Stochastic k-TSP

Viswanath Nagarajan (U Michigan)

Joint work: Alina Ene (BU), Rishi Saket (IBM)

k-TSP

- Metric (V, d) with root r and target k
 2-approximation [Garg '05]
- Quota-TSP: vertices have non-uniform rewards
 5-approximation [Ausiello Leonardi Spaccamela '00]
- Orienteering: max-reward s.t. bound on tour length $(2+\epsilon)$ -approximation [Chekuri Korula Pal '12]

Stochastic Setting

- In practice data is often uncertain
 Many approaches: stochastic, robust, online models
- We consider a stochastic setting with random rewards

Possible outcomes :

- Techniques from deterministic case already suffice OR
- Need new techniques to handle the stochastic case

Problem Definition

- Metric (V,d) with root r and target k
- Independent random variables $R_v \in \{0,1,...k\}$ for rewards
- Instantiation R_v only known when v is visited
- Minimize expected length to achieve total reward $\geq k$

Representing Solutions

Adaptive policy

Non-adaptive policy

Solution policy: adaptive vs non-adaptive

- adaptive: next step depends on observed rewards.
- non-adaptive: does not depend on observed rewards.

Adaptivity Gap: worst case gap between these policies.

Our Results

- O(log k)-approximate adaptive algorithm
- O(log² k)-approximate non-adaptive algorithm Also bounds adaptivity gap
- Adaptivity gap at least e \approx 2.71 Even with single random reward and star metric
- Extension to submodular rewards (larger poly-log approximation)
 Uses submod-max adaptivity gap [Gupta N. Singla '17]

Talk Outline

- Related work
- Adaptive algorithm
- Non-adaptive algorithm
- Extension to submodular rewards

Related Work: Maximization

- Stochastic knapsack [Dean Goemans Vondrak '04]... Ad Gap \leq 4

adaptive 2-approx. [Bhalgat Goel Khanna '11]

- Stochastic matching [Chen Immorlica Karlin Mahdian Rudra '09]... Ad Gap ≤ 3.23 [Baveja Chavan Nikiforov Srinivasan Xu '18] adaptive 2-approx. for unweighted [Adamcyzk '10]
- Stochastic orienteering [Gupta Krishnaswamy N. Ravi '12] [Bansal N. '14] $\Omega(\log B)^{1/2} \leq Ad Gap \leq O(\log B)$
- Stochastic submodular-max [Gupta N. Singla '16 '17] Ad Gap ≤ 3

Related Work: Minimization

- Stochastic knapsack-cover [Deshpande Hellerstein Kletenik '14] Adaptive 2-approx.
- Stochastic covering IPs [Goemans Vondrak '06] $d \leq Ad. \text{ Gap} \leq d^2$
- Stochastic submodular-cover [Im N. Zwaan '12] Adaptive (log 1/ε)-approx. Correlated setting [Navidi Kambadur N. '17] We use similar analysis here

Adaptive Algorithm

Initial Approach

Use orienteering in an iterative fashion

Assume an exact orienteering algorithm

Algorithm for Deterministic k-TSP

For i=0,1,2... solve Orienteering with length 2^i **O** until total reward $\ge k$

O(1) approx.

Attempt for Stochastic k-TSP

For i=0,1,2... solve Orienteering with

Length bound 2ⁱ

Does not work!

Expected *truncated* rewards $w_v = E[min(R_v, k_{res})]$

until total instantiated reward \geq k

Algorithm

For each 2^i length solve $\log k$ iterations of Orienteering.

• Also allows using O(1)-approx. for Orienteering.

Thm: $O(\log k)$ approx. for stochastic k-TSP.

Analysis Outline

Similar idea in min-latency TSP [Chaudhuri Godfrey Rao Talwar '03] Also used in stochastic submod-cover [Im N. Zwaan '12]

Analysis (phase i)

- s = state of algorithm (outcomes of some rewards)
- H(t,i) = states at iteration t of phase i

• Gain(s) =
$$\frac{E[\min \{ \Delta \text{ Reward }, k_{res} \}]}{k_{res}}$$

• G(t,i) = E _{s (t,i)}[Gain(s)] and G(i) = $\sum_{t} G(t,i)$

- 1) Upper bound G(i) \leq (ln k) a_{i-1}
- 2) Lower bound G(i) $\geq \Omega(\ln k) \cdot (a_i u_i)$

Analysis (Upper Bound)

- Fix a decision path in ALG
- Contribution to G(i) = $\sum_{t} G(t,i) = \sum_{t} \frac{\Delta \text{Reward}_{t}}{k_{\text{res}}}$

$$\leq \underline{1}_{k} + \underline{1}_{k-1} + \dots + \underline{1}_{1} \leq \ln k$$

 \Rightarrow G(i) \leq (ln k) a_{i-1}

Analysis (Lower Bound)

- Fix iteration t in phase i and state s
- Bound Gain(s) using orienteering instance J(s)
 length bnd 2ⁱ reward E[min(R_v, k_{res})]
- A. optimum(J(s)) \geq (1-u_i(s)) \cdot k_{res} where u_i(s) = Pr [OPT > 2^i | s]
- B. Gain(s) \geq (1-1/e) $\cdot \alpha \cdot \frac{\text{OPT}(J(s))}{k_{res}}$

 α -approx. orienteering

 $\mathsf{G}(\mathsf{t},\mathsf{i}) \geq (\mathsf{1}\text{-}\mathsf{1}/\mathsf{e}) \cdot \alpha \cdot (\mathsf{1}\text{-}\mathsf{u}_{\mathsf{i}} - (\mathsf{1}\text{-}\mathsf{a}_{\mathsf{i}})) = \Omega(\mathsf{1}) \cdot (\mathsf{a}_{\mathsf{i}} - \mathsf{u}_{\mathsf{i}})$

 \Rightarrow G(i) \geq Ω (log k) \cdot (a_i - u_i)

Non-Adaptive Algorithm

Adaptive To Non-Adaptive

Simulate the adaptive algorithm

- Possible orienteering instances in phase i iteration t Same bound 2ⁱ on length Different truncation levels k_{res} (for det. rewards)
- Bucket the truncation into (log k) levels
- Run (log k) many orienteering instances at each (i,t)

Thm: $O(\log^2 k)$ approx. for non-adaptive stochastic k-TSP.

• Also upper bounds adaptivity gap

Don't know better result even w.r.t. non-adaptive OPT

Adaptivity Gap Lower Bound

Online bidding: given n, find *random* sequence $B=(b_1, b_2 \cdots)$ of [n] Sequence S, target T costs C(S,T) = sum of bids in S until some bid $\geq T$

[Chrobak Kenyon Noga Young '08]

Stochastic k-TSP

- Target k = 2^{n+1} , rewards $R_i = 2^i$ for nodes $i \in [n]$
- Single random reward $R_0 = (k-2^i)$ w.p. p_i for $i \in [n]$

Choose prob p_i to maximize adaptivity gap

Submodular Reward Function

- Metric (V,d) with root r and target k
- Reward function $f: 2^V \rightarrow R_{_{\!\!\!\!+}}$, monotone submodular
- Min length to collect reward at least k O(log^{3+ δ} n) approx. [Calinescu, Zelikovsky '05] $\Omega(\log^{2-\delta} n)$ hard-to-approx. [Halperin Krauthgamer '03]

Stochastic setting: each vertex active w.p. p_i and minimize expected length so that f(active) $\ge k$

• Generalizes stochastic k-TSP for Bernoulli random vars

Algorithm for Submodular Case

Expected function $Ef(S) = E_{A \leftarrow p}[f(S \cap A)]$

 $\rho = \rho_{\text{orient}} \cdot \log 1/\epsilon$ iterations instead of log k

Theorem: Adaptive O(log^{2+ δ}n · log 1/ ϵ) approximation.

- Uses $\rho_{\text{orient}} = O(\log^{2+\delta} n)$ [Calinescu, Zelikovsky '05]
- Submodular-max adaptivity gap \leq 3 [Gupta N. Singla '17]

Open Questions

- O(1)-approximation for stochastic k-TSP? For either adaptive or non-adaptive
- Adaptivity gap?

Interesting even for covering knapsack (k-TSP on star metric) There is adaptive 2-approx. [Deshpande Hellerstein Kletenik '14] Can get non-adaptive O(1)-approx. via different approach Max-knapsack well understood [Dean Goemans Vondrak '04]...

• Other stochastic minimization problems?

Thank You!