

Maximum Scatter TSP in Doubling Metrics

Tobias Mömke

Universität Bremen

Joint work with László Kozma

BIRS

27 September 2018

Maximum Scatter TSP

Cost Function

Minimize

- Overall length (TSP)
- Maximal edge length (bottleneck TSP)

Maximize

- Overall length (Max-TSP)
- Minimum length (Max-Scatter TSP; MSTSP)

Applications

Riveting:
Aim to place rivets
far from each other

Drilling: Workpiece heats up Consecutive holes far from each other

F Background

Maximum Scatter TSP introduced by [Arkin-Chiang-Mitchell-Skiena-Yang SODA'97]

In metric graphs:

2-approximation APX hard, lower bound 2

 \Rightarrow tight if P \neq NP

They asked: What happens for instances in the Euclidean plane?

Known Results

Metric

Euclidean (fixed dimension)

min TSP

$$1.081 < \alpha \le 1.5$$

[Karpinski–Lampis–Schmied 2015]

max TSP

$$1 + \epsilon < \alpha \le 1.14$$

[Papadimitriou—Yannakakis 1993] [Kowalik—Mucha 2009]

min max TSP (bottleneck)

$$\alpha = 2$$

[Parker–Rardin 1982] [Doroshko–Sarvanov 1981]

max min TSP (max. scatter)

$$\alpha = 2$$

[Arkin-Chiang-Mitchell-Skiena-Yang 1997]

$$\alpha = 1 + \epsilon$$
[Arora 1996]
[Mitchell 1996]

$$\alpha = 1 + \epsilon$$
[Barvinok 1996]

$$lpha=2$$
 [Sarvanov 1995]

Known Results

(max. scatter)

	Metric	Euclidean (fixed dimension)
min TSP	$1.081 < \alpha \leq 1.5$ [Karpinski–Lampis–Schmied 2015] [Christofides 1976]	$lpha=1+\epsilon$ [Arora 1996] [Mitchell 1996]
max TSP	$\begin{array}{c} 1+\epsilon < \alpha \leq 1.14 \\ \text{[Papadimitriou-Yannakakis 1993]} \\ \text{[Kowalik-Mucha 2009]} \end{array}$	$lpha=1+\epsilon$ [Barvinok 1996]
min max TSP (bottleneck)	lpha=2 [Parker–Rardin 1982] [Doroshko–Sarvanov 1981]	lpha=2 [Sarvanov 1995]
max min TSP	lpha=2 [Arkin–Chiang–Mitchell–Skiena–Yang 1997]	$lpha=1+\epsilon$

This Talk

Our Results [SODA 2017]

 $(1+\epsilon)$ -approximation algorithm for d-dimensional doubling metrics with running time

$$\tilde{O}(n^3 + 2^{O(K \log K)}), K = (13/\epsilon)^d$$

Corollary:

 $(1 + \epsilon)$ -apx for $(\log \log n)/c$ -dimensional doubling metrics (for some constant c)

Matching hardness result:

 $(4/3)^{1/p} - \epsilon$ lower bound for ℓ_p distances in $\mathbb{R}^{c \cdot \log n}$

Our Results [SODA 2017]

 $(1+\epsilon)$ -approximation algorithm for d-dimensional doubling metrics with running time

$$\tilde{O}(n^3 + 2^{O(K \log K)}), K = (13/\epsilon)^d$$

Corollary:

 $(1+\epsilon)$ -apx for $(\log\log n)/c$ -dimensional doubling metrics (for some constant c)

Matching hardness result:

 $(4/3)^{1/p} - \epsilon$ lower bound for ℓ_p distances in $\mathbb{R}^{c \cdot \log n}$

Simplified Setup

There is a PTAS for MSTSP in the Euclidean plane

 $(1+\epsilon)$ -approximation for arbitrarily small constant $\epsilon>0$

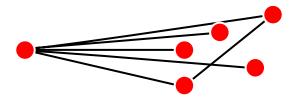
Answers question of Arkin et al. [SODA 1997]

Step One

Formulate as decision problem by guessing optimum solution value ℓ

Remaining Problem:

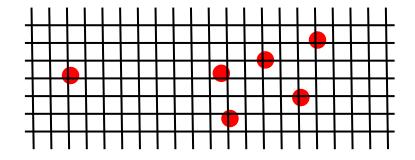
Find Hamiltonian tour in unweighted graph G

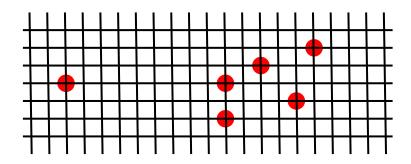


Structural property: high degrees if vertices far apart

Step Two

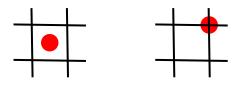
Idea: Snap vertices to grid



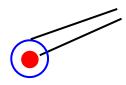


Step Two Cont'd

$$\epsilon \cdot \ell$$
 grid:



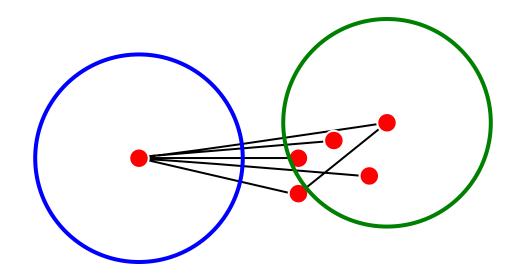
No point farther than $\epsilon\ell\cdot\sqrt{2}/2$ from next grid point



Length changes by at most $O(\epsilon)\ell$

Step Three

Consider balls of radius ℓ



If no ℓ -ball contains > n/2 vertices, all degrees $\geq n/2$

Step Three Cont'd

Dirac's Theorem

If all degrees $\geq n/2$, we can efficiently find Hamiltonian tour

 \Rightarrow If no ℓ -ball contains > n/2 vertices, we can efficiently find the tour

Assume in the following:

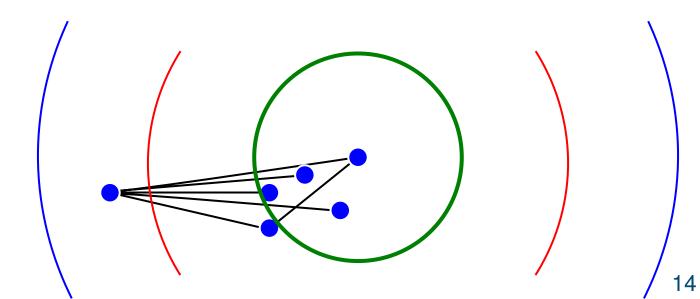
The graph contains ℓ -ball with > n/2 vertices

Remaining Instance

Several vertices at one grid point:

Super-vertex with multiplicity

Constantly many super-vertices in 3ℓ -ball



Low Degree Vertices

If $\deg(v) \leq n/2$, > n/2 vertices in ℓ -ball around v

All these balls have non-empty

pairwise intersection

 \Rightarrow they fit into 2ℓ -Ball

Bondy-Chvátal Thm

lf

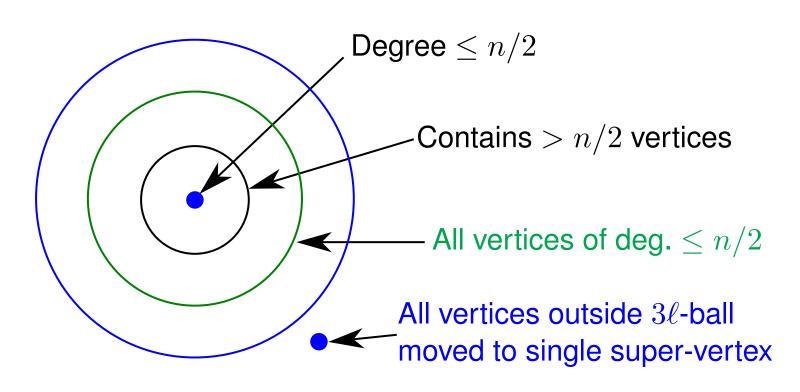
 $deg(u) + deg(v) \ge n$ in G and

 $G' = G + \{u, v\}$ Hamiltonian,

then G Hamiltonian

Bondy-Chvátal closure: apply theorem iteratively

Single Vertex Outside



Solve many-visits TSP

Many Visit TSP

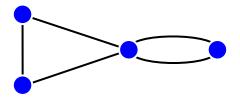
[Berger, Kozma, Mnich, Vincze 2018]

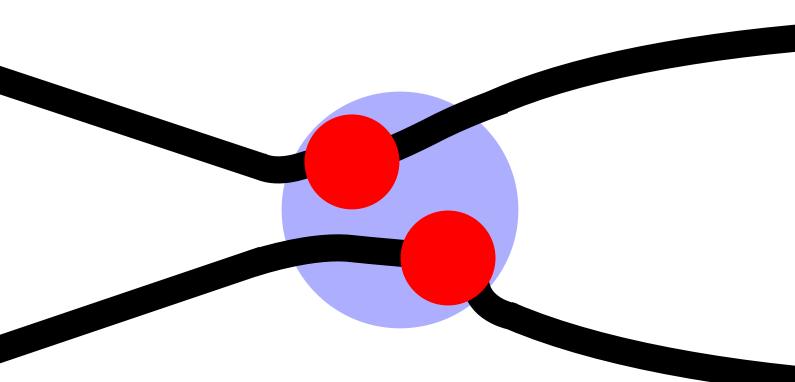
Many-visits TSP exact in time $2^{O(k)} + poly(n, k)$

Number of vertices: nNumber of super-vertices: k

Last Step

Compute Eulerian tour





Vertices in Supervertex: arbitrary order

⇒ Eulerian implies Hamiltonian tour

High Dimensions

Runtime dominated by 2^{2^a} \Rightarrow Polynomial time for $d = \log \log n/c$ for some constant c

What about higher dimensions?

APX hard for $\geq \log n$ dimensions

Proof: Along the lines of [Trevisan STOC 1997], but needs changes in encoding

Non-Euclidean Metric

Hardness due to dimensionality

Doubling Dimension k: Each ball $B_r(\cdot)$ can be covered with 2^k balls $B_{r/2}(\cdot)$

Property of arbitrary metric space (not restricted to Euclidean space)

Definition matches the properties needed for a "good" ϵ -net

Conclusion

Solved:

Basically tight result for all dimensions ≥ 3

Open:

Sitation not clear for 2 dimensions

- Could still be in P
- FPTAS?

Related: MaxTSP in 2D

Issues with real values:
 sum of square roots

