Random Spanning Trees Effective Resistances & TSP

Shayan Oveis Gharan University of Washington

Outline

- TSP & Random Spanning Trees
 - Capacity functions, Max entropy, ...
 - Degree distribution of vertices
- ATSP & Random Spanning Trees
 - Thin Trees
 - Spectrally Thin Trees & Effective Resistance
 - Properties of Effective Resistance

TSP: Choose a connected, Eulerian subgraph of minimum cost.

Approach 1: Choose an Eulerian subgraph then make it connected How?

Approach 2: Choose a connected subgraph, then make it Eulerian

Spanning Trees have beautiful math

Polytime solvable

Christofides Approach

Consider the unit metric space: c(u, v) = 1 for all u,v.

Choose a MST & add min-cost-matching on odd degree vertices

The cost of the matching is n/2 => 3/2 approximation But, wait, does a typical tree looks like a star? How many odd degree vertices does it have?

Random Spanning Tree Distributions

Given a graph G=(V,E) with m edges.

Let μ be the uniform distribution over all spanning trees of G.

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

We can write μ as polynomial,

$$g_{\mu}(z_{e_1},\ldots,z_{e_m}) = \sum_T \prod_{e \in T} z_e$$

• For any e,

$$z_e \partial_e \log g_\mu(1, \dots, 1) = \frac{z_e \partial_e g_\mu}{g_\mu} (\mathbf{1}) = \frac{\#\{T : e \in T\}}{\#T} = \mathbb{P}_{T \sim \mu} [e \in T]$$
unif dist

• We can evaluate g_{μ} at any $z \in \mathbb{R}^m$.

A Linear Algebraic View

For a pair of vertices u,v, let $b_{u,v} = 1_u - 1_v$

For an edge
$$e = (u, v)$$
 let $L_{u,v} = b_{u,v}b_{u,v}^T$
Also, for $S \subseteq E$, let $L_S = \sum_{e \in S} L_e$

It follows that
$$\det\left(\frac{M}{n} + L_T\right) = 1$$
 for all trees T.

$$b_{u,v} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ -1 \\ 0 \\ \vdots \end{pmatrix} \mathsf{v}$$

Write the (n-1)-dimensional space orthogonal to **1** in \mathbb{R}^{n-1}

Then,

Cauchy-Binet identity

$$g_{\mu}(z) = \sum_{T} \det(L_{T}) \prod_{e \in T} z_{e} = \det\left(\sum_{e} z_{e} L_{e}\right)$$

So, g_{μ} is computable and log-concave & we can generate random trees.

Back to TSP on Unit Metric

Choose a uniformly random spanning (cost n) Add min-cost matching.

What is $\mathbb{E}[$ #even-deg / #deg-2]?

• \exists A bijection between spanning trees of K_n & seq of n-2 numbers in $\{1, \dots, n\}$

• For any
$$\nu$$
, $\mathbb{P}[d_T(\nu) = 2] = \frac{n(n-1)^{n-3}}{n^{n-2}} = \left(1 - \frac{1}{n}\right)^{n-3} \approx \frac{1}{e}$.

So, $\mathbb{E}[c(\text{matching})] \leq \frac{n}{2} \left(1 - \frac{1}{e}\right) < \frac{4n}{3}$.

Can we extend this approach to any metric?

- 1. How to bound c(T)?
- 2. How to bound $\mathbb{P}[d_T(v) = 2]$?
- 3. How to bound $\mathbb{E}[c(matching)]$?

First Challenge: Choosing the Right Distribution

A uniformly random spanning tree can have a cost >> OPT-TSP Let's allow weighted-unif distributions:

$$\lim_{x \to 0} \frac{1}{2} + \frac{1}$$

Idea: Choose z > 0 s.t., $g_{\mu}(z)$ gives the right marginals. i.e., choose z s.t.,

$$\forall e: \ z_e \partial_e \log g_T = y_e \quad \Leftrightarrow \quad \forall e: \ \partial_e \log g_\mu = \frac{y_e}{z_e}$$

Reverse engineering, z must be

$$\inf_{z>0} \log \frac{g_{\mu_T}(z)}{\prod_e z_e^{y_e}} = \inf_z \log g_{\mu}(z) - \sum_e y_e \log z_e$$

• Dual of max-entropy CP
• A.k.a., Gurvits' capacity fn
• Works for any set system

If y is not in the spanning tree polytope, then OPT= $-\infty$. Otherwise, let $\lambda = z$ and let $g_{\lambda*\mu}(z_{e_1}, ..., z_{e_m}) = g_{\mu}(\lambda_{e_1} z_{e_1}, ..., \lambda_{e_m} z_{e_m})$.

$$\mathbb{P}_{T \sim \lambda * \mu}(e \in T) = y_e \Rightarrow \mathbb{E}_{T \sim \lambda * \mu}[c(T)] = OPT.$$

Example

Second Challenge: Degree Distributions

Let $S \subseteq E$. We claim, for $T \sim \lambda * \mu$, $|T \cap S|$ is very strongly concentrated.

Fact 1: $\sum_{k} \mathbb{P}[|T \cap S| = k]t^{k}$ is a real rooted polynomial (RR)

Fact 2: If $\sum_{k} a_{k} t^{k}$ is RR \exists Bernoullies B_{1}, \dots, B_{n} s.t., $\forall k: \mathbb{P}[B_{1} + \dots + B_{n} = k] \propto a_{k}$

Fact 3: If $\sum_i a_i t^i$ is RR, then a_1, a_2, \dots, a_n is a log-concave seq, i.e.,

 $\forall i: a_k^2 \ge a_{k-1} \cdot a_{k+1}$ [Anari-Liu-O-Vinzant'18]: Log-concavity holds for any matroid

Fact 1: $\sum_{k} \mathbb{P}[|T \cap S| = k]t^{k}$ is RR Recall $g_{\lambda*\mu}(z) = \det(\sum_{e} \lambda_{e} z_{e} L_{e})$. So, $\sum_{k} \mathbb{P}[|T \cap S| = k]t^{k} \propto \det\left(t \underbrace{\sum_{e \in S} \lambda_{e} L_{e}}_{e \notin S} \underbrace{\lambda_{e} L_{e}}_{e \notin S} \underbrace{\lambda_{e} L_{e}}_{e \notin S} \right)$

We can rewrite

$$\det(tA + B) = \det(A)\det(tI + A^{-1/2}BA^{-1/2})$$

But this is the characteristic polynomial of $A^{-1/2}BA^{-1/2}$

This is a symmetric matrix so it has real eigenvalues and the roots of characteristic polynomial is real

Fact 3: $\sum_{k=0}^{n} a_k t^k$ is RR=> $a_k^2 \ge a_{k-1} \cdot a_{k+1}$

Let $f(t) = \sum_k a_k t^k$

•
$$g(t) = f^{(k-1)}(t)$$
 is RR

•
$$h(t) = t^{n-k+1}g\left(\frac{1}{t}\right)$$
 is RR

•
$$\ell(t) = h^{(n-k-1)}(t)$$
 is RR

Cl 2: If f(t) is RR, then so is $t^n f\left(\frac{1}{t}\right)$ If a is a root of $f\left(\frac{1}{t}\right)$, then $\frac{1}{a}$ is a root of f.

But,
$$\ell(t) \propto \frac{a_{k-1}}{\binom{n}{k-1}} t^2 + \frac{2a_k}{\binom{n}{k}} t + \frac{a_{k+1}}{\binom{n}{k-1}}$$
, so,
$$\frac{a_k^2}{\binom{n}{k}} \ge \frac{a_{k-1}^2}{\binom{n}{k-1}} \cdot \frac{a_{k+1}^2}{\binom{n}{k+1}}$$

Parity of Degree Cuts

Lem:
$$\mathbb{P}_{T \sim \lambda * \mu}[d_T(v) = 2] \geq \frac{1}{e}.$$

- $\mathbb{E}[d_T(v)] = \sum_{e \sim v} x_e \approx 2.$
- By log-concavity $\mathbb{P}[d_T(v) = 2]^2 \ge \mathbb{P}[d_T(v) = 1] \cdot \mathbb{P}[d_T(v) = 3].$

This refutes the case where
$$\mathbb{P}[d_T(v) = 1] = \mathbb{P}[d_T(v) = 3] = \frac{1}{2}$$
.

More generally, log concavity implies sub-Gaussian tail

Arewedone??

Third Challenge: Bounding Cost of Matching

Let $T \sim \lambda * \mu$. What is the expected cost matching on odd degree vertices of T?

T locally looks like a Hamiltonian path with a constant probability.

when n is integral

Summary

Let x be the LP solution

• Set

$$\lambda = \underset{z}{\operatorname{argmin}} \log \frac{g_{\mu}(z)}{\prod_{e} z_{e}^{x_{e}(1-1/n)}}$$

Gives, $\mathbb{P}_{T \sim \lambda * \mu}[e] \approx x_e$.

- Then, for any $S \subseteq E$: $|S \cap T|$ is log-concave, unimodal, concentrated, ... for $T \sim \lambda * \mu$
- Local Hamiltonian properties => $\mathbb{E}[c(\text{matching})] \le c(x)(\frac{1}{2} \epsilon)$

if we have cut metric and x is not near integral

• Is $\mathbb{E}_{T \sim \lambda * \mu}[c(\text{matching})] < \left(\frac{1}{2} - \epsilon\right) \text{OPT}?$

• How about half-integral instances, better than 3/2?

• A reduction from general TSP to half-integral or 1/C-integral for some C = O(1)?

• TSP for matroids?

Outline

- TSP & Random Spanning Trees
 - Capacity functions, Max entropy, ...
 - Degree distribution of vertices
- ATSP & Random Spanning Trees
 - Thin Trees
 - Spectrally Thin Trees & Effective Resistance
 - Properties of Effective Resistance

Find a connected, Eulerian subgraph of a directed graph with minimum cost.

Follow a similar approach:

Choose a random spanning tree then make it Eulerian

min cost flow problem

What is $\mathbb{E}[c(flow)]$?

Example: Local mistakes => Blow-up costs

Thin Trees

Given G = (V, E), a Tree T is α -thin w.r.t. G if for all $S \subseteq V$, $\left|T(S, \overline{S})\right| \le \alpha |\delta(S)|$

What is the thinness of this tree?

Example: Any bounded degree spanning tree is an $O\left(\frac{1}{d}\right)$ -thin tree of any d-regular expander graph.

5

In Pursuit of Thin Trees

Thm [Asadpour-Goemans-Madry-O-Saberi'10]: Given a k-edge-connected graph, choose

 $\lambda \text{ s.t., for all } e, \mathbb{P}_{T \sim \lambda * \mu}[e] \leq \frac{2}{k}. \text{ Then,}$ $\mathbb{P}_{T \sim \lambda * \mu} \left[T \text{ is } O\left(\frac{\log n}{k \cdot \log \log n}\right) - \text{thin} \right] \geq 1 - O\left(\frac{1}{n}\right)$

Pf Idea: For every $S \subseteq V$: $|T \cap \delta(S)|$ is strongly concentrated around $\frac{2|\delta(S)|}{k}$ by the log-concavity property.

The proof follows by a careful Chernoff bound union bound.

Revised Plan

Prove that for a small α

 $\mathbb{P}_{T \sim \mu}[T \text{ is } \alpha \text{-thin}] > 0$

Use probabilistic method? Lovasz Local lemma?

- Exponentially many bad events, i.e., cuts
- A lot of interactions between cuts

Use spectral approach?

 $\mathbb{P}_{T \sim \mu}[T \text{ is } \alpha \text{-spectrally-thin}] > 0$

Spectrally thin trees

For a graph G, T is α -spectrally thin if

• For all $x \in \mathbb{R}^V$, $x^T L_T x \leq \alpha x^T L_G x$

Implies α -thinness letting $x = \mathbf{1}_S$

- $L_T \leq \alpha L_G$
- $L_G^{-1/2} L_T L_G^{-1/2} \preccurlyeq \alpha I$ Easy to check in polytime

Exercise: Find an
$$O\left(\frac{1}{\log n}\right)$$
-spectrally-thin-tree in $\log n$ -dim hypercube

Spectrally thin trees & Effective Resistance

Suppose T is α -spectrally thin, i.e., $L_T \leq \alpha L_G$.

Then, for every $e \in T$ we must have: $L_e \leq L_T \leq \alpha L_G$

Or,

$$L_{G}^{-1/2}L_{e}L_{G}^{-1/2} \leq \alpha I$$
So,

$$L_{G}^{-1/2}L_{e}L_{G}^{-1/2} \leq \alpha I$$

$$Tr\left(L_{G}^{-1/2}M_{e}L_{G}^{-1/2}\right) \leq \alpha$$
Recall $L_{e} = b_{e}b_{e}^{T}$ and $Tr(AB) = Tr(BA)$

$$b_{e}^{T}L_{G}^{-1}b_{e} \leq \alpha$$

Reff(e) – Effective resistance of *e*

Properties of Effective Resistance

• $\operatorname{Reff}(e) = \mathbb{P}_{T \sim \mu}[e \in T]$

• Reff(s,t)=
$$\max_{x} \frac{(x_s - x_t)^2}{\sum_{u \sim v} (x_u - x_v)^2}$$

• For all *s*, *t* there are at least $\frac{1}{\text{Reff}(s,t)}$ many edge disjoint paths from s to t.

Claim: For any e, $\mathbb{P}_{T \sim \mu}[e \in T] = \operatorname{Reff}(e)$

$$\mathbb{P}_{T \sim \mu}[e \in T] = z_e \partial_e \log g_\mu(\mathbf{1}) = \frac{z_e \partial_e g_\mu}{g_\mu}(\mathbf{1})$$
$$= \frac{z_e \partial_e \det(\sum_f z_f L_f)}{\det(\sum_f z_f L_f)}(\mathbf{1})$$
$$= \frac{\partial_x \det(L_G + xL_e)|_{x=0}}{\det(L_G)}$$
$$= \frac{\det(L_G) \partial_x \det\left(I + xL_G^{-1/2}L_eL_G^{-1/2}\right)|_{x=0}}{\det(L_G)}$$
$$= \operatorname{Tr}\left(L_G^{-1/2}L_eL_G^{-1/2}\right) = b_eL_G^{-1}b_e$$

Claim: For any pair of vertices *s*, *t*,

$$b_{s,t}L_{G}^{-1}b_{s,t} = \max_{x} \frac{(x_{s} - x_{t})^{2}}{\sum_{u \sim v}(x_{u} - x_{v})^{2}}$$
Pf: Since $L_{G}^{-1/2}L_{s,t}L_{G}^{-1/2}$ is rank 1,
 $b_{s,t}^{T}L_{G}^{-1}b_{s,t} = \max_{y} \frac{y^{T}L_{G}^{-1/2}L_{s,t}L_{G}^{-1/2}y}{y^{T}y}$

$$= \max_{x} \frac{x^{T}L_{s,t}x}{x^{T}L_{G}x}$$

$$= \max_{x} \frac{(x_{s} - x_{t})^{2}}{\sum_{u \sim v} (x_{u} - x_{v})^{2}}$$

Example

7

Claim: For all s, t there are at least $\frac{1}{\text{Reff}(s,t)}$ many edge disjoint paths from s to t.

Fix any cut (S, \overline{S}) where $s \in S$ and $t \notin S$. We show $|\delta(S)| \ge \frac{1}{\operatorname{Reff}(s,t)}$

The converse is false because the paths may be long

Properties of Effective Resistance

• $\operatorname{Reff}(e) = \mathbb{P}_{T \sim \mu}[e \in T]$

• Reff(s,t)=
$$\max_{x} \frac{(x_s - x_t)^2}{\sum_{u \sim v} (x_u - x_v)^2}$$

• For all *s*, *t* there are at least $\frac{1}{\text{Reff}(s,t)}$ many edge disjoint paths from s to t.

Summary / Plan

• O(1/k)-thin forest of linear size in k-edge-connected graphs

• Weak thin-tree conj:

There is k_0 s.t., every k_0 -edge connected graph has a 0.99-thin tree

• Strong thin-tree conj:

There is C > 0 s.t., every k-edge connected graph has an $O\left(\frac{1}{k}\right)$ -thin tree

