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TSP Recap

TSP: Choose a connected, Eulerian subgraph of minimum cost.

Approach 1: Choose an Eulerian subgraph then make it connected

Y

How?

Approach 2: Choose a connected subgraph, then make it Eulerian
. ~" J |\ ~ )

Spanning Trees have Polytime solvable
beautiful math




Christofides Approach

Consider the unit metric space: c(u, v) = 1 for all u,v.

Choose a MST & add
min-cost-matching

on odd degree vertices

The cost of the matching is n/2 => 3/2 approximation
But, wait, does a typical tree looks like a star?
How many odd degree vertices does it have?



Random Spanning Tree Distributions

Given a graph G=(V,E) with m edges.

Let u be the uniform distribution over all spanning trees of G.
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We can write u as polynomial,
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* We can evaluate g, atany z € R™.



A Linear Algebraic View

For a pair of verticesu,v, letb, ,, =1, — 1,

Foranedgee = (u,v) let L., = by b,
Also, for S C E, let Lg = ). ,cs Lo

It follows that det (%é + LT) = 1forall trees T.

Write the (n-1)-dimensional space orthogonal to 1 in R™*1

Then, Cauchy-Binet identity
9u(z) = Z det(L) l_[ z, =det z ZoL,
T eeT e

So, g, is computable and log-concave & we can generate random trees.




Back to TSP on Unit Metric

Choose a uniformly random spanning (cost n)

Add min-cost matching.

What is E[#even-deg / #deg-2]?

* 3 A bijection between spanning trees of K,, & seq of n-2 numbersin {1, ...,n}

_1\n-3 n-—3
* Forany v, Pld;(v) = 2] = nn—1) 77 _ (1 —1) ~ i

nn—2 n

- nq 1) M4
So, E[c(matching)] < 5 (1 e) <5

- 1. How to bound c(T)?
Can we extend this approach to any metric? 2. How to bound P[d,(v) = 2]?

3. How to bound E|[c(matching)]?




First Challenge: Choosing the Right Distribution

A uniformly random spanning tree can have a cost >> OPT-TSP

Let’s allow weighted-unif distributions:

O——C 6 2
1 1 — + =
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min xec(e)

Let x be OPT of LP.
s. t., x(5(5)) >2 VScV

x(5(v)) =2 VveV

1
Choose a weights s.t., for all e: [P)TNH[e ET]~x,|1— H) = Ye
Because, then E[c(T)] = )., x.c(e) < OPT.



x OPT of LP

Idea: Choose z > 0 s.t., g,(z) gives the right marginals. )= (1 —l)x
~|x.

i.e., choose z s.t.,

__Ye

Ze

Ve: z,0.loggr=y. & Ve: aeloggﬂ

Reverse engineering, z must be

. g,U,T(Z) . . 2
er>1£ log 27" = 1rzlflog 9.(2) e ye log z,

e Dual of max-entropy CP
* A.k.a., Gurvits’ capacity fn
* Works for any set system

If y is not in the spanhing tree polytope, then OPT=—oo0.

Otherwise, let A = z and let gﬂ*u(zel, ...,Zem) = gﬂ(/lelzel, ...,Aemzem).

IP)T~/1*[,L(8 € T) =Ye = IET~/1*/,L[C(T)] = OPT.



Example

LP values
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Second Challenge: Degree Distributions

Let S € E. We claim, forT ~ A * u, |T N S| is very strongly concentrated.

Fact 1: Y, P[|T N S| = k]t¥ is a real rooted polynomial (RR)

Fact 2: If ¥}, a,t* is RR 3 Bernoullies By, ..., B, s.t.,

Vk: P[By + -+ B, = k] « a,

Fact 3: If ); aiti is RR, then a4, a,, ..., a,, is alog-concave seq, i.e.,

.2
Vi:ay =2 ag—1 * A +1

\

[Anari-Liu-O-Vinzant’18]: Log-concavity holds for any matroid




Fact 1: .. P[|T N S| = k]t* is RR

Recall gj.,(z) = det(¥,Ac2.L,) . So,

z P[|IT N S| = k]t* o det| ¢
k

We can rewrite
det(tA + B) = det(A)det(tl + A"1/2BA™1/2)

But this is the characteristic polynomial of A=1/2BA~1/2

This is a symmetric matrix so it has real eigenvalues and the roots of characteristic
polynomial is real



Fact 3: ) =

Cl1:If f(t)isRRthen,sois f'(t)

N A

Cl2:1f f(t)isRR,thensoist"f (%)

If ais a root of f (%), then % isa root of f.

0 Qrt®is RR=> a2 > aj_q1 * Q41

Let f(t) = Xy art®

+ g(©) = F* V(1) isRR

* h(t) =tV ktlg (%) is RR
e £(t) = h™ k=D (t) is RR

B k-1 ,2 |, 20k Ak+1
it ) ey Tyt

ak ak 1 ak+1

R GDNEH
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Parity of Degree Cuts

Lem: Pp_z,uldr(v) = 2] >

@ |+

* Eldr(v)] = Yepxe = 2.

* By log-concavity
Pldr(v) = 2]* = Pldr(v) = 1] - P[dr(v) = 3].

This refutes the case where P|d;(v) = 1] = Pld;(v) = 3] = %

More generally, log concavity implies sub-Gaussian tail



Third Challenge: Bounding Cost of Matching

Let T ~ A * u. What is the expected cost matching on odd degree vertices of T?

T locally looks like a Hamiltonian \O.\‘/

path with a constant probability.



o't For every metric, the expected cost of M for T ~ A * u

is at most OPT G — e) :




summary

Let x be the LP solution

e Set
9.(2)

Xe(1—-1/n)
e ~e

A = argmin log
VA

Gives, Pr.y.,le] = x.

* Then, forany S € E: |S N T|islog-concave, unimodal, concentrated, ... forT ~ A * u

* Local Hamiltonian properties => [E[c(matching)] < c(x) G — e)

if we have cut metric and x is not near integral



“To Do..-

* Is Er.j.ulc(matching)] < G — e) OPT?

* How about half-integral instances, better than 3/2?

* A reduction from general TSP to half-integral or 1/C-integral for some C = 0(1)?

* TSP for matroids?
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ATSP

Find a connected, Eulerian subgraph of a directed graph with minimum cost.

Follow a similar approach:

Choose a random spanning tree then make it Eulerian

\

min cost flow problem

What is [E[c(flow)]?



Example: Local mistakes => Blow-up costs

]
Setk = -1,

m
n blocks forn > m

w.h.p. > % many edges




Thin Trees

Given G = (V,E),aTree T is a-thinw.rt. G if forall S C V,
IT(S,9)| < als(S)]

What is the thinness of this tree?
o \ i

Example: Any bounded degree spanning tree is an 0 (2)—thin tree of any d-regular ’

expander graph.

Finding %—thin tree :> O(f(n))-approximation

In k-edge conn graph for ATSP




In Pursuit of Thin Trees

Thm [Asadpour-Goemans-Madry-O-Saberi’10]: Given a k-edge-connected graph, choose

1ol

Pfldea: Forevery S € V: |T N §(S)| is strongly concentrated around

As.t., foralle, Pr._j,,le] < % Then,

P Tis O logn thi
e k - loglogn "

2|6(S)|
k

by the log-

concavity property.

The proof follows by a careful Chernoff bound union bound.



Revised Plan

Prove that for a small a

Pr.,[T is a-thin] > 0

Use probabilistic method? Lovasz Local lemma?

 Exponentially many bad events, i.e., cuts
* Alot of interactions between cuts

Use spectral approach?

Pr.,[T is a-spectrally-thin] > 0



Spectrally thin trees

For a graph G, T is a-spectrally thin if

* Forallx e RY, x"Lrx < axTL:x

T Implies a-thinness letting x = 15

° LT < aLG

L LM < al
\

Easy to check in polytime

1
logn

Exercise: Find an O ( )—spectrally—thin—tree in log n-dim hypercube



Spectrally thin trees & Effective Resistance

Suppose T is a-spectrally thin, i.e., Ly < aL,.

Then, foreverye € T we must have: L, < Lt < alg

Or, Rank 1
L. 2LleLgl/ ‘<al
-
So,
O b_b\o‘b

Tr (LML) < @
Recall L, = b,b! and Tr(AB) = Tr(BA)
bIL b, |I< a

Reff(e) — Effective resistance of e

7~



Properties of Effective Resistance

* Reff(e) = Py [e € T]

. _ (xs—x¢)?
Reff(s,t)—mg?x S Gty

* For all s,t there are at least many edge disjoint paths from s to t.

Reff(s,t)



Claim: Forany e, Pr_,[e € T| = Reff(e)

Zeaegu
Ju

Pr.,le € T] = 2,0, logg,(1) = (1)

Zeae det(zf Zfo)
= (1)
. ax det(LG + xLe) |x=0

det(L;)

det(L;) 0, det (I + xLEl/ZLeLgl/Z) | =0

B det(L.)
— Tr (Lgl/ 2L LY 2) = b,L7b,



Claim: For any pair of vertices s, t,

(x5 — x¢)?
bS,tLgle,t = Imax > ‘

X Zu~v(xu — xv)z
Pf: Since L;l/zLS,tLgl/z is rank 1,

T2, =1/2
bl Lg'bs, = max2—6__—t?6  J

y yly




Example

What is Reff(1,4)? P[(1,4) € T] = 3
! 4
1 2
I (X1 — X4 4) \3) _ 3° _E
X (g —x2)% + (X —x3)% + (x3 —x4)* 12412412432 4
C
+ (Xi—x )




Claim: For all s, t there are at least many edge disjoint paths from s to t.

Reff(s,t)

| ~ 1
Fix any cut (5,5) wheres € Sand t € S. We show |6(S)]| = RefG.0)

Then, (s mx)” =1 > @ @
D (=102 = [6(S)] RN

u~v

Reff(s,t) > m

The converse is false because the paths may be long




Properties of Effective Resistance

* Reff(e) = Py [e € T]

. _ (xs—x¢)?
Reff(s,t)—mg?x S Gty

* For all s,t there are at least many edge disjoint paths from s to t.

Reff(s,t)



Summary / Plan

connectivity O(1/k)-thin tree

Reff(e)< % MSS’13 > O(1/k)-spectrally
For all e thin tree




“To Do..-

* O(1/k)-thin forest of linear size in k-edge-connected graphs

* Weak thin-tree conj:

There is kg s.t., every ky-edge connected graph has a 0.99-thin tree

 Strong thin-tree conj:

There is C > 0 s.t., every k-edge connected graph has an O (%)-thin tree



