally Thin Trees \& Effective Resistance
- Properties of Effective Resistance

TSP Recap

TSP: Choose a connected, Eulerian subgraph of minimum cost.

Approach 1: Choose an Eulerian subgraph then make it connected How?

Approach 2: Choose a connected subgraph, then make it Eulerian

Spanning Trees have
Polytime solvable beautiful math

Christofides Approach

Consider the unit metric space: $c(u, v)=1$ for all u, v.

Choose a MST \& add min-cost-matching on odd degree vertices

The cost of the matching is $\mathrm{n} / 2=>3 / 2$ approximation But, wait, does a typical tree looks like a star?
How many odd degree vertices does it have?

Random Spanning Tree Distributions

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with m edges.
Let μ be the uniform distribution over all spanning trees of G .

We can write μ as polynomial,

$$
g_{\mu}\left(z_{e_{1}}, \ldots, z_{e_{m}}\right)=\sum_{T} \prod_{e \in T} z_{e}
$$

- For any e,

$$
z_{e} \partial_{e} \log g_{\mu}(1, \ldots, 1)=\frac{z_{e} \partial_{e} g_{\mu}}{g_{\mu}}\left(\frac{1}{X}\right)=\frac{\#\{T: e \in T\}}{\# T}=\mathbb{P}_{T \sim \mu}[e \in T]
$$

- We can evaluate g_{μ} at any $z \in \mathbb{R}^{m}$.

A Linear Algebraic View

For a pair of vertices u, v, let $b_{u, v}=1_{u}-1_{v}$

For an edge $e=(u, v)$ let $L_{u, v}=b_{u, v} b_{u, v}^{T}$ Also, for $S \subseteq E$, let $L_{S}=\sum_{e \in S} L_{e}$

$$
b_{u, v}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
\vdots \\
0 \\
-1 \\
0 \\
\vdots \\
\vdots
\end{array}\right) \quad \mathrm{v}
$$

It follows that $\operatorname{det}\left(\frac{1 y^{T}}{n}+L_{T}\right)=1$ for all trees T.

$$
\text { Write the (} \mathrm{n}-1 \text {)-dimensional space orthogonal to } 1 \text { in } \mathbb{R}^{n-1}
$$

Then,

$$
g_{\mu}(z)=\sum_{T} \operatorname{det}\left(L_{T}\right) \prod_{e \in T} z_{e} \stackrel{\text { Cauchy-Binet identity }}{=} \operatorname{det}\left(\sum_{e} z_{e} L_{e}\right)^{-}
$$

So, g_{μ} is computable and log-concave $\&$ we can generate random trees.

Back to TSP on Unit Metric

Choose a uniformly random spanning (cost n) Add min-cost matching.

What is $\mathbb{E}[\#$ even-deg / \#deg-2]?

- $\exists \mathrm{A}$ bijection between spanning trees of $K_{n} \&$ seq of $\mathrm{n}-2$ numbers in $\{1, \ldots, n\}$
- For any $v, \mathbb{P}\left[d_{T}(v)=2\right]=\frac{n(n-1)^{n-3}}{n^{n-2}}=\left(1-\frac{1}{n}\right)^{n-3} \approx \frac{1}{e}$.

So, $\mathbb{E}[c$ (matching) $] \leq \frac{n}{2}\left(1-\frac{1}{e}\right)<\frac{(2 n}{3}$.

Can we extend this approach to any metric?

1. How to bound $\mathrm{c}(\mathrm{T})$?
2. How to bound $\mathbb{P}\left[d_{T}(v)=2\right]$?
3. How to bound $\mathbb{E}[c$ (matching) $]$?

First Challenge: Choosing the Right Distribution

A uniformly random spanning tree can have a cost >> OPT-TSP Let's allow weighted-unif distributions:

Let x be OPT of LP.

$$
\begin{array}{lll}
\min & \sum_{e} x_{e} c(e) \\
& \\
\text { s.t., } & x(\delta(S)) \geq 2 \quad \forall S \subseteq V \\
& x(\delta(v))=2 \quad \forall v \in V
\end{array}
$$

Choose a weights s.t., for all e: $\mathbb{P}_{T \sim \mu}[e \in T] \approx x_{e}\left(1-\frac{1}{\mathrm{n}}\right)=: y_{e}$
Because, then $\mathbb{E}[c(T)] \approx \sum_{e} x_{e} c(e) \leq$ OPT.

Idea: Choose $z>0$ s.t., $g_{\mu}(z)$ gives the right marginals. i.e., choose z s.t.,

$$
\begin{gathered}
x \text { OPT of LP } \\
y=\left(1-\frac{1}{n}\right) x
\end{gathered}
$$

$$
\forall e: \quad z_{e} \partial_{e} \log g_{T}=y_{e} \quad \Leftrightarrow \quad \forall e: \partial_{e} \log g_{\mu}=\frac{y_{e}}{z_{e}}
$$

Reverse engineering, z must be

$$
\inf _{z>0} \log \frac{g_{\mu_{T}}(z)}{\prod_{e} z_{e}^{y_{e}}}=\inf _{z} \log g_{\mu}(z)-\sum_{e} y_{e} \log z_{e}
$$

- Dual of max-entropy CP
- A.k.a., Gurvits' capacity fn
- Works for any set system

If y is not in the spanhing tree polytope, then OPT $=-\infty$.
Otherwise, let $\lambda=z$ and let $g_{\lambda * \mu}\left(z_{e_{1}}, \ldots, z_{e_{m}}\right)=g_{\mu}\left(\lambda_{e_{1}} z_{e_{1}}, \ldots, \lambda_{e_{m}} z_{e_{m}}\right)$.

$$
\mathbb{P}_{T \sim \lambda * \mu}(e \in T)=y_{e} \Rightarrow \mathbb{E}_{T \sim \lambda * \mu}[c(T)]=\mathrm{OPT}
$$

Example

Second Challenge: Degree Distributions

Let $S \subseteq E$. We claim, for $T \sim \lambda * \mu,|T \cap S|$ is very strongly concentrated.
Fact 1: $\sum_{k} \mathbb{P}[|T \cap S|=k] t^{k}$ is a real rooted polynomial (RR)

Fact 2: If $\sum_{k} a_{k} t^{k}$ is RR \exists Bernoullies B_{1}, \ldots, B_{n} s.t.,

$$
\forall k: \mathbb{P}\left[B_{1}+\cdots+B_{n}=k\right] \propto a_{k}
$$

Fact 3: If $\sum_{i} a_{i} t^{i}$ is RR, then $a_{1}, a_{2}, \ldots, a_{n}$ is a log-concave seq, i.e.,

$$
\forall i: a_{k}^{2} \geq a_{k-1} \cdot a_{k+1}
$$

[Anari-Liu-O-Vinztnt'18]: Log-concavity holds for any matroid

Fact 1: $\sum_{k} \mathbb{P}[|T \cap S|=k] t^{k}$ is $R R$

Recall $g_{\lambda * \mu}(z)=\operatorname{det}\left(\sum_{e} \lambda_{e} z_{e} L_{e}\right)$. So,

$$
\sum_{k} \mathbb{P}[|T \cap S|=k] t^{k} \propto \operatorname{det}\left(t\left(\sum_{e \in S} \lambda_{e} L_{e}\right)+\sum_{e \notin S} \lambda_{e} L_{e}\right)
$$

We can rewrite

$$
\operatorname{det}(t A+B)=\operatorname{det}(\mathrm{A}) \operatorname{det}\left(t I+A^{-1 / 2} B A^{-1 / 2}\right)
$$

But this is the characteristic polynomial of $A^{-1 / 2} B A^{-1 / 2}$
This is a symmetric matrix so it has real eigenvalues and the roots of characteristic polynomial is real

Fact 3: $\sum_{k=0}^{n} a_{k} t^{k}$ is $\mathrm{RR}=>a_{k}^{2} \geq a_{k-1} \cdot a_{k+1}$

Cl 1: If $f(t)$ is RR then, so is $f^{\prime}(t)$

Cl 2: If $f(t)$ is RR, then so is $t^{n} f\left(\frac{1}{t}\right)$ If a is a root of $f\left(\frac{1}{t}\right)$, then $\frac{1}{a}$ is a root of f.

Let $f(t)=\sum_{k} a_{k} t^{k}$

- $g(t)=f^{(k-1)}(t)$ is RR
- $h(t)=t^{n-k+1} g\left(\frac{1}{t}\right)$ is RR
- $\ell(t)=h^{(n-k-1)}(t)$ is RR

But, $\ell(t) \propto \frac{a_{k-1}}{\left(\begin{array}{c}n-1\end{array}\right)} t^{2}+\frac{2 a_{k}}{\binom{n}{k}} t+\frac{a_{k+1}}{\binom{n}{k+1}}$, so,

$$
\frac{a_{k}^{2}}{\binom{n}{k}} \geq \frac{a_{k-1}^{2}}{\binom{n}{k-1}} \cdot \frac{a_{k+1}^{2}}{\binom{n}{k+1}}
$$

Parity of Degree Cuts

Lem: $\mathbb{P}_{T \sim \lambda * \mu}\left[d_{T}(v)=2\right] \geq \frac{1}{\mathrm{e}}$.

- $\mathbb{E}\left[d_{T}(v)\right]=\sum_{e \sim v} x_{e} \approx 2$.
- By log-concavity

$$
\mathbb{P}\left[d_{T}(v)=2\right]^{2} \geq \mathbb{P}\left[d_{T}(v)=1\right] \cdot \mathbb{P}\left[d_{T}(v)=3\right] .
$$

This refutes the case where $\mathbb{P}\left[d_{T}(v)=1\right]=\mathbb{P}\left[d_{T}(v)=3\right]=\frac{1}{2}$.

More generally, log concavity implies sub-Gaussian tail

Third Challenge: Bounding Cost of Matching

Let $T \sim \lambda * \mu$. What is the expected cost matching on odd degree vertices of T ?

T locally looks like a Hamiltonian path with a constant probability.

(Taw Pi: For every metric, the expected cost of M for $T \sim \lambda * \mu$ is at most OPT $\left(\frac{1}{2}-\epsilon\right)$.

Summary

Let x be the LP solution

- Set

$$
\lambda=\underset{z}{\operatorname{argmin}} \log \frac{g_{\mu}(z)}{\prod_{e} z_{e}^{x_{e}(1-1 / n)}}
$$

Gives, $\mathbb{P}_{T \sim \lambda * \mu}[e] \approx x_{e}$.

- Then, for any $S \subseteq E:|S \cap T|$ is log-concave, unimodal, concentrated, ... for $T \sim \lambda * \mu$
- Local Hamiltonian properties $=>\mathbb{E}[c$ (matching) $] \leq c(x)\left(\frac{1}{2}-\epsilon\right)$
if we have cut metric and x is not near integral
- Is $\mathbb{E}_{T \sim \lambda * \mu}[c$ (matching) $]<\left(\frac{1}{2}-\epsilon\right)$ OPT?
- How about half-integral instances, better than $3 / 2$?
- A reduction from general TSP to half-integral or 1/C-integral for some $C=O(1)$?
- TSP for matroids?

Outline

- Thin Trees
- Spectrally Thin Trees \& Effective Resistance
- Properties of Effective Resistance

ATSP

Find a connected, Eulerian subgraph of a directed graph with minimum cost.

Follow a similar approach:
Choose a random spanning tree then make it Eulerian
min cost flow problem
What is $\mathbb{E}[c(f l o w)]$?

Example: Local mistakes => Blow-up costs

Thin Trees

Given $G=(V, E)$, a Tree T is α-thin w.r.t. G if for all $S \subseteq V$,

$$
|T(S, \bar{S})| \leq \alpha|\delta(S)|
$$

What is the thinness of this tree?

Example: Any bounded degree spanning tree is an $O\left(\frac{1}{d}\right)$-thin tree of any d-regular expander graph.

Finding $\frac{f(n)}{k}$-thin tree
In k-edge conn graph

O(f(n))-approximation for ATSP

In Pursuit of Thin Trees

Thm [Asadpour-Goemans-Madry-O-Saberi'10]: Given a k-edge-connected graph, choose λ s.t., for all $e, \mathbb{P}_{T \sim \lambda * \mu}[e] \leq \frac{2}{k}$. Then,

$$
\mathbb{P}_{T \sim \lambda * \mu}\left[T \text { is } O\left(\frac{\log n}{k \cdot \log \log n}\right) \text {-thin }\right] \geq 1-O\left(\frac{1}{n}\right)
$$

Pf Idea: For every $S \subseteq V:|T \cap \delta(S)|$ is strongly concentrated around $\frac{2|\delta(S)|}{k}$ by the logconcavity property.

The proof follows by a careful Chernoff bound union bound.

Revised Plan

Prove that for a small α

$$
\mathbb{P}_{T \sim \mu}[T \text { is } \alpha \text {-thin }]>0
$$

Use probabilistic method? Lovasz Local lemma?

- Exponentially many bad events, i.e., cuts
- A lot of interactions between cuts

Use spectral approach?

$$
\mathbb{P}_{T \sim \mu}[T \text { is } \alpha \text {-spectrally-thin }]>0
$$

Spectrally thin trees

For a graph G, T is α-spectrally thin if

- For all $x \in \mathbb{R}^{V}, x^{T} L_{T} x \leq \alpha x^{T} L_{G} x \quad$ Implies α-thinness letting $x=\mathbf{1}_{S}$
- $L_{T} \preccurlyeq \alpha L_{G}$
- $L_{G}^{-1 / 2} L_{T} L_{G}^{-1 / 2} \preccurlyeq \alpha I$ Easy to check in polytime

Exercise: Find an $O\left(\frac{1}{\log n}\right)$-spectrally-thin-tree in $\log n$-dim hypercube

Spectrally thin trees \& Effective Resistance

Suppose T is α-spectrally thin, i.e., $L_{T} \preccurlyeq \alpha L_{G}$.
Then, for every $e \in T$ we must have: $L_{e} \preccurlyeq L_{T} \preccurlyeq \alpha L_{G}$
Or,

$$
\begin{gathered}
\text { Rank 1 } \\
L_{G}^{-1 / 2} L_{e} L_{G}^{-1 / 2} \leqslant \alpha I \\
b_{e} b_{e}^{\top} \\
\operatorname{Tr}\left(L_{G}^{-1 / 2} \mathbb{L} L_{G}^{-1 / 2}\right) \leq \alpha
\end{gathered}
$$

So,

Recall $L_{e}=b_{e} b_{e}^{T}$ and $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$

$$
b_{e}^{T} L_{G}^{-1} b_{e} \leq \alpha
$$

Reff(e) - Effective resistance of e

Properties of Effective Resistance

- $\operatorname{Reff}(e)=\mathbb{P}_{T \sim \mu}[e \in T]$

- $\operatorname{Reff}(\mathrm{s}, \mathrm{t})=\max _{x} \frac{\left(x_{s}-x_{t}\right)^{2}}{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}$
- For all s, t there are at least $\frac{1}{\operatorname{Reff}(s, t)}$ many edge disjoint paths from s to t.

Claim: For any $e, \mathbb{P}_{T \sim \mu}[e \in T]=\operatorname{Reff}(e)$

$$
\begin{aligned}
\mathbb{P}_{T \sim \mu}[e \in T] & =z_{e} \partial_{e} \log g_{\mu}(\mathbf{1})=\frac{z_{e} \partial_{e} g_{\mu}}{g_{\mu}}(\mathbf{1}) \\
& =\frac{z_{e} \partial_{e} \operatorname{det}\left(\sum_{f} z_{f} L_{f}\right)}{\operatorname{det}\left(\sum_{f} z_{f} L_{f}\right)}(\mathbf{1}) \\
& =\frac{\left.\partial_{\mathrm{x}} \operatorname{det}\left(L_{G}+x L_{e}\right)\right|_{x=0}}{\operatorname{det}\left(L_{G}\right)} \\
& =\frac{\left.\operatorname{det}\left(L_{G}\right) \partial_{x} \operatorname{det}\left(I+x L_{G}^{-1 / 2} L_{e} L_{G}^{-1 / 2}\right)\right|_{x=0}}{\operatorname{det}\left(L_{G}\right)} \\
& =\operatorname{Tr}\left(L_{G}^{-1 / 2} L_{e} L_{G}^{-1 / 2}\right)=b_{e} L_{G}^{-1} b_{e}
\end{aligned}
$$

Claim: For any pair of vertices s, t,

$$
b_{s, t} L_{G}^{-1} b_{s, t}=\max _{x} \frac{\left(x_{s}-x_{t}\right)^{2}}{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}
$$

Pf: Since $L_{G}^{-1 / 2} L_{s, t} L_{G}^{-1 / 2}$ is rank 1,

$$
\begin{aligned}
b_{s, t}^{T} L_{G}^{-1} b_{s, t} & =\max _{y} \frac{y^{T} L_{G}^{-1 / 2} L_{s, t} L_{G}^{-1 / 2} y}{y^{T} y} \\
& =\max _{x} \frac{x^{T} L_{s, t} x}{x^{T} L_{G} x} \\
& =\max _{x} \frac{\left(x_{s}-x_{t}\right)^{2}}{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}
\end{aligned}
$$

Example

What is $\operatorname{Reff}(1,4)$?

Claim: For all s, t there are at least $\frac{1}{\operatorname{Reff}(s, t)}$ many edge disjoint paths from s to t.
Fix any cut (S, \bar{S}) where $s \in S$ and $t \notin S$. We show $|\delta(S)| \geq \frac{1}{\operatorname{Reff}(s, t)}$

$$
\left(x_{s}-x_{t}\right)^{2}=1
$$

Then,

$$
\begin{aligned}
& \sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}=|\delta(S)| \\
& \operatorname{Reff}(s, t) \geq \frac{1}{|\delta(S)|}
\end{aligned}
$$

The converse is false because the paths may be long

Properties of Effective Resistance

- $\operatorname{Reff}(e)=\mathbb{P}_{T \sim \mu}[e \in T]$

- $\operatorname{Reff}(\mathrm{s}, \mathrm{t})=\max _{x} \frac{\left(x_{s}-x_{t}\right)^{2}}{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}$
- For all s, t there are at least $\frac{1}{\operatorname{Reff}(s, t)}$ many edge disjoint paths from s to t.

Summary / Plan

- $O(1 / k)$-thin forest of linear size in k-edge-connected graphs
- Weak thin-tree conj:

There is k_{0} s.t., every k_{0}-edge connected graph has a 0.99 -thin tree

- Strong thin-tree conj:

There is $C>0$ s.t., every k-edge connected graph has an $O\left(\frac{1}{k}\right)$-thin tree

