Stochastic k-TSP

Viswanath Nagarajan (U Michigan)

Joint work: Alina Ene (BU), Rishi Saket (IBM)

k-TSP

- Metric (V, d) with root r and target k

2-approximation [Garg '05]

- Quota-TSP: vertices have non-uniform rewards

5-approximation [Ausiello Leonardi Spaccamela '00]

- Orienteering: max-reward s.t. bound on tour length (2+ ϵ)-approximation [Chekuri Korula Pal '12]

Stochastic Setting

- In practice data is often uncertain

Many approaches: stochastic, robust, online models

- We consider a stochastic setting with random rewards

Possible outcomes :

- Techniques from deterministic case already suffice OR
- Need new techniques to handle the stochastic case

Problem Definition

(V, d)

- Metric (V,d) with root r and target k
- Independent random variables $R_{v} \in\{0,1, \ldots k\}$ for rewards
- Instantiation R_{v} only known when v is visited
- Minimize expected length to achieve total reward $\geq k$

Representing Solutions

Adaptive policy

Non- adaptive policy

Solution policy: adaptive vs non-adaptive

- adaptive: next step depends on observed rewards.
- non-adaptive: does not depend on observed rewards.

Adaptivity Gap: worst case gap between these policies.

Our Results

- O(log k)-approximate adaptive algorithm
- $\mathrm{O}\left(\log ^{2} \mathrm{k}\right)$-approximate non-adaptive algorithm Also bounds adaptivity gap
- Adaptivity gap at least e ≈ 2.71

Even with single random reward and star metric

- Extension to submodular rewards (larger poly-log approximation) Uses submod-max adaptivity gap [Gupta N. Singla '17]

Talk Outline

- Related work
- Adaptive algorithm
- Non-adaptive algorithm
- Extension to submodular rewards

Related Work: Maximization

- Stochastic knapsack [Dean Goemans Vondrak '04]...

Ad Gap ≤ 4
adaptive 2-approx. [Bhalgat Goel Khanna '11]

- Stochastic matching [Chen Immorlica Karlin Mahdian Rudra '09]...

Ad Gap ≤ 3.23 [Baveja Chavan Nikiforov Srinivasan Xu '18]
adaptive 2-approx. for unweighted [Adamcyzk '10]

- Stochastic orienteering [Gupta Krishnaswamy N. Ravi '12] [Bansal N. '14] $\Omega(\log \log B)^{1 / 2} \leq A d G a p \leq O(\log \log B)$
- Stochastic submodular-max [Gupta N. Singla '16'17]

Ad Gap ≤ 3

Related Work: Minimization

- Stochastic knapsack-cover [Deshpande Hellerstein Kletenik '14] Adaptive 2-approx.
- Stochastic covering IPs [Goemans Vondrak '06]
$\mathrm{d} \leq$ Ad. Gap $\leq \mathrm{d}^{2}$
- Stochastic submodular-cover [Im N. Zwaan'12]

Adaptive ($\log 1 / \epsilon$)-approx.
Correlated setting [Navidi Kambadur N. '17]
We use similar analysis here

Adaptive Algorithm

Initial Approach

Use orienteering in an iterative fashion
Assume an exact orienteering algorithm
Algorithm for Deterministic k-TSP
For $\mathrm{i}=0,1,2 \ldots$ solve Orienteering with length 2^{i}
O(1) approx.
until total reward $\geq k$

Attempt for Stochastic k-TSP
For $\mathrm{i}=0,1,2 \ldots$ solve Orienteering with
Length bound 2^{i}
Does not work!
Expected truncated rewards $\mathrm{w}_{\mathrm{v}}=\mathrm{E}\left[\min \left(\mathrm{R}_{\mathrm{v}}, \mathrm{k}_{\mathrm{res}}\right)\right]$
until total instantiated reward $\geq k$

Algorithm

For each 2^{i} length solve $\log k$ iterations of Orienteering.

- Also allows using $O(1)$-approx. for Orienteering.

Thm: $O(\log k)$ approx. for stochastic k -TSP.

Analysis Outline

$$
\mathrm{OPT} \approx \sum_{\mathrm{i}} \mathrm{i}^{\mathrm{i}} \cdot \mathbf{u}_{\mathrm{i}}
$$

$$
\begin{aligned}
& \text { Relate a to } \mathbf{u} \\
& a_{i} \leq 0.25 \cdot a_{i-1}+u_{i} \\
& \hline
\end{aligned}
$$

$$
a_{i}=\operatorname{Pr}[\text { ALG goes past phase } i]
$$

Similar idea in min-latency TSP [Chaudhuri Godfrey Rao Talwar '03]
Also used in stochastic submod-cover [Im N. Zwaan '12]

Analysis (phase i)

- $s=$ state of algorithm (outcomes of some rewards)
- $\mathrm{H}(\mathrm{t}, \mathrm{i})=$ states at iteration t of phase i
- $\operatorname{Gain}(\mathrm{s})=\frac{\mathrm{E}\left[\min \left\{\Delta \text { Reward }, \mathrm{k}_{\mathrm{res}}\right\}\right]}{\mathrm{k}_{\mathrm{res}}}$
- $\mathrm{G}(\mathrm{t}, \mathrm{i})=\mathrm{E}_{\mathrm{s} \leftarrow \mathrm{H}(\mathrm{t}, \mathrm{i})}[\mathrm{Gain}(\mathrm{s})]$ and $\mathrm{G}(\mathrm{i})=\sum_{\mathrm{t}} \mathrm{G}(\mathrm{t}, \mathrm{i})$

1) Upper bound $G(i) \leq(\ln k) a_{i-1}$
2) Lower bound $G(i) \geq \Omega(\ln k) \cdot\left(a_{i}-u_{i}\right)$

Analysis (Upper Bound)

- Fix a decision path in ALG
- Contribution to $\mathrm{G}(\mathrm{i})=\sum_{\mathrm{t}} \mathrm{G}(\mathrm{t}, \mathrm{i})=\sum_{\mathrm{t}} \frac{\Delta \text { Reward }_{\mathrm{t}}}{\mathrm{k}_{\text {res }}}$

$$
\leq \frac{1}{k}+\frac{1}{k-1}+\ldots+\frac{1}{1} \leq \ln k
$$

$\Rightarrow \mathbf{G}(\mathrm{i}) \leq(\ln \mathbf{k}) \mathrm{a}_{\mathrm{i}-1}$

Analysis (Lower Bound)

- Fix iteration t in phase i and state s
- Bound Gain(s) using orienteering instance $J(s)\left\{\begin{array}{l}\text { length bnd 2i } \\ \text { reward } E\left[\min \left(R_{v}, k_{\text {res }}\right)\right]\end{array}\right.$
A. optimum $(J(s)) \geq\left(1-u_{i}(s)\right) \cdot k_{\text {res }}$ where $u_{i}(s)=\operatorname{Pr}\left[O P T>2^{i} \mid s\right]$
B. Gain $(\mathrm{s}) \geq(1-1 / \mathrm{e}) \cdot \alpha \cdot \frac{\mathrm{OPT}(\mathrm{J}(\mathrm{s}))}{\mathrm{k}_{\text {res }}} \quad \alpha$-approx. orienteering
$G(t, i) \geq(1-1 / e) \cdot \alpha \cdot\left(1-u_{i}-\left(1-a_{i}\right)\right)=\Omega(1) \cdot\left(a_{i}-u_{i}\right)$
$\Rightarrow \mathbf{G}(\mathrm{i}) \geq \Omega(\log \mathrm{k}) \cdot\left(\mathrm{a}_{\mathrm{i}}-\mathrm{u}_{\mathrm{i}}\right)$

Non-Adaptive Algorithm

Adaptive To Non-Adaptive

Simulate the adaptive algorithm

- Possible orienteering instances in phase i iteration t

Same bound 2^{i} on length
Different truncation levels $\mathrm{k}_{\text {res }}$ (for det. rewards)

- Bucket the truncation into (log k) levels
- Run (log k) many orienteering instances at each (i,t)

Thm: $O\left(\log ^{2} k\right)$ approx. for non-adaptive stochastic k-TSP.

- Also upper bounds adaptivity gap

Don't know better result even w.r.t. non-adaptive OPT

Adaptivity Gap Lower Bound

Online bidding: given n, find random sequence $B=\left(b_{1}, b_{2} \cdots\right)$ of [n] Sequence S, target T costs $C(S, T)=$ sum of bids in S until some bid $\geq T$

[Chrobak Kenyon Noga Young '08]

Stochastic k-TSP

- Target $k=2^{n+1}$, rewards $R_{i}=2^{i}$ for nodes $i \in[n]$
- Single random reward $R_{0}=\left(k-2^{i}\right)$ w.p. p_{i} for $i \in[n]$ Choose prob p_{i} to maximize adaptivity gap

$$
=\underset{\sim}{\rightarrow} \max _{\text {dist. on }[n]} \min _{S: \text { seq. }} \frac{\mathrm{E}_{\mathrm{T} \leftarrow \mathrm{p}}[\mathrm{C}(\mathrm{~S}, \mathrm{~T})]}{\mathrm{E}_{\mathrm{T} \leftarrow \mathrm{p}}[\mathrm{~T}]}
$$

Submodular Reward Function

- Metric (V,d) with root r and target k
- Reward function $\mathrm{f}: 2^{\mathrm{V}} \rightarrow \mathrm{R}_{+}$, monotone submodular
- Min length to collect reward at least k
$\mathrm{O}\left(\log ^{3+\delta} \mathrm{n}\right)$ approx. [Calinescu, Zelikovsky ‘05]
$\Omega\left(\log ^{2-\delta} \mathrm{n}\right)$ hard-to-approx. [Halperin Krauthgamer '03]

Stochastic setting: each vertex active w.p. p_{i} and minimize expected length so that f (active) $\geq k$

- Generalizes stochastic k-TSP for Bernoulli random vars

Algorithm for Submodular Case

Expected function $\mathrm{Ef}(\mathrm{S})=\mathrm{E}_{\mathrm{A} \leftarrow \mathrm{p}}[\mathrm{f}(\mathrm{S} \cap \mathrm{A})]$
$\rho=\rho_{\text {orient }} \cdot \log 1 / \epsilon$ iterations instead of $\log \mathrm{k}$
Theorem: Adaptive $\mathrm{O}\left(\log ^{2+\delta} \mathrm{n} \cdot \log 1 / \epsilon\right)$ approximation.

- Uses $\rho_{\text {orient }}=\mathrm{O}\left(\log ^{2+}{ }^{2} \mathrm{n}\right)$ [Calinescu, Zelikovsky ‘05]
- Submodular-max adaptivity gap ≤ 3 [Gupta N. Singla '17]

Open Questions

- O(1)-approximation for stochastic k-TSP?

For either adaptive or non-adaptive

- Adaptivity gap?

Interesting even for covering knapsack (k-TSP on star metric)
There is adaptive 2-approx. [Deshpande Hellerstein Kletenik '14]
Can get non-adaptive O(1)-approx. via different approach Max-knapsack well understood [Dean Goemans Vondrak ‘04]...

- Other stochastic minimization problems?

Thank You!

