Pipage Rounding, Pessimistic Estimators and
Matrix Concentration

Neil Olver

V U kUNIVERSITY
X AMSTERDAM
Centrum Wiskunde & Informatica

BIRS, September 2018

Joint work with Nick Harvey



Thin trees
S S

G
Spanning tree T of G is a-thin if

07(S) < eldg(S)] VS



Thin trees
S S

G T
Spanning tree T of G is a-thin if

107(S)| < a|dg(S)] vS. edge connectivity

Goddyn’s Conjecture

Every graph has a O(1/K)-thin tree, where K = ming Ke .

Would imply a (different) O(1) approximation for asymmetric
TSP. Asadpour-Goemans-Madry-Oveis Gharan-Saberi *10
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Can’t improve the O(log n) using this approach, because we lose
connectivity of H.
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» Randomly roundto atree T s.t. Ple € T] =z, for all e.

Max entropy distribution Pipage rounding
Asadpour et al. ‘10 Chekuri-Vondrak-Zenklusen '10

» Both yield negatively dependent distributions. Hence Chernoff
bounds still hold for upper tail; yields log log n improvement.



A difficulty with thin trees

07(S)| < afda(S)] VS

How can one certify that a spanning tree T is a-thin?

Even approximately?




Laplacians and spectrally thin trees

Laplacian of a graph G with weights w
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Laplacian of a graph G with weights w

i J

Lg= Z Wele. if1 0 -1
ecE L{i,j} = 0 0 0
j\-1 0 1

Léwner ordering: A < Bif B— Ais PSD, i.e., xTAx < x"Bx vx.

[ Spanning tree T of G is a-spectrally thinif Lt < aLg. ]

a-spectrally thin tree = a-thin tree.

Can be checked efficiently (compute AmaX(LgZLTLTG/Z)).
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Spectrally thin trees

Goddyn’s Conjecture

Every graph has a O(1/K)-thin tree.

» Cannot hope for a O(1/K)-spectrally thin tree in general.
Lowerbound is O(\/ﬁ/ K ) Goemans; de Carli Silva et al.

» Nonetheless, useful tool for providing certificates of thinness.
Anari & Oveis-Gharan — upcoming talks



Spectrally thin trees

Goddyn’s Conjecture

Every graph has a O(1/K)-thin tree.

K=meinke — C=meince

Ce = amount of current that
flows if 1V battery attached
to endpoints of e.

Ce < Ke



Spectrally thin trees

Goddyn’s Conjecture

Every graph has a O(1/K)-thin tree.

K=meinke — C=meince

Theorem Marcus-Spielman-Srivastava '13

Always exists a O(1/C)-spectrally thin tree.
» Implication of their solution to the Kadison-Singer Problem.

» Not constructive.




Spectrally thin trees

Goddyn’s Conjecture

Every graph has a O(1/K)-thin tree.

K=meinke — C=meince

Theorem

Marcus-Spielman-Srivastava '13

Always exists a O(1/C)-spectrally thin tree.
» Implication of their solution to the Kadison-Singer Problem.
» Not constructive.

» What can we achieve constructively with simple randomized round-
ing?
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Rounding for spectrally thin trees

Matrix Chernoff Tropp °12

Given Ys,..., Yn, with0 < Y; X Rl Let S= 3, Vi, = Amax(ES).
Then
PAmax(S) > (1 +d)u] < n- (e_a

LH = Z )A(eLe Where )A(e = 1967'
ecE

10logn
C

E[Ly] =10logn ) zele =<

ecE

L.

Matrix Chernoff implies that whp,

H connected and Ly =< O(¢ - log n)Lg.
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Rounding for spectrally thin trees

» Zzo=1/ceis in the spanning tree polytope.

Z ZeLe _LG

ecE

» Randomly round to a spanning tree T s.t. P[e € T] = z for all e.

If we can obtain the same matrix concentration as independent

rounding, T is O(Clolgl%gn) spectrally thin.
Max entropy distribution Pipage rounding
Theorem Harvey-O. '14
Open! Gives O(¢ - %) spectrally

thin tree.
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Matrix Chernoff for pipage rounding

Theorem Harvey-0. '14

Given matroid base polytope P C RT", x € P, and PSD matrices
L1 yoeey Lm.

Let X € {0,1}™ be the (random) outcome of “pipage rounding”
starting from x.

Then Y, X;L; satisfies the same matrix Chernoff bounds as inde-
pendent rounding from x.
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Pipage rounding
Ageev-Sviridenko ‘04, Srinivasan ‘01, Calinescu et al. ‘07, Chekuri et al. ’10
Let P be a matroid base polytope (e.g., spanning tree polytope).

A
» Swap directions:

e,-—e,-fori;:’j.
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Pipage rounding
Ageev-Sviridenko ‘04, Srinivasan ‘01, Calinescu et al. ‘07, Chekuri et al. 10

Let P be a matroid base polytope (e.g., spanning tree polytope).

» Swap directions:
e,-—e,-fori;:’j.

» Martingale: E[X] = x.

> X satisfies negative cylinder
dependence.

» If g:R™ — Ris concave under

swaps@(f( )] < g(x).

z— g(x +z(e; — e;)) concave forany x € P, i #j
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Warmup: Chernoff bounds for pipage rounding
Let D(x) be the product distribution on {0, 1} where P[X; = 1] = x;.

Usual Chernoff proof: for all § > 0,

Px~pld_ Xi > t] = Pxpple’ 2% > 6]
i

< e "Ex._pl€’ 2.i%i]

= e "' [ Exppl€”1 =: gro(x).

Then show that s
GIQB 9a+8)u6(X) < ((pfsﬁ) -
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Warmup: Chernoff bounds for pipage rounding

Px~px) {ZX/' > f} < Gto(X)

pipage rounding )n(

]P’[Z)A(i > 1] < E[gto(X)]

< Gto(X).

Hence get precisely the same tail bounds for pipage rounding as for
independent rounding.
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Noncommutative difficulties

Usual Chernoff proof: for all 8 > 0,
P[> X > ] = Ple" 2% > ¢1]
i

< 679tE[eGZ,.X;]
= e B[] ] ¢
= e "' [] E[e"].

16



Noncommutative difficulties

Usual Chernoff proof: for all 8 > 0,
P[> X > ] = Ple" 2% > ¢1]
i

< efetE[eGZiX;]
= e B[] ] ¢
= e "' [] E[e"].

For matrices, e**B + eA . Bl

16



Noncommutative difficulties

Usual Chernoff proof: for all 8 > 0,
P[> X > ] = Ple" 2% > ¢1]
i

< efetE[eGEiX;]
= e B[] ] ¢
= e "' [] E[e"].

For matrices, e**B + eA . Bl

Golden-Thompson: tr e**8 < tr(e? . ).
Lieb’s Theorem.



Matrix Chernoff bounds for pipage rounding

Let Aq,...,An be n x nsymmetric matrices with 0 < A; < /.
Tropp '12:
Px~ o[ Amax(X; XiA) > 1] < e "' trexp(3; 109 Ex..pp[€”X4])
gt,0(X)

. (e M
inf gireayuo(x) < n (—(MM) .
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Matrix Chernoff bounds for pipage rounding

Let Aq,...,An be n x nsymmetric matrices with 0 < A; < /.
Tropp ’12:
P x~ D [Amax (3 XiAj) > 1] < €' trexp (X109 Exp[6”4])
9t.0(x)

Key Theorem

Ot is concave under swaps forany t € R, 6 > 0.

ipage roundin e
x pipag g X

IP)P\max(Zi )A(iAi) > t] < E[Qt,@(x)] < gt,é)(x)~

17



Lieb’s theorem and a variant

Lieb *73 (used by Tropp ’12):
If A, B symmetric and C PSD, then

z — trexp(A+log(C + zB))

is concave.

Harvey-O. ’14:
If A symmetric, By, Bo PSD and
C1, Cg PD, then

z — trexp(A +1og(Cy + zBy)
+ IOg(CZ — ZBQ))

is concave.

® @
X
®
[ ®
Z — Gro(X + ze))
@
X
®

@
Z = Qro(Xx + z(€i—€)))
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Conclusion

» MSS implies O(1/C)-spectral thin trees exist.
Polynomial time algorithm?

» Do O(1/K)-thin trees exist?

Anari & Oveis [ exist

‘ Thank you!

» Concentration bounds for negatively dependent sums of ma-
trices?

Kyng-Song '18: A Chernoff-type bound for strongly Rayleigh
measures.

Implies that a max-entropy spanning tree satisfies
L+ < O(log n)Lg (but nothing better).
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Kyng-Song ’18

Suppose
> (Xi,...,Xm) € {0,1}™is strongly Rayleigh, with 3=, X; = k surely

> Ay,...,Apare PSD, A =</

Let S =3"; XjA;, n = ||S||. Then for some universal C > 0

po? \"
PIS| > (1 +0)u] < n-exp (—Clogk+5>

> Implies that O(Iog2 n/e?) random spanning trees (from max entropy
distribution), with edge weights correctly chosen, is a
(1 & ¢)-spectral sparsifier.
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