# Pipage Rounding, Pessimistic Estimators and Matrix Concentration 

Neil Olver

Centrum Wiskunde \& Informatica
BIRS, September 2018
Joint work with Nick Harvey

## Thin trees



Spanning tree $T$ of $G$ is $\alpha$-thin if

$$
\left|\delta_{T}(S)\right| \leq \alpha\left|\delta_{G}(S)\right| \quad \forall S
$$

## Thin trees



G


Spanning tree $T$ of $G$ is $\alpha$-thin if

$$
\left|\delta_{T}(S)\right| \leq \alpha\left|\delta_{G}(S)\right| \quad \forall S
$$

## Goddyn's Conjecture

Every graph has a $O(1 / K)$-thin tree, where $K=\min _{e} k_{e}$.
Would imply a (different) $O(1)$ approximation for asymmetric TSP.

## An $O\left(\frac{1}{K} \log n\right)$-thin tree



- $H$ : include $e$ independently with prob. $\min \{10 \log n / K, 1\}$.
- For any $S$,

$$
\begin{aligned}
\left|\delta_{H}(S)\right| & =\sum_{e \in \delta(S)} \mathbf{1}_{e \in H} \\
\mathbb{E}\left[\left|\delta_{H}(S)\right|\right] & \leq \frac{10 \log n}{K}\left|\delta_{G}(S)\right| .
\end{aligned}
$$

Chernoff bounds $\Rightarrow 1 \leq\left|\delta_{H}(S)\right| \leq O\left(\frac{1}{K} \log n\right)\left|\delta_{G}(S)\right|$ w.h.p.

## An $O\left(\frac{1}{K} \log n\right)$-thin tree



- $H$ : include $e$ independently with prob. $\min \{10 \log n / K, 1\}$.
- For any $S$,

$$
\begin{aligned}
\left|\delta_{H}(S)\right| & =\sum_{e \in \delta(S)} \mathbf{1}_{e \in H} \\
\mathbb{E}\left[\left|\delta_{H}(S)\right|\right] & \leq \frac{10 \log n}{K}\left|\delta_{G}(S)\right| .
\end{aligned}
$$

Chernoff bounds $\Rightarrow 1 \leq\left|\delta_{H}(S)\right| \leq O\left(\frac{1}{K} \log n\right)\left|\delta_{G}(S)\right|$ w.h.p.

## An $O\left(\frac{1}{K} \log n\right)$-thin tree



- $H$ : include $e$ independently with prob. $\min \{10 \log n / K, 1\}$.
- For any $S$,

$$
\begin{aligned}
\left|\delta_{H}(S)\right| & =\sum_{e \in \delta(S)} \mathbf{1}_{e \in H} \\
\mathbb{E}\left[\left|\delta_{H}(S)\right|\right] & \leq \frac{10 \log n}{K}\left|\delta_{G}(S)\right| .
\end{aligned}
$$

Chernoff bounds $\Rightarrow 1 \leq\left|\delta_{H}(S)\right| \leq O\left(\frac{1}{K} \log n\right)\left|\delta_{G}(S)\right|$ w.h.p.

- "Clever union bound" (Karger cut counting): holds for all $S$ w.h.p. Hence any spanning tree of $H$ is $O\left(\frac{1}{K} \cdot \log n\right)$-thin.


## An $O\left(\frac{1}{K} \log n\right)$-thin tree



- $H$ : include $e$ independently with prob. $\min \{10 \log n / K, 1\}$.
- For any $S$,

$$
\begin{aligned}
\left|\delta_{H}(S)\right| & =\sum_{e \in \delta(S)} \mathbf{1}_{e \in H} \\
\mathbb{E}\left[\left|\delta_{H}(S)\right|\right] & \leq \frac{10 \log n}{K}\left|\delta_{G}(S)\right| .
\end{aligned}
$$

Chernoff bounds $\Rightarrow 1 \leq\left|\delta_{H}(S)\right| \leq O\left(\frac{1}{K} \log n\right)\left|\delta_{G}(S)\right|$ w.h.p.

- "Clever union bound" (Karger cut counting): holds for all $S$ w.h.p. Hence any spanning tree of $H$ is $O\left(\frac{1}{K} \cdot \log n\right)$-thin.

Can't improve the $O(\log n)$ using this approach, because we lose connectivity of $H$.


## An $O\left(\frac{1}{K} \frac{\log n}{\log \log n}\right)$-thin tree



Pick $z \in \mathbb{R}_{+}^{E}$ s.t. $z$ is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K}\left|\delta_{G}(S)\right| \quad \forall S$.

## An $O\left(\frac{1}{K} \frac{\log n}{\log \log n}\right)$-thin tree



- Pick $z \in \mathbb{R}_{+}^{E}$ s.t. $z$ is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K}\left|\delta_{G}(S)\right| \quad \forall S$.


## An $O\left(\frac{1}{K} \frac{\log n}{\log \log n}\right)$-thin tree



- Pick $z \in \mathbb{R}_{+}^{E}$ s.t. $z$ is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K}\left|\delta_{G}(S)\right| \quad \forall S$.
- Randomly round to a tree $T$ s.t. $\mathbb{P}[e \in T]=z_{e}$ for all $e$.

Max entropy distribution
Asadpour et al. '10

Pipage rounding
Chekuri-Vondrak-Zenklusen '10

## An $O\left(\frac{1}{K} \frac{\log n}{\log \log n}\right)$-thin tree



- Pick $z \in \mathbb{R}_{+}^{E}$ s.t. $z$ is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K}\left|\delta_{G}(S)\right| \quad \forall S$.
- Randomly round to a tree $T$ s.t. $\mathbb{P}[e \in T]=z_{e}$ for all $e$.

Max entropy distribution
Asadpour et al. '10

Pipage rounding
Chekuri-Vondrak-Zenklusen '10

- Both yield negatively dependent distributions. Hence Chernoff bounds still hold for upper tail; yields $\log \log n$ improvement.


## A difficulty with thin trees

$$
\left|\delta_{T}(S)\right| \leq \alpha\left|\delta_{G}(S)\right| \quad \forall S
$$

How can one certify that a spanning tree $T$ is $\alpha$-thin?
Even approximately?

## Laplacians and spectrally thin trees

## Laplacian of a graph $G$ with weights w

$$
\left.L_{G}=\sum_{e \in E} w_{e} L_{e} . \quad L_{\{i, j\}}=\begin{array}{c}
i \\
i \\
j \\
j \\
j \\
0
\end{array} \begin{array}{cc}
j \\
0 & 0 \\
-1 & 0 \\
1
\end{array}\right)
$$

Löwner ordering: $A \preceq B$ if $B-A$ is PSD, i.e., $\boldsymbol{x}^{\top} A \boldsymbol{x} \leq \boldsymbol{x}^{\top} B \boldsymbol{x} \quad \forall \boldsymbol{x}$.

Spanning tree $T$ of $G$ is $\alpha$-spectrally thin if $L_{T} \preceq \alpha L_{G}$.

$$
\alpha \text {-spectrally thin tree } \quad \Rightarrow \quad \alpha \text {-thin tree. }
$$

## Laplacians and spectrally thin trees

## Laplacian of a graph G with weights w

$$
\left.L_{G}=\sum_{e \in E} w_{e} L_{e} . \quad L_{\{i, j\}}=\begin{array}{c}
i \\
i \\
j \\
j \\
j \\
0
\end{array} \begin{array}{cc}
j \\
0 & 0 \\
-1 & 0
\end{array}\right)
$$

Löwner ordering: $A \preceq B$ if $B-A$ is PSD, i.e., $\boldsymbol{x}^{\top} A \boldsymbol{x} \leq \boldsymbol{x}^{\top} B \boldsymbol{x} \forall \boldsymbol{x}$.

Spanning tree $T$ of $G$ is $\alpha$-spectrally thin if $L_{T} \preceq \alpha L_{G}$.

$$
\alpha \text {-spectrally thin tree } \quad \Rightarrow \quad \alpha \text {-thin tree. }
$$

Can be checked efficiently (compute $\lambda_{\max }\left(L_{G}^{\dagger / 2} L_{T} L_{G}^{\dagger / 2}\right)$ ).

## Spectrally thin trees

## Goddyn's Conjecture

Every graph has a $O(1 / K)$-thin tree.

## Spectrally thin trees

## Goddyn's Conjecture

Every graph has a $O(1 / K)$-thin tree.

- Cannot hope for a $O(1 / K)$-spectrally thin tree in general. Lowerbound is $O(\sqrt{n} / K)$.
- Nonetheless, useful tool for providing certificates of thinness.

Anari \& Oveis-Gharan - upcoming talks

## Spectrally thin trees

## Goddyn's Conjecture

Every graph has a $O(1 / K)$-thin tree.

$$
K=\min _{e} k_{e} \quad \longrightarrow \quad C=\min _{e} c_{e}
$$


$c_{e}=$ amount of current that flows if 1 V battery attached to endpoints of $e$.
$c_{e} \leq k_{e}$

## Spectrally thin trees

## Goddyn's Conjecture

Every graph has a $O(1 / K)$-thin tree.

$$
K=\min _{e} k_{e} \quad \longrightarrow \quad C=\min _{e} c_{e}
$$

## Theorem

Always exists a $O(1 / C)$-spectrally thin tree.

- Implication of their solution to the Kadison-Singer Problem.
- Not constructive.


## Spectrally thin trees

## Goddyn's Conjecture

Every graph has a $O(1 / K)$-thin tree.

$$
K=\min _{e} k_{e} \quad \longrightarrow \quad C=\min _{e} c_{e}
$$

## Theorem

Always exists a $O(1 / C)$-spectrally thin tree.

- Implication of their solution to the Kadison-Singer Problem.
- Not constructive.
- What can we achieve constructively with simple randomized rounding?


## Rounding for spectrally thin trees

- Let $z_{e}=1 / c_{e}$; then

$$
\sum_{e \in E} z_{e} L_{e} \preceq \frac{1}{C} L_{G} .
$$

- $H$ : include $e$ independently with prob. $\min \left\{10 \log n \cdot z_{e}, 1\right\}$.


## Rounding for spectrally thin trees

- Let $z_{e}=1 / c_{e}$; then

$$
\sum_{e \in E} z_{e} L_{e} \preceq \frac{1}{C} L_{G} .
$$

- $H$ : include $e$ independently with prob. $\min \left\{10 \log n \cdot z_{e}, 1\right\}$.

$$
\begin{aligned}
L_{H} & =\sum_{e \in E} \hat{X}_{e} L_{e} \quad \text { where } \quad \hat{X}_{e}=\mathbf{1}_{e \in T} \\
\mathbb{E}\left[L_{H}\right] & =10 \log n \sum_{e \in E} z_{e} L_{e} \preceq \frac{10 \log n}{C} L_{G} .
\end{aligned}
$$

Matrix Chernoff implies that whp,
$H$ connected and $L_{H} \preceq O\left(\frac{1}{C} \cdot \log n\right) L_{G}$.

## Rounding for spectrally thin trees

## Matrix Chernoff

Given $Y_{1}, \ldots, Y_{m}$, with $0 \preceq Y_{i} \preceq R I$. Let $S=\sum_{i} Y_{i}, \mu=\lambda_{\max }(\mathbb{E} S)$. Then

$$
\mathbb{P}\left[\lambda_{\max }(S)>(1+\delta) \mu\right] \leq n \cdot\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu / R}
$$

$$
\begin{aligned}
L_{H} & =\sum_{e \in E} \hat{X}_{e} L_{e} \quad \text { where } \quad \hat{X}_{e}=\mathbf{1}_{e \in T} \\
\mathbb{E}\left[L_{H}\right] & =10 \log n \sum_{e \in E} z_{e} L_{e} \preceq \frac{10 \log n}{C} L_{G} .
\end{aligned}
$$

Matrix Chernoff implies that whp,
$H$ connected and $L_{H} \preceq O\left(\frac{1}{C} \cdot \log n\right) L_{G}$.

## Rounding for spectrally thin trees

- $z_{e}=1 / c_{e}$ is in the spanning tree polytope.

$$
\sum_{e \in E} z_{e} L_{e} \preceq \frac{1}{C} L_{G}
$$

- Randomly round to a spanning tree $T$ s.t. $\mathbb{P}[e \in T]=z_{e}$ for all $e$.

If we can obtain the same matrix concentration as independent rounding, $T$ is $O\left(\frac{1}{C} \frac{\log n}{\log \log n}\right)$-spectrally thin.

## Rounding for spectrally thin trees

- $z_{e}=1 / c_{e}$ is in the spanning tree polytope.

$$
\sum_{e \in E} z_{e} L_{e} \preceq \frac{1}{C} L_{G}
$$

- Randomly round to a spanning tree $T$ s.t. $\mathbb{P}[e \in T]=z_{e}$ for all $e$.

If we can obtain the same matrix concentration as independent rounding, $T$ is $O\left(\frac{1}{C} \frac{\log n}{\log \log n}\right)$-spectrally thin.

Max entropy distribution
Pipage rounding

## Rounding for spectrally thin trees

- $z_{e}=1 / c_{e}$ is in the spanning tree polytope.

$$
\sum_{e \in E} z_{e} L_{e} \preceq \frac{1}{C} L_{G}
$$

- Randomly round to a spanning tree $T$ s.t. $\mathbb{P}[e \in T]=z_{e}$ for all $e$.

If we can obtain the same matrix concentration as independent rounding, $T$ is $O\left(\frac{1}{C} \frac{\log n}{\log \log n}\right)$-spectrally thin.

Max entropy distribution
Pipage rounding

Open!

## Rounding for spectrally thin trees

- $z_{e}=1 / c_{e}$ is in the spanning tree polytope.

$$
\sum_{e \in E} z_{e} L_{e} \preceq \frac{1}{C} L_{G}
$$

- Randomly round to a spanning tree $T$ s.t. $\mathbb{P}[e \in T]=z_{e}$ for all $e$.

If we can obtain the same matrix concentration as independent rounding, $T$ is $O\left(\frac{1}{C} \frac{\log n}{\log \log n}\right)$-spectrally thin.

Max entropy distribution
Pipage rounding

## Theorem <br> Harvey-0. '14

Open!
Gives $O\left(\frac{1}{C} \cdot \frac{\log n}{\log \log n}\right)$-spectrally thin tree.

## Matrix Chernoff for pipage rounding

Given matroid base polytope $P \subseteq \mathbb{R}_{+}^{m}, x \in P$, and PSD matrices $L_{1}, \ldots, L_{m}$.
Let $\hat{X} \in\{0,1\}^{m}$ be the (random) outcome of "pipage rounding" starting from $x$.
Then $\sum_{i} \hat{X}_{i} L_{i}$ satisfies the same matrix Chernoff bounds as independent rounding from $x$.

## Pipage rounding

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10
Let $P$ be a matroid base polytope (e.g., spanning tree polytope).

- Swap directions:
$\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$ for $i \neq j$.



## Pipage rounding

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10
Let $P$ be a matroid base polytope (e.g., spanning tree polytope).

- Swap directions:
$\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$ for $i \neq j$.



## Pipage rounding

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10
Let $P$ be a matroid base polytope (e.g., spanning tree polytope).

- Swap directions:
$\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$ for $i \neq j$.



## Pipage rounding

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10
Let $P$ be a matroid base polytope (e.g., spanning tree polytope).

- Swap directions:
$\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$ for $i \neq j$.



## Pipage rounding

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10
Let $P$ be a matroid base polytope (e.g., spanning tree polytope).

- Swap directions:
$\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$ for $i \neq j$.
- Martingale: $\mathbb{E}[\hat{X}]=x$.
- $\hat{X}$ satisfies negative cylinder dependence.



## Pipage rounding

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10
Let $P$ be a matroid base polytope (e.g., spanning tree polytope).

Swap directions:
$\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$ for $i \neq j$.

- Martingale: $\mathbb{E}[\hat{X}]=x$.
- $\hat{X}$ satisfies negative cylinder dependence.
- If $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is concave under swaps, then $\mathbb{E}[g(\hat{X})] \leq g(x)$.

$$
z \rightarrow g\left(x+z\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right) \text { concave for any } x \in P, i \neq j
$$

## Warmup: Chernoff bounds for pipage rounding

Let $D(x)$ be the product distribution on $\{0,1\}^{m}$ where $\mathbb{P}\left[X_{i}=1\right]=x_{i}$.

Usual Chernoff proof: for all $\theta>0$,

$$
\begin{aligned}
\mathbb{P}_{X \sim D(x)}\left[\sum_{i} X_{i}>t\right] & =\mathbb{P}_{X \sim D(x)}\left[e^{\theta \sum_{i} x_{i}}>e^{\theta t}\right] \\
& \leq e^{-\theta t} \mathbb{E}_{X \sim D(x)}\left[e^{\theta \sum_{i} x_{i}}\right] \\
& =e^{-\theta t} \prod \mathbb{E}_{X \sim D(x)}\left[e^{\theta X_{i}}\right]=: g_{t, \theta}(x) .
\end{aligned}
$$

Then show that

$$
\inf _{\theta>0} g_{(1+\delta) \mu, \theta}(x) \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

## Warmup: Chernoff bounds for pipage rounding

Let $D(x)$ be the product distribution on $\{0,1\}^{m}$ where $\mathbb{P}\left[X_{i}=1\right]=x_{i}$.
Usual Chernoff proof: for all $\theta>0$,

$$
\begin{aligned}
\mathbb{P}_{X \sim D(x)}\left[\sum_{i} X_{i}>t\right] & =\mathbb{P}_{X \sim D(x)}\left[e^{\theta \sum_{i} X_{i}}>e^{\theta t}\right] \\
& \leq e^{-\theta t} \mathbb{E}_{X \sim D(x)}\left[e^{\theta \sum_{i} x_{i}}\right] \\
& =e^{-\theta t} \prod \mathbb{E}_{X \sim D(x)}\left[e^{\theta X_{i}}\right]=: g_{t, \theta}(X) .
\end{aligned}
$$

Then show that

$$
\inf _{\theta>0} g_{(1+\delta) \mu, \theta}(x) \leq\left(\frac{e^{\delta}}{(1+\delta)^{++\delta}}\right)^{\mu} .
$$

## Claim

$g_{t, \theta}$ is concave under swaps for any $t \in \mathbb{R}, \theta>0$.

## Warmup: Chernoff bounds for pipage rounding

$$
\begin{gathered}
\mathbb{P}_{X \sim D(x)}\left[\sum X_{i}>t\right] \leq g_{t, \theta}(x) \\
x \xrightarrow{\text { pipage rounding }} \hat{X} .
\end{gathered}
$$

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i} \hat{X}_{i}>t\right] & \leq \mathbb{E}\left[g_{t, \theta}(\hat{X})\right] \\
& \leq g_{t, \theta}(x)
\end{aligned}
$$

Hence get precisely the same tail bounds for pipage rounding as for independent rounding.

## Noncommutative difficulties

Usual Chernoff proof: for all $\theta>0$,

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i} X_{i}>t\right] & =\mathbb{P}\left[e^{\theta \sum_{i} x_{i}}>e^{\theta t}\right] \\
& \leq e^{-\theta t} \mathbb{E}\left[e^{\theta \sum_{i} X_{i}}\right] \\
& =e^{-\theta t} \mathbb{E}\left[\prod e^{\theta X_{i}}\right] \\
& =e^{-\theta t} \prod \mathbb{E}\left[e^{\theta X_{i}}\right]
\end{aligned}
$$

## Noncommutative difficulties

Usual Chernoff proof: for all $\theta>0$,

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i} x_{i}>t\right] & =\mathbb{P}\left[e^{\theta \sum_{i} X_{i}}>e^{\theta t}\right] \\
& \leq e^{-\theta t} \mathbb{E}\left[e^{\theta} \sum_{i} x_{i}\right] \\
& =e^{-\theta t} \mathbb{E}\left[\prod e^{\theta X_{i}}\right] \\
& =e^{-\theta t} \prod \mathbb{E}\left[e^{\theta X_{i}}\right] .
\end{aligned}
$$

For matrices, $e^{A+B} \neq e^{A} \cdot e^{B}$ !

## Noncommutative difficulties

Usual Chernoff proof: for all $\theta>0$,

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i} X_{i}>t\right] & =\mathbb{P}\left[e^{\theta \sum_{i} x_{i}}>e^{\theta t}\right] \\
& \leq e^{-\theta t} \mathbb{E}\left[e^{\theta \sum_{i} X_{i}}\right] \\
& =e^{-\theta t} \mathbb{E}\left[\prod e^{\theta X_{i}}\right] \\
& =e^{-\theta t} \prod \mathbb{E}\left[e^{\theta X_{i}}\right]
\end{aligned}
$$

For matrices, $e^{A+B} \neq e^{A} \cdot e^{B}$ !

Golden-Thompson: $\operatorname{tr} e^{A+B} \leq \operatorname{tr}\left(e^{A} \cdot e^{B}\right)$.
Lieb's Theorem.

## Matrix Chernoff bounds for pipage rounding

Let $A_{1}, \ldots, A_{m}$ be $n \times n$ symmetric matrices with $0 \preceq A_{i} \preceq I$.

Tropp '12:

$$
\begin{aligned}
\mathbb{P}_{X \sim D(x)}\left[\lambda_{\max }\left(\sum_{i} X_{i} A_{i}\right)>t\right] & \leq \underbrace{e^{-\theta t} \operatorname{tr} \exp \left(\sum_{i} \log \mathbb{E}_{X \sim D(x)}\left[e^{\left.\theta X_{i} A_{i}\right]}\right)\right.}_{g_{t, \theta}(x)} \\
\inf _{\theta>0} g_{(1+\delta) \mu, \theta}(x) & \leq n \cdot\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
\end{aligned}
$$

## Matrix Chernoff bounds for pipage rounding

Let $A_{1}, \ldots, A_{m}$ be $n \times n$ symmetric matrices with $0 \preceq A_{i} \preceq I$.

Tropp '12:

$$
\begin{gathered}
\mathbb{P}_{X \sim D(x)}\left[\lambda_{\max }\left(\sum_{i} X_{i} A_{i}\right)>t\right] \leq \underbrace{e^{-\theta t} \operatorname{tr} \exp \left(\sum_{i} \log \mathbb{E}_{X \sim D(x)}\left[e^{\theta X_{i} A_{i}}\right]\right)}_{g_{t, \theta}(x)} \\
\inf _{\theta>0} g_{(1+\delta) \mu, \theta}(x) \leq n \cdot\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
\end{gathered}
$$

## Key Theorem

$g_{t, \theta}$ is concave under swaps for any $t \in \mathbb{R}, \theta>0$.

$$
\begin{gathered}
x \xrightarrow{\text { pipage rounding }} \hat{X} \\
\mathbb{P}\left[\lambda_{\max }\left(\sum_{i} \hat{X}_{i} A_{i}\right)>t\right] \leq \mathbb{E}\left[g_{t, \theta}(\hat{X})\right] \leq g_{t, \theta}(x) .
\end{gathered}
$$

## Lieb's theorem and a variant

Lieb '73 (used by Tropp '12): If $A, B$ symmetric and $C$ PSD, then

$$
z \rightarrow \operatorname{tr} \exp (A+\log (C+z B))
$$

is concave.


Harvey-O. '14:
If $A$ symmetric, $B_{1}, B_{2}$ PSD and $C_{1}, C_{2} \mathrm{PD}$, then

$$
\begin{aligned}
z \rightarrow \operatorname{tr} \exp (A+\log ( & \left.C_{1}+z B_{1}\right) \\
& \left.+\log \left(C_{2}-z B_{2}\right)\right)
\end{aligned}
$$

is concave.


$$
z \rightarrow g_{t, \theta}\left(x+z\left(\boldsymbol{e}_{i}-\mathbf{e}_{j}\right)\right)
$$

## Conclusion

- MSS implies $O(1 / C)$-spectral thin trees exist. Polynomial time algorithm?
- Do $O(1 / K)$-thin trees exist?

Anari \& Oveis Gharan '15: $O$ (polyloglog $n / K$ )-thin trees exist

- Concentration bounds for negatively dependent sums of matrices?


## Conclusion

- MSS implies $O(1 / C)$-spectral thin trees exist. Polynomial time algorithm?
- Do $O(1 / K)$-thin trees exist?

Anari \& Oveis Gharan '15: $O$ (polyloglog $n / K$ )-thin trees exist

- Concentration bounds for negatively dependent sums of matrices?

Kyng-Song '18: A Chernoff-type bound for strongly Rayleigh measures.

Implies that a max-entropy spanning tree satisfies
$L_{T} \preceq O(\log n) L_{G}$ (but nothing better).

## Conclusion

- MSS implies $O(1 / C)$-spectral thin trees exist. Polynomial time algorithm?
- Do $O(1 / K)$-thin trees exist?

Anari \& Oveis $\begin{gathered}\text { Thank youl }\end{gathered}$
exist

- Concentration bounds for negatively dependent sums of matrices?

Kyng-Song '18: A Chernoff-type bound for strongly Rayleigh measures.

Implies that a max-entropy spanning tree satisfies
$L_{T} \preceq O(\log n) L_{G}$ (but nothing better).

## Kyng-Song '18

## Suppose

- $\left(X_{1}, \ldots, X_{m}\right) \in\{0,1\}^{m}$ is strongly Rayleigh, with $\sum_{i} X_{i}=k$ surely
- $A_{1}, \ldots, A_{m}$ are PSD, $A_{i} \preceq I$

Let $S=\sum_{i} X_{i} A_{i}, \mu=\|S\|$. Then for some universal $C>0$

$$
\mathbb{P}[\|S\|>(1+\delta) \mu] \leq n \cdot \exp \left(-C \frac{\mu \delta^{2}}{\log k+\delta}\right)^{\mu}
$$

- Implies that $O\left(\log ^{2} n / \epsilon^{2}\right)$ random spanning trees (from max entropy distribution), with edge weights correctly chosen, is a ( $1 \pm \epsilon$ )-spectral sparsifier.

