A 1.5-Approximation for Path TSP

Rico Zenklusen ETH Zurich

Presentation: Martin Nägele, ETH Zurich

A brief intro to the Traveling Salesman Problem

Common Variations of TSP

What's known?

All variants are well-known to be APX-hard.

Major open problem what efficient computation can achieve.

TSP	path TSP
1.5 [Christofides, 1978]	1.667 [Hoogeveen, 1991]
	1.618 [An, Kleinberg, Shmoys, 2012]
	1.6 [Sebő, 2013]
	1.599 [Vygen, 2016]
	1.566 [Gottschalk, Vygen, 2016]
	1.529 [Sebő, van Zuylen, 2016]
	1.5+arepsilon [Traub, Vygen, 2018a]

Exciting progress for graph metrics:

[Oveis Gharan, Saberi, Singh, 2011] [Mucha, 2014] [Sebő, Vygen, 2014] [Mömke, Svensson, 2016] [Traub, Vygen, 2018b] [...]

Our contribution

There is a 1.5-approximation for path TSP.

- ▶ We move away from prior approaches, which focussed on so-called narrow cuts.
- Technical ingredients: Obtain a strong Held-Karp solution z using
 - Karger's bound on the number of near-min cuts, and
 - Dynamic programming "à la Traub & Vygen".

Run a Christofides-type algorithm with a spanning tree obtained from z.

- Analysis follows Wolsey's approach.
- Natural barrier 1.5: Any progress improves upon Christofides' 1.5-approximation for TSP.

Following in Christofides' footsteps

Why it works for TSP but fails for path TSP... (Spoiler: ... and can be fixed.)

The general idea

Find connected Eulerian graph with good total length, exploit metric lengths to shortcut.

The general idea

Find connected Eulerian graph with good total length, exploit metric lengths to shortcut.

Start building a solution from a spanning tree

Find connected Eulerian graph with good total length, exploit metric lengths to shortcut.

Start building a solution from a spanning tree Add ed to corr

Add edges to correct degree parities

Find connected Eulerian graph with good total length, exploit metric lengths to shortcut.

The general idea

- 1. Find a shortest spanning tree *T*.
 - $\implies \ell(\mathbf{T}) \leqslant \ell(\mathsf{OPT})$.
- **2.** Find a shortest odd(T)-join **J**.

 $\implies \ell({\scriptstyle {\ensuremath{ {f J} }}}) \leqslant {1\over 2} \cdot \ell({\sf OPT})$.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(\mathbf{T}) + \ell(\mathbf{J}) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree T.

 $\implies \ell(\textbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(\mathbf{T}) + \ell(\mathbf{J}) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree T.

 $\implies \ell(\mathbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

 $\implies \ell({\color{black} {J}}) \leqslant rac{1}{2} \cdot \ell({\color{black} {OPT}})$.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(T) + \ell(J) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree *T*.

 $\implies \ell(\textbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(\mathbf{T}) + \ell(\mathbf{J}) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree *T*.

 $\implies \ell(\mathbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

 $\implies \ell({\color{black} {J}}) \leqslant rac{1}{2} \cdot \ell({\color{black} {OPT}})$.

- 3. Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(T) + \ell(J) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree T.

 $\implies \ell(\mathbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

 $\implies \ell({\color{black} {J}}) \leqslant rac{1}{2} \cdot \ell({\color{black} {OPT}})$.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(\mathbf{T}) + \ell(\mathbf{J}) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree T.

 $\implies \ell(\textbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(\mathbf{T}) + \ell(\mathbf{J}) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree T.

 $\implies \ell(\textbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(\mathbf{T}) + \ell(\mathbf{J}) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

1. Find a shortest spanning tree T.

 $\implies \ell(\mathbf{T}) \leqslant \ell(\mathsf{OPT})$.

2. Find a shortest odd(T)-join **J**.

- **3.** Find Eulerian tour in multiunion of T and J.
- 4. Return shortcutted Hamiltonian tour *H*. $\implies \ell(H) \leq \ell(\mathbf{T}) + \ell(\mathbf{J}) \leq \frac{3}{2} \cdot \ell(\mathsf{OPT}) .$

Held-Karp relaxation for TSP

Held-Karp polytope

$$\mathsf{P}_{\mathsf{HK}} \coloneqq \left\{ x \in \mathbb{R}^{\mathsf{E}}_{\geqslant 0} \, \middle| egin{array}{c} x(\delta(v)) = 2 & orall v \in V \ x(\delta(\mathcal{C})) \geqslant 2 & orall \mathcal{C} \subsetneq V, \ \mathcal{C} \neq \emptyset
ight\} \;\;.$$

Held-Karp relaxation

$$\min\{\ell^\top x \mid x \in P_{\mathsf{HK}}\} .$$

• Let
$$x^* \in \operatorname{argmin}\{\ell^\top x \mid x \in P_{\mathsf{HK}}\}.$$

$$P_{\mathsf{HK}} = \left\{ x \in \mathbb{R}_{\geq 0}^{\mathcal{E}} \middle| \begin{array}{l} x(\delta(v)) = 2 \quad \forall v \in V \\ x(\delta(C)) \geq 2 \quad \forall C \subsetneq V, \ C \neq \emptyset \end{array} \right\}$$

Claim

If T is a shortest spanning tree, and J is a shortest odd(T)-join, then

(a)
$$\ell(T) \leq \ell^{\top} x^*$$
, and (b) $\ell(J) \leq \frac{1}{2} \cdot \ell^{\top} x^*$.

• Let
$$x^* \in \operatorname{argmin}\{\ell^\top x \mid x \in P_{\mathsf{HK}}\}.$$

$$P_{\mathsf{HK}} = \left\{ x \in \mathbb{R}_{\geq 0}^{\mathcal{E}} \middle| \begin{array}{l} x(\delta(v)) = 2 \quad \forall v \in V \\ x(\delta(C)) \geq 2 \quad \forall C \subsetneq V, \ C \neq \emptyset \end{array} \right\}$$

Claim

If T is a shortest spanning tree, and J is a shortest odd(T)-join, then

(a)
$$\ell(T) \leqslant \ell^{\top} x^*$$
, and (b) $\ell(J) \leqslant \frac{1}{2} \cdot \ell^{\top} x^*$.

(a)
$$\frac{n-1}{n} \cdot x^* \in \mathcal{P}_{ST}$$
. $\mathcal{P}_{ST} = \left\{ x \in \mathbb{R}^E_{\geq 0} \middle| \begin{array}{c} x(E) = |V| - 1 \\ x(E[S]) \leq |S| - 1 \quad \forall S \subsetneq V, \ S \neq \emptyset \end{array} \right\}$

• Let
$$x^* \in \operatorname{argmin}\{\ell^\top x \mid x \in P_{\mathsf{HK}}\}.$$

$$P_{\mathsf{HK}} = \left\{ x \in \mathbb{R}_{\geq 0}^{\mathcal{E}} \middle| \begin{array}{l} x(\delta(v)) = 2 \quad \forall v \in V \\ x(\delta(C)) \geq 2 \quad \forall C \subsetneq V, \ C \neq \emptyset \end{array} \right\}$$

Claim

If T is a shortest spanning tree, and J is a shortest odd(T)-join, then

(a)
$$\ell(T) \leq \ell^{\top} x^*$$
, and (b) $\ell(J) \leq \frac{1}{2} \cdot \ell^{\top} x^*$.

(a)
$$\frac{n-1}{n} \cdot x^* \in P_{ST}$$
. $P_{ST} = \begin{cases} x \in \mathbb{R}^{E}_{\geq 0} \mid x(E) = |V| - 1 \\ x(E[S]) \leq |S| - 1 \quad \forall S \subsetneq V, \ S \neq \emptyset \end{cases}$

(b)
$$\frac{1}{2} \cdot x^* \in P_{Q\text{-join}}^{\perp}$$
 $P_{Q\text{-join}}^{\perp} = \left\{ x \in \mathbb{R}_{\geq 0}^{\pm} \mid x(\delta(C)) \geq 1 \quad \forall C \subseteq V, \ |C \cap Q| \text{ odd} \right\}$ for any $Q \subseteq V, \ |Q|$ even.

• Let
$$x^* \in \operatorname{argmin}\{\ell^\top x \mid x \in P_{\mathsf{HK}}\}.$$

$$P_{\mathsf{HK}} = \left\{ x \in \mathbb{R}_{\geq 0}^{\mathcal{E}} \middle| \begin{array}{l} x(\delta(v)) = 2 \quad \forall v \in V \\ x(\delta(C)) \geq 2 \quad \forall C \subsetneq V, \ C \neq \emptyset \end{array} \right\}$$

Claim

If T is a shortest spanning tree, and J is a shortest odd(T)-join, then

(a)
$$\ell(T) \leqslant \ell^{\top} x^*$$
, and (b) $\ell(J) \leqslant \frac{1}{2} \cdot \ell^{\top} x^*$.

(a)
$$\frac{n-1}{n} \cdot x^* \in P_{\text{ST}}.$$

$$P_{\text{ST}} = \begin{cases} x \in \mathbb{R}^E_{\ge 0} \mid x(E) = |V| - 1 \\ x(E[S]) \leqslant |S| - 1 \quad \forall S \subsetneq V, \ S \neq \emptyset \end{cases}$$
(b) $\frac{1}{2} \cdot x^* \in P_{Q\text{-join}}^{\uparrow}$
for any $Q \subseteq V, |Q|$ even.

$$P_{Q\text{-join}}^{\uparrow} = \{ x \in \mathbb{R}^E_{\ge 0} \mid x(\delta(C)) \ge 1 \quad \forall C \subseteq V, \ |C \cap Q| \text{ odd} \}$$

Shows 1.5-approximation and upper bound on integrality gap.

Shortest spanning tree $T: \ell(T) \leq \ell(OPT)$. ο 0 0 But: OPT does not contain two disjoint Q_{T} -joins. 0 0 Still, shortest Q_T -join J satisfies ο 0 0 $\ell(\mathbf{J}) \leq \frac{2}{2} \cdot \ell(\mathsf{OPT}).$ [Hoogeveen, 1991] *Proof:* Together, OPT and T contain three Q_T -joins. 0 ο ο 0 ο s > This algorithm is only $\frac{5}{3}$ -approximate on some instances. 0

- Shortest spanning tree $T: \ell(T) \leq \ell(\mathsf{OPT})$.
- But: OPT does not contain two disjoint *Q*_T-joins.
- Still, shortest Q_T-join J satisfies

 $\ell(\mathbf{J}) \leqslant \frac{2}{3} \cdot \ell(\mathsf{OPT}).$ [Hoogeveen, 1991]

Proof: Together, OPT and T contain three Q_T -joins.

• This algorithm is only $\frac{5}{3}$ -approximate on some instances.

- Shortest spanning tree $T: \ell(T) \leq \ell(\mathsf{OPT})$.
- But: OPT does not contain two disjoint *Q*_T-joins.
- Still, shortest Q_T -join J satisfies

 $\ell(\mathbf{J}) \leqslant \frac{2}{3} \cdot \ell(\mathsf{OPT}).$ [Hoogeveen, 1991]

Proof: Together, OPT and T contain three Q_T -joins.

• This algorithm is only $\frac{5}{3}$ -approximate on some instances.

 $\Box \quad Q_T \coloneqq \mathsf{odd}(T) \bigtriangleup \{s, t\}$

- Shortest spanning tree $T: \ell(T) \leq \ell(\mathsf{OPT})$.
- But: OPT does not contain two disjoint Q_T -joins.
- ► Still, shortest Q_T -join J satisfies $\ell(J) \leq \frac{2}{3} \cdot \ell(\mathsf{OPT}).$ [Hoogeveen, 1991]

Proof: Together, OPT and T contain three Q_T -joins.

• This algorithm is only $\frac{5}{3}$ -approximate on some instances.

- Shortest spanning tree $T: \ell(T) \leq \ell(\mathsf{OPT})$.
- But: OPT does not contain two disjoint Q_T -joins.
- Still, shortest Q_T -join J satisfies

 $\ell(J) \leqslant \frac{2}{3} \cdot \ell(\mathsf{OPT}).$ [Hoogeveen, 1991]

Proof: Together, OPT and T contain three Q_T -joins.

• This algorithm is only $\frac{5}{3}$ -approximate on some instances.

 $\Box \quad Q_T \coloneqq \mathsf{odd}(T) \bigtriangleup \{s, t\}$

- Shortest spanning tree $T: \ell(T) \leq \ell(\mathsf{OPT}).$
- But: OPT does not contain two disjoint Q_T -joins.
- Still, shortest Q_T -join J satisfies

 $\ell(\mathbf{J}) \leqslant \frac{2}{3} \cdot \ell(\mathsf{OPT}).$ [Hoogeveen, 1991]

Proof: Together, OPT and T contain three Q_T -joins.

> This algorithm is only $\frac{5}{3}$ -approximate on some instances.

Goal: Find tree *T* with $\ell(T) \leq \ell(\mathsf{OPT})$ and s.t. shortest Q_T -join *J* satisfies $\ell(J) \leq \frac{1}{2} \cdot \ell(\mathsf{OPT})$.

Held-Karp polytope for path TSP:

$$P_{\mathsf{HK}} := \left\{ \begin{aligned} x \in \mathbb{R}_{\geq 0}^{E} \\ x(\delta(v)) &= 1 \quad v \in \{s, t\} \\ x(\delta(v)) &= 2 \quad v \in V \setminus \{s, t\} \\ x(\delta(C)) &\geq 1 \quad \forall C \subseteq V, \ |C \cap \{s, t\}| = 1 \\ x(\delta(C)) &\geq 2 \quad \forall C \subsetneq V, \ C \neq \emptyset, \ |C \cap \{s, t\}| = 0 \end{aligned} \right\}$$

Held-Karp polytope for path TSP: $\cdots x^*(e) = \frac{1}{3}$ $P_{\mathsf{HK}} \coloneqq \left\{ x \in \mathbb{R}_{\geq 0}^{E} \middle| \begin{array}{c} x(\delta(v)) = 1 & v \in \{s, t\} \\ x(\delta(v)) = 2 & v \in V \setminus \{s, t\} \\ x(\delta(C)) \geq 1 & \forall C \subseteq V, \ |C \cap \{s, t\}| = 1 \\ x(\delta(C)) \geq 2 & \forall C \subsetneq V, \ C \neq \emptyset, \ |C \cap \{s, t\}| = 0 \end{array} \right\}$ ----- $x^*(e) = \frac{2}{3}$ $- x^*(e) = 1$

 $.... x^*(e) = \frac{1}{3}$ $.... x^*(e) = \frac{2}{3}$ $.... x^*(e) = 1$

Held-Karp polytope for path TSP:

$$P_{\mathsf{HK}} := \left\{ \begin{aligned} x \in \mathbb{R}_{\geq 0}^{\mathcal{E}} \\ x(\delta(v)) &= 1 \quad v \in \{s, t\} \\ x(\delta(v)) &= 2 \quad v \in V \setminus \{s, t\} \\ x(\delta(C)) &\geq 1 \quad \forall C \subseteq V, \ |C \cap \{s, t\}| = 1 \\ x(\delta(C)) &\geq 2 \quad \forall C \subsetneq V, \ C \neq \emptyset, \ |C \cap \{s, t\}| = 0 \end{aligned} \right\}$$

► Problem: $\frac{x^*}{2}$ for $x^* \in \operatorname{argmin}\{\ell^\top x \mid x \in P_{\mathsf{HK}}\}$ infeasible for $P_{Q_{\tau}\text{-join}}^{\uparrow}$.

$$\mathcal{P}_{\mathcal{Q}_{T} ext{-join}}^{\uparrow} = igg\{ x \in \mathbb{R}^{\mathcal{E}}_{\geqslant 0} \ \Big| \ x(\delta(\mathcal{C})) \geqslant 1 \quad igg| \mathcal{C} \subseteq \mathcal{V}, \ |\mathcal{C} \cap \mathcal{Q}_{T}| ext{ odd } igg]$$

1.66

1.66

 $\cdots x^*(e) = \frac{1}{3}$

----- $x^*(e) = \frac{2}{3}$ ----- $x^*(e) = 1$

Held-Karp polytope for path TSP:

 $P_{\mathsf{HK}} := \left\{ x \in \mathbb{R}_{\geq 0}^{E} \middle| \begin{array}{ccc} x(\delta(v)) = 1 & v \in \{s, t\} \\ x(\delta(v)) = 2 & v \in V \setminus \{s, t\} \\ x(\delta(C)) \geq 1 & \forall C \subseteq V, \ |C \cap \{s, t\}| = 1 \\ x(\delta(C)) \geq 2 & \forall C \subsetneq V, \ C \neq \emptyset, \ |C \cap \{s, t\}| = 0 \end{array} \right\}$

► Problem: $\frac{x^*}{2}$ for $x^* \in \operatorname{argmin}\{\ell^\top x \mid x \in P_{HK}\}$ infeasible for $P_{Q_T \text{-join}}^{\uparrow}$.

$$\mathcal{P}_{\mathcal{Q}_{T} ext{-join}}^{\uparrow} = igg\{ x \in \mathbb{R}^{\mathcal{E}}_{\geqslant 0} \, \Big| \, x(\delta(\mathcal{C})) \geqslant 1 \quad egin{array}{c} orall \mathcal{C} \subseteq V, \ |\mathcal{C} \cap \mathcal{Q}_{T}| ext{ odd } \end{pmatrix}$$

- Infeasibility caused by narrow cuts:
 - ightarrow cuts *C* with $x^*(\delta(\mathcal{C})) <$ 2.
 - ightarrow *s*-*t*-cuts, form a chain.
 - ightarrow appear in $\mathcal{P}_{Q_{\tau}\text{-join}}^{\uparrow}$ only if $|T \cap \delta(\mathcal{C})|$ even.

1.66

1.66

 $\cdots x^*(e) = \frac{1}{3}$

----- $x^*(e) = \frac{2}{3}$ ----- $x^*(e) = 1$

Held-Karp polytope for path TSP:

 $P_{\mathsf{HK}} := \left\{ x \in \mathbb{R}_{\geq 0}^{E} \middle| \begin{array}{ccc} x(\delta(v)) = 1 & v \in \{s, t\} \\ x(\delta(v)) = 2 & v \in V \setminus \{s, t\} \\ x(\delta(C)) \geq 1 & \forall C \subseteq V, \ |C \cap \{s, t\}| = 1 \\ x(\delta(C)) \geq 2 & \forall C \subsetneq V, \ C \neq \emptyset, \ |C \cap \{s, t\}| = 0 \end{array} \right\}$

► Problem: $\frac{x^*}{2}$ for $x^* \in \operatorname{argmin}\{\ell^\top x \mid x \in P_{HK}\}$ infeasible for $P_{Q_{\tau} \text{-join}}^{\uparrow}$.

$$\mathcal{P}_{\mathcal{Q}_{T} ext{-join}}^{\uparrow} = \left\{ x \in \mathbb{R}^{\mathcal{E}}_{\geqslant 0} \, \middle| \, x(\delta(\mathcal{C})) \geqslant 1 \quad egin{array}{c} orall \mathcal{C} \subseteq \mathcal{V}, \ |\mathcal{C} \cap \mathcal{Q}_{T}| ext{ odd} \end{array}
ight\}$$

- Infeasibility caused by narrow cuts:
 - ightarrow cuts *C* with $x^*(\delta(\mathcal{C})) <$ 2.
 - ightarrow *s*-*t*-cuts, form a chain.
 - ightarrow appear in $\mathcal{P}_{Q_{\tau}\text{-join}}^{\uparrow}$ only if $|T \cap \delta(\mathcal{C})|$ even.

1.5-approximation: The high-level plan

▶ Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$

Let

$$\mathcal{B}(x^*) \coloneqq \{ \mathcal{C} \subseteq \mathsf{V} \mid s \in \mathcal{C}, \ t
ot \in \mathcal{C}, \ x^*(\delta(\mathcal{C})) < 3 \}$$

By Karger's result, $|\mathcal{B}(x^*)|$ is polynomially bounded. [Karger 1993]

▶ We will find a shortest point $y \in P_{HK}$ that is $\mathcal{B}(x^*)$ -good:

For each $B \in \mathcal{B}(x^*)$, either $\downarrow y(\delta(B)) \ge 3$, or $\downarrow y(\delta(B)) = 1$ and y is 0/1 on $\delta(B)$.

$\mathcal{B}(x^*)$ -good

 $\mathcal{B}(x^*)$ -good

 $\mathcal{B}(x^*)$ -good

 $\mathcal{B}(x^*)$ -good

- **1.** Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let **T** be a shortest spanning tree in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of T and J.

- **1.** Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be a shortest spanning tree in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of T and J.

- **1.** Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let **T** be a shortest spanning tree in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

- **1.** Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let **T** be a shortest spanning tree in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

- **1.** Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let **T** be a shortest spanning tree in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

- **1.** Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let **T** be a shortest spanning tree in $(V, \operatorname{supp}(y))$.
- 4. Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

► We have $y \in P_{HK} \subseteq P_{ST}$. $\implies \ell(T) \leqslant \ell^\top y$.

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

- ► We have $y \in P_{HK} \subseteq P_{ST}$. $\implies \ell(T) \leqslant \ell^\top y$.
- ► OPT is *B*-good for any family *B* of *s*-*t* cuts. $\implies \ell^{\top} y \leq \ell(\mathsf{OPT}) .$

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}$.
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

- ► We have $y \in P_{\mathsf{HK}} \subseteq P_{\mathsf{ST}}$. $\implies \ell(\mathbf{T}) \leqslant \ell^{\top} y$.
- ► OPT is \mathcal{B} -good for any family \mathcal{B} of *s*-*t* cuts. $\implies \ell^\top y \leqslant \ell(\mathsf{OPT}) \ .$
- Together, we conclude

 $\ell(\mathbf{T}) \leqslant \ell^{\top} y \leqslant \ell(\mathsf{OPT})$.

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of T and J.

► We show
$$\frac{1}{4}x^* + \frac{1}{4}y \in P_{Q_{T}\text{-join}}^{\uparrow}$$
.
 $\implies \ell(J) \leqslant \frac{1}{4} \left(\ell^{\top}x^* + \ell^{\top}y \right) \leqslant \frac{1}{2}\ell(\mathsf{OPT})$.

Distinguish cases:
 1. 2. 3. 4.

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of T and J.

► We show
$$\frac{1}{4}x^* + \frac{1}{4}y \in P_{Q_{T}\text{-join}}^{\uparrow}$$
.
 $\implies \ell(J) \leqslant \frac{1}{4} \left(\ell^{\top}x^* + \ell^{\top}y \right) \leqslant \frac{1}{2}\ell(\mathsf{OPT})$.

Distinguish cases:

(1. Non s-t cuts.) (2.) (3.)

1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$

- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- 4. Let J be a shortest Q_T -join.

5. Return shortcutted tour in multiunion of T and J.

► We show
$$\frac{1}{4}x^* + \frac{1}{4}y \in P_{Q_{T}\text{-join}}^{\uparrow}$$
.
 $\implies \ell(J) \leqslant \frac{1}{4} \left(\ell^{\top}x^* + \ell^{\top}y \right) \leqslant \frac{1}{2}\ell(\mathsf{OPT})$.

Distinguish cases:

1. 2. *s*-*t* cuts not in $\mathcal{B}(x^*)$. **3. 4.**

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- 4. Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of T and J.

► We show
$$\frac{1}{4}x^* + \frac{1}{4}y \in P_{Q_{T}\text{-join}}^{\uparrow}$$
.
 $\implies \ell(J) \leqslant \frac{1}{4} \left(\ell^{\top}x^* + \ell^{\top}y \right) \leqslant \frac{1}{2}\ell(\mathsf{OPT})$.

Distinguish cases:

1. 2. 3. *s*-*t* cuts $B \in \mathcal{B}(x^*)$ with $y(\delta(B)) \ge 3$. 4.

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- **4.** Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of *T* and *J*.

 $P_{Q_T\text{-join}}^{\uparrow} = \left\{ x \in \mathbb{R}_{\geqslant 0}^{E} \ \middle| \ x(\delta(C)) \geqslant 1 \quad \forall C \subseteq V, \ |C \cap Q_T| \text{ odd} \right\}$

 $\mathcal{B}(x^*)$ -good point y

► We show
$$\frac{1}{4}x^* + \frac{1}{4}y \in P_{Q_{T}\text{-join}}^{\uparrow}$$
.
 $\implies \ell(J) \leqslant \frac{1}{4} \left(\ell^{\top}x^* + \ell^{\top}y \right) \leqslant \frac{1}{2}\ell(\mathsf{OPT})$.

Distinguish cases:

1. 2. 3. 4. *s*-*t* cuts $B \in \mathcal{B}(x^*)$ with $y(\delta(B)) = 1$.

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- 4. Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of T and J.

► We show
$$\frac{1}{4}x^* + \frac{1}{4}y \in P_{Q_T\text{-join}}^{\uparrow}$$
.
 $\implies \ell(J) \leqslant \frac{1}{4} \left(\ell^{\top}x^* + \ell^{\top}y \right) \leqslant \frac{1}{2}\ell(\mathsf{OPT})$.

Distinguish cases:

1. 2. 3. 4. *s*-*t* cuts $B \in \mathcal{B}(x^*)$ with $y(\delta(B)) = 1$.

- 1. Let $x^* \in \operatorname{argmin}\{\ell(x) \mid x \in P_{\mathsf{HK}}\}.$
- **2.** Let *y* be a shortest $\mathcal{B}(x^*)$ -good point.
- **3.** Let T be an MST in $(V, \operatorname{supp}(y))$.
- 4. Let J be a shortest Q_T -join.
- 5. Return shortcutted tour in multiunion of T and J.

The dynamic program

The DP: Finding shortest \mathcal{B} -good points

Theorem

Let $\mathcal{B} \subseteq 2^{V}$ a family of *s*-*t* cuts. A shortest \mathcal{B} -good point $y \in P_{\mathsf{HK}}$ can be found in time $O(\mathsf{poly}(|V|, |\mathcal{B}|))$.

For all $B \in \mathcal{B}$, either

►
$$y(\delta(B)) \ge 3$$
, or

•
$$y(\delta(B)) = 1$$
 and y is $0/1$ on $\delta(B)$.

 \mathcal{B} -good point v

The DP: Finding shortest \mathcal{B} -good points

Theorem

Let $\mathcal{B} \subseteq 2^{V}$ a family of *s*-*t* cuts. A shortest \mathcal{B} -good point $y \in P_{\mathsf{HK}}$ can be found in time $O(\mathsf{poly}(|V|, |\mathcal{B}|))$.

For all $B \in \mathcal{B}$, either

► $y(\delta(B)) \ge 3$, or

•
$$y(\delta(B)) = 1$$
 and y is $0/1$ on $\delta(B)$.

 \mathcal{B} -good point v

- > DP can be interpreted as a simplified version of the one used by Traub & Vygen [SODA 2018].
- Key plan:
 - "Guess" cuts $B_1, \ldots, B_k \in \mathcal{B}$ with $y(\delta(B_i)) = 1$, and the single edge in these cuts.
 - ▶ Observation: B_1, \ldots, B_k must form a chain → can split into subproblems on $B_{i+1} \setminus B_i$.

The DP: Finding shortest \mathcal{B} -good points

Theorem

Let $\mathcal{B} \subseteq 2^{V}$ a family of *s*-*t* cuts. A shortest \mathcal{B} -good point $y \in P_{\mathsf{HK}}$ can be found in time $O(\mathsf{poly}(|V|, |\mathcal{B}|))$.

For all $B \in \mathcal{B}$, either

► $y(\delta(B)) \ge 3$, or

•
$$y(\delta(B)) = 1$$
 and y is $0/1$ on $\delta(B)$.

 \mathcal{B} -good point v

- > DP can be interpreted as a simplified version of the one used by Traub & Vygen [SODA 2018].
- Key plan:
 - "Guess" cuts $B_1, \ldots, B_k \in \mathcal{B}$ with $y(\delta(B_i)) = 1$, and the single edge in these cuts.
 - ▶ Observation: B_1, \ldots, B_k must form a chain → can split into subproblems on $B_{i+1} \setminus B_i$.

Solving a single subproblem

- ▶ Restriction to $B_{i+1} \setminus B_i$, start at u_i , end at v_{i+1} .
- Enforce $y(\delta(B)) \ge 3$ for $B \in \mathcal{B}$ with $B_i \subsetneq B \subsetneq B_{i+1}$.
- Corresponding LP formulation:

$$egin{aligned} &\lambda(B_{i+1}\setminus B_i,u_i,v_{i+1}) = \min\,\ell^ op y \ &y\in P_{\mathsf{HK}}(B_{i+1}\setminus B_i,u_i,v_{i+1}) \ &y(\delta(B)) \geqslant 3 \qquad orall B\in \mathcal{B}\colon B_i\subsetneq B\subsetneq B_{i+1} \ . \end{aligned}$$

Solving a single subproblem

- Restriction to $B_{i+1} \setminus B_i$, start at u_i , end at v_{i+1} .
- Enforce $y(\delta(B)) \ge 3$ for $B \in \mathcal{B}$ with $B_i \subsetneq B \subsetneq B_{i+1}$.
- Corresponding LP formulation:

$$\begin{split} \lambda(B_{i+1} \setminus B_i, u_i, v_{i+1}) &= \min \, \ell^\top y \\ y \in \mathcal{P}_{\mathsf{HK}}(B_{i+1} \setminus B_i, u_i, v_{i+1}) \\ y(\delta(B)) \geqslant 3 \qquad \forall B \in \mathcal{B} \colon B_i \subsetneq B \subsetneq B_{i+1} \end{split}$$

Solving a single subproblem

- Restriction to $B_{i+1} \setminus B_i$, start at u_i , end at v_{i+1} .
- Enforce $y(\delta(B)) \ge 3$ for $B \in \mathcal{B}$ with $B_i \subsetneq B \subsetneq B_{i+1}$.
- Corresponding LP formulation:

$$egin{aligned} &\lambda(B_{i+1}\setminus B_i,u_i,v_{i+1}) = \min\,\ell^ op y \ &y\in P_{\mathsf{HK}}(B_{i+1}\setminus B_i,u_i,v_{i+1}) \ &y(\delta(B)) \geqslant 3 \qquad orall B\in \mathcal{B}\colon B_i\subsetneq B\subsetneq B_{i+1} \ . \end{aligned}$$

Setting up the DP

▶ Idea: Advance from one cut *B* with $y(\delta(B)) = 1$ to another.

Setting up the DP

- ► Idea: Advance from one cut *B* with $y(\delta(B)) = 1$ to another.
- Formulation as a shortest path problem on auxiliary digraph:

Nodes: Pairs (B, v) for $B \in \mathcal{B}$ and $v \in V$.

Two types of steps corresponding to extension of a solution.

Edges:

Setting up the DP

- ► Idea: Advance from one cut *B* with $y(\delta(B)) = 1$ to another.
- Formulation as a shortest path problem on auxiliary digraph:

Nodes: Pairs (B, v) for $B \in \mathcal{B}$ and $v \in V$.

Two types of steps corresponding to extension of a solution.

Edaes:

• Optimal solution: Shortest $(\{s\}, s)$ - $(V \setminus \{t\}, t)$ path in auxiliary digraph.

• DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

▶ DP solution: Combination of edges in cuts *B_i* and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

• DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

• DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

• DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

$$y(\delta(B))$$

DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

$$y(\delta(B)) + y(\delta(B_i))$$

• DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

$$\mathsf{y}(\delta(\mathcal{B})) + \mathsf{y}(\delta(\mathcal{B}_i)) \geqslant \mathsf{y}(\delta(\mathcal{B}_i \setminus \mathcal{B})) + \mathsf{y}(\delta(\mathcal{B} \setminus \mathcal{B}_i))$$

• DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

• DP solution: Combination of edges in cuts B_i and partial Held-Karp solutions.

Theorem (basic properties of DP solutions)

- Any DP solution is in P_{HK} .
- Any DP solution is \mathcal{B} -good.
- Shortest DP solution has length at most $\ell(OPT)$.

Conclusions

Theorem [Zenklusen, 2018]

There is a 1.5-approximation for path TSP.

- Approximation factors below 1.5 for TSP (or even path TSP)?
- Show that the integrality gap of Held-Karp relaxation for path TSP is 1.5.