Pipage Rounding, Pessimistic Estimators and Matrix Concentration

Neil Olver

BIRS, September 2018

Joint work with Nick Harvey

Thin trees

Spanning tree T of G is α -thin if

 $|\delta_T(S)| \leq \alpha |\delta_G(S)| \quad \forall S.$

Thin trees

edge connectivity

Spanning tree T of G is α -thin if

$$|\delta_T(S)| \leq \alpha |\delta_G(S)| \quad \forall S.$$

Goddyn's Conjecture

Every graph has a O(1/K)-thin tree, where $K = \min_e k_e$.

Would imply a (different) *O*(1) approximation for asymmetric TSP. *Asadpour-Goemans-Madry-Oveis Gharan-Saberi '10*

• *H*: include *e* independently with prob. min{10 log n/K, 1}.

► For any *S*, $\begin{aligned} |\delta_{H}(S)| &= \sum_{e \in \delta(S)} \mathbf{1}_{e \in H} \\ \mathbb{E}[|\delta_{H}(S)|] &\leq \frac{10 \log n}{K} |\delta_{G}(S)|. \end{aligned}$

Chernoff bounds $\Rightarrow 1 \le |\delta_H(S)| \le O(\frac{1}{K} \log n) |\delta_G(S)|$ w.h.p.

• *H*: include *e* independently with prob. min{10 log n/K, 1}.

► For any *S*, $\begin{aligned} |\delta_{H}(S)| &= \sum_{e \in \delta(S)} \mathbf{1}_{e \in H} \\ \mathbb{E}[|\delta_{H}(S)|] &\leq \frac{10 \log n}{K} |\delta_{G}(S)|. \end{aligned}$

Chernoff bounds $\Rightarrow 1 \le |\delta_H(S)| \le O(\frac{1}{K} \log n) |\delta_G(S)|$ w.h.p.

• *H*: include *e* independently with prob. min{10 log n/K, 1}.

► For any *S*,
$$|\delta_{H}(S)| = \sum_{e \in \delta(S)} \mathbf{1}_{e \in H}$$
$$\mathbb{E}[|\delta_{H}(S)|] \leq \frac{10 \log n}{K} |\delta_{G}(S)|.$$

Chernoff bounds $\Rightarrow 1 \le |\delta_H(S)| \le O(\frac{1}{K} \log n) |\delta_G(S)|$ w.h.p.

• "Clever union bound" (Karger cut counting): holds for all *S* w.h.p. Hence any spanning tree of *H* is $O(\frac{1}{K} \cdot \log n)$ -thin.

• *H*: include *e* independently with prob. min{10 log n/K, 1}.

► For any *S*,
$$|\delta_{H}(S)| = \sum_{e \in \delta(S)} \mathbf{1}_{e \in H}$$
$$\mathbb{E}[|\delta_{H}(S)|] \leq \frac{10 \log n}{K} |\delta_{G}(S)|.$$

Chernoff bounds $\Rightarrow 1 \le |\delta_H(S)| \le O(\frac{1}{K} \log n) |\delta_G(S)|$ w.h.p.

• "Clever union bound" (Karger cut counting): holds for all *S* w.h.p. Hence any spanning tree of *H* is $O(\frac{1}{K} \cdot \log n)$ -thin.

Can't improve the $O(\log n)$ using this approach, because we lose connectivity of *H*.

▶ Pick $z \in \mathbb{R}_+^E$ s.t. *z* is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K} |\delta_G(S)| \quad \forall S.$

▶ Pick $z \in \mathbb{R}_+^E$ s.t. *z* is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K} |\delta_G(S)| \quad \forall S.$

▶ Pick $z \in \mathbb{R}^{E}_{+}$ s.t. *z* is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K} |\delta_{G}(S)| \quad \forall S.$

Randomly round to a tree T s.t. $\mathbb{P}[e \in T] = z_e$ for all e.
 Max entropy distribution Pipage rounding

Chekuri-Vondrak-Zenklusen '10

Asadpour et al. '10

- ▶ Pick $z \in \mathbb{R}_+^E$ s.t. *z* is in the spanning tree polytope, and $z(\delta(S)) \leq \frac{2}{K} |\delta_G(S)| \quad \forall S.$
- Randomly round to a tree T s.t. $\mathbb{P}[e \in T] = z_e$ for all e.
 Max entropy distribution
 Pipage rounding

Asadpour et al. '10

Chekuri-Vondrak-Zenklusen '10

Both yield negatively dependent distributions. Hence Chernoff bounds still hold for upper tail; yields log log n improvement.

A difficulty with thin trees

$$|\delta_T(S)| \le \alpha |\delta_G(S)| \quad \forall S$$

How can one certify that a spanning tree T is α -thin?

Even approximately?

Laplacians and spectrally thin trees

Laplacian of a graph G with weights w

$$L_{G} = \sum_{e \in E} w_{e} L_{e}.$$

$$L_{\{i,j\}} = i \begin{pmatrix} i & j \\ 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Löwner ordering: $A \leq B$ if B - A is PSD, i.e., $\mathbf{x}^T A \mathbf{x} \leq \mathbf{x}^T B \mathbf{x} \forall \mathbf{x}$.

Spanning tree *T* of *G* is α -spectrally thin if $L_T \preceq \alpha L_G$.

 α -spectrally thin tree \Rightarrow α -thin tree.

Laplacians and spectrally thin trees

Laplacian of a graph G with weights w

$$L_{G} = \sum_{e \in E} w_{e} L_{e}.$$

$$L_{\{i,j\}} = i \begin{pmatrix} i & j \\ 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Löwner ordering: $A \leq B$ if B - A is PSD, i.e., $\mathbf{x}^T A \mathbf{x} \leq \mathbf{x}^T B \mathbf{x} \forall \mathbf{x}$.

Spanning tree *T* of *G* is α -spectrally thin if $L_T \preceq \alpha L_G$.

 α -spectrally thin tree $\Rightarrow \alpha$ -thin tree.

Can be checked efficiently (compute $\lambda_{\max}(L_G^{\dagger/2}L_T L_G^{\dagger/2}))$.

Goddyn's Conjecture

Every graph has a O(1/K)-thin tree.

Goddyn's Conjecture

Every graph has a O(1/K)-thin tree.

- Cannot hope for a O(1/K)-spectrally thin tree in general. Lowerbound is $O(\sqrt{n}/K)$. *Goemans; de Carli Silva et al.*
- Nonetheless, useful tool for providing certificates of thinness.

Anari & Oveis-Gharan – upcoming talks

Goddyn's Conjecture

Every graph has a O(1/K)-thin tree.

$$K = \min_e k_e \longrightarrow C = \min_e c_e$$

 c_e = amount of current that flows if 1V battery attached to endpoints of *e*.

$$c_e \leq k_e$$

Goddyn's Conjecture

Every graph has a O(1/K)-thin tree.

$$K = \min_{e} k_{e} \longrightarrow C = \min_{e} c_{e}$$

Theorem

Marcus-Spielman-Srivastava '13

Always exists a O(1/C)-spectrally thin tree.

- Implication of their solution to the Kadison-Singer Problem.
- Not constructive.

Goddyn's Conjecture

Every graph has a O(1/K)-thin tree.

$$K = \min_{e} k_{e} \longrightarrow C = \min_{e} c_{e}$$

Theorem

Marcus-Spielman-Srivastava '13

Always exists a O(1/C)-spectrally thin tree.

- Implication of their solution to the Kadison-Singer Problem.
- Not constructive.
- What can we achieve constructively with simple randomized rounding?

$$\sum_{e\in E} z_e L_e \preceq \frac{1}{C} L_G.$$

• *H*: include *e* independently with prob. min{10 log $n \cdot z_e$, 1}.

• Let
$$z_e = 1/c_e$$
; then

$$\sum_{e\in E} z_e L_e \preceq \frac{1}{C} L_G.$$

• *H*: include *e* independently with prob. min{10 log $n \cdot z_e$, 1}.

$$L_{H} = \sum_{e \in E} \hat{X}_{e} L_{e} \qquad \text{where} \quad \hat{X}_{e} = \mathbf{1}_{e \in T}$$
$$\mathbb{E}[L_{H}] = 10 \log n \sum_{e \in E} z_{e} L_{e} \preceq \frac{10 \log n}{C} L_{G}.$$

Matrix Chernoff implies that whp,

H connected and
$$L_H \preceq O(\frac{1}{C} \cdot \log n)L_G$$
.

Matrix Chernoff

Given
$$Y_1, \ldots, Y_m$$
, with $0 \leq Y_i \leq RI$. Let $S = \sum_i Y_i, \mu = \lambda_{\max}(\mathbb{E}S)$.
Then
 $\mathbb{P}[\lambda_{\max}(S) > (1 + \delta)\mu] \leq n \cdot \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu/R}$.

$$L_{H} = \sum_{e \in E} \hat{X}_{e} L_{e} \qquad \text{where} \quad \hat{X}_{e} = \mathbf{1}_{e \in T}$$
$$\mathbb{E}[L_{H}] = 10 \log n \sum_{e \in E} z_{e} L_{e} \preceq \frac{10 \log n}{C} L_{G}.$$

Matrix Chernoff implies that whp,

H connected and
$$L_H \leq O(\frac{1}{C} \cdot \log n)L_G$$
.

• $z_e = 1/c_e$ is in the spanning tree polytope.

$$\sum_{e\in E} z_e L_e \preceq \frac{1}{C} L_G.$$

▶ Randomly round to a spanning tree *T* s.t. $\mathbb{P}[e \in T] = z_e$ for all *e*.

If we can obtain the same matrix concentration as independent rounding, *T* is $O(\frac{1}{C} \frac{\log n}{\log \log n})$ -spectrally thin.

• $z_e = 1/c_e$ is in the spanning tree polytope.

$$\sum_{e\in E} z_e L_e \preceq \frac{1}{C} L_G.$$

▶ Randomly round to a spanning tree *T* s.t. $\mathbb{P}[e \in T] = z_e$ for all *e*.

If we can obtain the same matrix concentration as independent rounding, *T* is $O(\frac{1}{C} \frac{\log n}{\log \log n})$ -spectrally thin.

Max entropy distribution

Pipage rounding

• $z_e = 1/c_e$ is in the spanning tree polytope.

$$\sum_{e\in E} z_e L_e \preceq \frac{1}{C} L_G.$$

▶ Randomly round to a spanning tree *T* s.t. $\mathbb{P}[e \in T] = z_e$ for all *e*.

If we can obtain the same matrix concentration as independent rounding, *T* is $O(\frac{1}{C} \frac{\log n}{\log \log n})$ -spectrally thin.

Max entropy distribution Pipage rounding

Open!

• $z_e = 1/c_e$ is in the spanning tree polytope.

$$\sum_{e\in E} z_e L_e \preceq \frac{1}{C} L_G.$$

▶ Randomly round to a spanning tree *T* s.t. $\mathbb{P}[e \in T] = z_e$ for all *e*.

If we can obtain the same matrix concentration as independent rounding, *T* is $O(\frac{1}{C} \frac{\log n}{\log \log n})$ -spectrally thin.

Matrix Chernoff for pipage rounding

Theorem

Harvey-O. '14

Given matroid base polytope $P \subseteq \mathbb{R}^m_+$, $x \in P$, and PSD matrices L_1, \ldots, L_m .

Let $\hat{X} \in \{0, 1\}^m$ be the (random) outcome of "pipage rounding" starting from *x*.

Then $\sum_i \hat{X}_i L_i$ satisfies the same matrix Chernoff bounds as independent rounding from *x*.

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10

Let *P* be a matroid base polytope (e.g., spanning tree polytope).

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10

Let P be a matroid base polytope (e.g., spanning tree polytope).

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10

Let *P* be a matroid base polytope (e.g., spanning tree polytope).

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10

Let *P* be a matroid base polytope (e.g., spanning tree polytope).

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10

Let P be a matroid base polytope (e.g., spanning tree polytope).

- Swap directions: $\boldsymbol{e}_i - \boldsymbol{e}_j$ for $i \neq j$.
- Martingale: $\mathbb{E}[\hat{X}] = x$.
- X̂ satisfies negative cylinder dependence.

Ageev-Sviridenko '04, Srinivasan '01, Calinescu et al. '07, Chekuri et al. '10

Let P be a matroid base polytope (e.g., spanning tree polytope).

- Swap directions: $\boldsymbol{e}_i - \boldsymbol{e}_j$ for $i \neq j$.
- Martingale: $\mathbb{E}[\hat{X}] = x$.
- X̂ satisfies negative cylinder dependence.
- ▶ If $g : \mathbb{R}^m \to \mathbb{R}$ is concave under swaps, then $\mathbb{E}[g(\hat{X})] \le g(x)$.

 $z
ightarrow g(x + z(oldsymbol{e}_i - oldsymbol{e}_j))$ concave for any $x \in P, \, i
eq j$

Warmup: Chernoff bounds for pipage rounding

Let D(x) be the product distribution on $\{0, 1\}^m$ where $\mathbb{P}[X_i = 1] = x_i$.

Usual Chernoff proof: for all $\theta > 0$,

$$\mathbb{P}_{X \sim D(x)}[\sum_{i} X_{i} > t] = \mathbb{P}_{X \sim D(x)}[e^{\theta \sum_{i} X_{i}} > e^{\theta t}]$$

$$\leq e^{-\theta t} \mathbb{E}_{X \sim D(x)}[e^{\theta \sum_{i} X_{i}}]$$

$$= e^{-\theta t} \prod \mathbb{E}_{X \sim D(x)}[e^{\theta X_{i}}] =: g_{t,\theta}(x).$$

Then show that

$$\inf_{\theta>0}g_{(1+\delta)\mu,\theta}(x)\leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Warmup: Chernoff bounds for pipage rounding

Let D(x) be the product distribution on $\{0, 1\}^m$ where $\mathbb{P}[X_i = 1] = x_i$.

Usual Chernoff proof: for all $\theta > 0$,

$$\mathbb{P}_{X \sim D(x)}[\sum_{i} X_{i} > t] = \mathbb{P}_{X \sim D(x)}[e^{\theta \sum_{i} X_{i}} > e^{\theta t}]$$

$$\leq e^{-\theta t} \mathbb{E}_{X \sim D(x)}[e^{\theta \sum_{i} X_{i}}]$$

$$= e^{-\theta t} \prod \mathbb{E}_{X \sim D(x)}[e^{\theta X_{i}}] =: g_{t,\theta}(x).$$

Then show that

$$\inf_{\vartheta>0} g_{(1+\delta)\mu,\theta}(x) \leq \left(\tfrac{e^{\delta}}{(1+\delta)^{1+\delta}} \right)^{\mu}.$$

Claim

 $g_{t,\theta}$ is concave under swaps for any $t \in \mathbb{R}, \theta > 0$.

1

Warmup: Chernoff bounds for pipage rounding

$$\mathbb{P}_{X \sim D(x)}\left[\sum X_i > t\right] \leq g_{t,\theta}(x)$$

$$x \longrightarrow \hat{X}$$

$$\mathbb{P}[\sum_i \hat{X}_i > t] \leq \mathbb{E}[g_{t, heta}(\hat{X})] \leq g_{t, heta}(x).$$

Hence get precisely the same tail bounds for pipage rounding as for independent rounding.

Noncommutative difficulties

Usual Chernoff proof: for all $\theta > 0$,

$$\mathbb{P}[\sum_{i} X_{i} > t] = \mathbb{P}[e^{\theta \sum_{i} X_{i}} > e^{\theta t}]$$

$$\leq e^{-\theta t} \mathbb{E}[e^{\theta \sum_{i} X_{i}}]$$

$$= e^{-\theta t} \mathbb{E}[\prod e^{\theta X_{i}}]$$

$$= e^{-\theta t} \prod \mathbb{E}[e^{\theta X_{i}}].$$

Noncommutative difficulties

Usual Chernoff proof: for all $\theta > 0$,

$$\mathbb{P}[\sum_{i} X_{i} > t] = \mathbb{P}[e^{\theta \sum_{i} X_{i}} > e^{\theta t}]$$

$$\leq e^{-\theta t} \mathbb{E}[e^{\theta \sum_{i} X_{i}}]$$

$$= e^{-\theta t} \mathbb{E}[\prod e^{\theta X_{i}}]$$

$$= e^{-\theta t} \prod \mathbb{E}[e^{\theta X_{i}}].$$

For matrices, $e^{A+B} \neq e^A \cdot e^B$!

Noncommutative difficulties

Usual Chernoff proof: for all $\theta > 0$,

$$\mathbb{P}[\sum_{i} X_{i} > t] = \mathbb{P}[e^{\theta \sum_{i} X_{i}} > e^{\theta t}]$$

$$\leq e^{-\theta t} \mathbb{E}[e^{\theta \sum_{i} X_{i}}]$$

$$= e^{-\theta t} \mathbb{E}[\prod e^{\theta X_{i}}]$$

$$= e^{-\theta t} \prod \mathbb{E}[e^{\theta X_{i}}].$$

For matrices, $e^{A+B} \neq e^A \cdot e^B$!

Golden-Thompson: tr $e^{A+B} \leq tr(e^A \cdot e^B)$. Lieb's Theorem.

Matrix Chernoff bounds for pipage rounding

Let A_1, \ldots, A_m be $n \times n$ symmetric matrices with $0 \leq A_i \leq I$.

Tropp '12:

$$\mathbb{P}_{X \sim D(x)}[\lambda_{\max}(\sum_{i} X_{i}A_{i}) > t] \leq \underbrace{e^{-\theta t} \operatorname{tr} \exp(\sum_{i} \log \mathbb{E}_{X \sim D(x)}[e^{\theta X_{i}A_{i}}])}_{g_{t,\theta}(x)}$$

$$\inf_{\theta > 0} g_{(1+\delta)\mu,\theta}(x) \leq n \cdot \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Matrix Chernoff bounds for pipage rounding

Let A_1, \ldots, A_m be $n \times n$ symmetric matrices with $0 \leq A_i \leq I$.

Tropp '12:

$$\mathbb{P}_{X \sim D(x)}[\lambda_{\max}(\sum_{i} X_{i}A_{i}) > t] \leq \underbrace{e^{-\theta t} \operatorname{tr} \exp(\sum_{i} \log \mathbb{E}_{X \sim D(x)}[e^{\theta X_{i}A_{i}}])}_{g_{t,\theta}(x)}$$
$$\inf_{\theta > 0} g_{(1+\delta)\mu,\theta}(x) \leq n \cdot \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Key Theorem

 $g_{t,\theta}$ is concave under swaps for any $t \in \mathbb{R}, \theta > 0$.

$$\kappa \stackrel{ ext{ pipage rounding }}{ o \hat{X}} \hat{X}$$

 $\mathbb{P}[\lambda_{\max}(\sum_{i} \hat{X}_{i} A_{i}) > t] \leq \mathbb{E}[g_{t,\theta}(\hat{X})] \leq g_{t,\theta}(x).$

Lieb's theorem and a variant

Lieb '73 (used by Tropp '12): If *A*, *B* symmetric and *C* PSD, then

 $z \rightarrow \text{tr} \exp(A + \log(C + zB))$

is concave.

Harvey-O. '14: If A symmetric, B_1, B_2 PSD and C_1, C_2 PD, then

$$z \rightarrow \operatorname{tr} \exp(A + \log(C_1 + zB_1) + \log(C_2 - zB_2))$$

is concave.

Conclusion

- MSS implies O(1/C)-spectral thin trees exist. Polynomial time algorithm?
- Do O(1/K)-thin trees exist?

Anari & Oveis Gharan '15: O(polyloglog n/K)-thin trees exist

Concentration bounds for negatively dependent sums of matrices?

Conclusion

MSS implies O(1/C)-spectral thin trees exist. Polynomial time algorithm?

Do O(1/K)-thin trees exist?

Anari & Oveis Gharan '15: O(polyloglog n/K)-thin trees exist

Concentration bounds for negatively dependent sums of matrices?

Kyng-Song '18: A Chernoff-type bound for strongly Rayleigh measures.

Implies that a max-entropy spanning tree satisfies $L_T \preceq O(\log n)L_G$ (but nothing better).

Conclusion

Kyng-Song '18

Suppose

(X₁,..., X_m) ∈ {0, 1}^m is strongly Rayleigh, with ∑_i X_i = k surely
 A₁,..., A_m are PSD, A_i ≤ I

Let $S = \sum_{i} X_i A_i$, $\mu = ||S||$. Then for some universal C > 0

$$\mathbb{P}[\|\boldsymbol{\mathcal{S}}\| > (1+\delta)\mu] \leq n \cdot \exp\left(-C\frac{\mu\delta^2}{\log k + \delta}\right)^{\mu}$$

Implies that O(log² n/e²) random spanning trees (from max entropy distribution), with edge weights correctly chosen, is a (1 ± e)-spectral sparsifier.