
Strongly Polynomial Algorithms for Some
Parametric Global Minimum Cut Problems

Hassène Aissi / S. Thomas McCormick / Maurice Queyranne

Paris-Dauphine / Sauder School of Business, UBC× 2

BIRS TSP Sept 2018

S. Thomas McCormick
Sauder School of Business

University of British Columbia

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 1 / 28

Global Min Cut Non-Parametric

Outline

1 Global Min Cut
Non-Parametric
Parametric
The Parametric Problems

2 Faster Algorithms for PNB

Deterministic
Randomized

3 Faster Algorithms for Pmax

Deterministic
Randomized

4 Conclusion

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 2 / 28

Global Min Cut Non-Parametric

Outline

1 Global Min Cut
Non-Parametric
Parametric
The Parametric Problems

2 Faster Algorithms for PNB

Deterministic
Randomized

3 Faster Algorithms for Pmax

Deterministic
Randomized

4 Conclusion

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 2 / 28

Global Min Cut Non-Parametric

Outline

1 Global Min Cut
Non-Parametric
Parametric
The Parametric Problems

2 Faster Algorithms for PNB

Deterministic
Randomized

3 Faster Algorithms for Pmax

Deterministic
Randomized

4 Conclusion

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 2 / 28

Global Min Cut Non-Parametric

Outline

1 Global Min Cut
Non-Parametric
Parametric
The Parametric Problems

2 Faster Algorithms for PNB

Deterministic
Randomized

3 Faster Algorithms for Pmax

Deterministic
Randomized

4 Conclusion

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 2 / 28

Global Min Cut Non-Parametric

Outline

1 Global Min Cut
Non-Parametric
Parametric
The Parametric Problems

2 Faster Algorithms for PNB

Deterministic
Randomized

3 Faster Algorithms for Pmax

Deterministic
Randomized

4 Conclusion

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 3 / 28

Global Min Cut Non-Parametric

Global Min Cut

We are given an undirected graph G = (V,E) with non-negative
distances (costs) ce ∈ RE .

Set m = |E|, n = |V | as usual.

A (global) cut is induced by node subset ∅ ⊂ C ⊂ V , and includes
edges δ(C) = {e ∈ E | exactly one end of e is in C}.
Then a global min cut C∗ satisfies c(δ(C∗)) = mincuts C c(δ(C)).

Can compute a global min cut in O(mn+ n2 log n) deterministic time
(Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or Õ(n2)
randomized time (Karger-Stein = KS), or Õ(m) randomized time
(Karger = K).

There are only O(nb2αc) α-approximate min cuts; when α < 4
3 they

can all be computed in O(n4) deterministic time (NI), or
Õ(nb2αc) = Õ(n2) randomized time (KS).

A vitally important subproblem in separating TSP facets.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 4 / 28

Global Min Cut Non-Parametric

Global Min Cut

We are given an undirected graph G = (V,E) with non-negative
distances (costs) ce ∈ RE .

Set m = |E|, n = |V | as usual.

A (global) cut is induced by node subset ∅ ⊂ C ⊂ V , and includes
edges δ(C) = {e ∈ E | exactly one end of e is in C}.
Then a global min cut C∗ satisfies c(δ(C∗)) = mincuts C c(δ(C)).

Can compute a global min cut in O(mn+ n2 log n) deterministic time
(Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or Õ(n2)
randomized time (Karger-Stein = KS), or Õ(m) randomized time
(Karger = K).

There are only O(nb2αc) α-approximate min cuts; when α < 4
3 they

can all be computed in O(n4) deterministic time (NI), or
Õ(nb2αc) = Õ(n2) randomized time (KS).

A vitally important subproblem in separating TSP facets.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 4 / 28

Global Min Cut Non-Parametric

Global Min Cut

We are given an undirected graph G = (V,E) with non-negative
distances (costs) ce ∈ RE .

Set m = |E|, n = |V | as usual.

A (global) cut is induced by node subset ∅ ⊂ C ⊂ V , and includes
edges δ(C) = {e ∈ E | exactly one end of e is in C}.

Then a global min cut C∗ satisfies c(δ(C∗)) = mincuts C c(δ(C)).

Can compute a global min cut in O(mn+ n2 log n) deterministic time
(Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or Õ(n2)
randomized time (Karger-Stein = KS), or Õ(m) randomized time
(Karger = K).

There are only O(nb2αc) α-approximate min cuts; when α < 4
3 they

can all be computed in O(n4) deterministic time (NI), or
Õ(nb2αc) = Õ(n2) randomized time (KS).

A vitally important subproblem in separating TSP facets.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 4 / 28

Global Min Cut Non-Parametric

Global Min Cut

We are given an undirected graph G = (V,E) with non-negative
distances (costs) ce ∈ RE .

Set m = |E|, n = |V | as usual.

A (global) cut is induced by node subset ∅ ⊂ C ⊂ V , and includes
edges δ(C) = {e ∈ E | exactly one end of e is in C}.
Then a global min cut C∗ satisfies c(δ(C∗)) = mincuts C c(δ(C)).

Can compute a global min cut in O(mn+ n2 log n) deterministic time
(Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or Õ(n2)
randomized time (Karger-Stein = KS), or Õ(m) randomized time
(Karger = K).

There are only O(nb2αc) α-approximate min cuts; when α < 4
3 they

can all be computed in O(n4) deterministic time (NI), or
Õ(nb2αc) = Õ(n2) randomized time (KS).

A vitally important subproblem in separating TSP facets.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 4 / 28

Global Min Cut Non-Parametric

Global Min Cut

We are given an undirected graph G = (V,E) with non-negative
distances (costs) ce ∈ RE .

Set m = |E|, n = |V | as usual.

A (global) cut is induced by node subset ∅ ⊂ C ⊂ V , and includes
edges δ(C) = {e ∈ E | exactly one end of e is in C}.
Then a global min cut C∗ satisfies c(δ(C∗)) = mincuts C c(δ(C)).

Can compute a global min cut in O(mn+ n2 log n) deterministic time
(Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or Õ(n2)
randomized time (Karger-Stein = KS), or Õ(m) randomized time
(Karger = K).

There are only O(nb2αc) α-approximate min cuts; when α < 4
3 they

can all be computed in O(n4) deterministic time (NI), or
Õ(nb2αc) = Õ(n2) randomized time (KS).

A vitally important subproblem in separating TSP facets.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 4 / 28

Global Min Cut Non-Parametric

Global Min Cut

We are given an undirected graph G = (V,E) with non-negative
distances (costs) ce ∈ RE .

Set m = |E|, n = |V | as usual.

A (global) cut is induced by node subset ∅ ⊂ C ⊂ V , and includes
edges δ(C) = {e ∈ E | exactly one end of e is in C}.
Then a global min cut C∗ satisfies c(δ(C∗)) = mincuts C c(δ(C)).

Can compute a global min cut in O(mn+ n2 log n) deterministic time
(Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or Õ(n2)
randomized time (Karger-Stein = KS), or Õ(m) randomized time
(Karger = K).

There are only O(nb2αc) α-approximate min cuts; when α < 4
3 they

can all be computed in O(n4) deterministic time (NI), or
Õ(nb2αc) = Õ(n2) randomized time (KS).

A vitally important subproblem in separating TSP facets.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 4 / 28

Global Min Cut Non-Parametric

Global Min Cut

We are given an undirected graph G = (V,E) with non-negative
distances (costs) ce ∈ RE .

Set m = |E|, n = |V | as usual.

A (global) cut is induced by node subset ∅ ⊂ C ⊂ V , and includes
edges δ(C) = {e ∈ E | exactly one end of e is in C}.
Then a global min cut C∗ satisfies c(δ(C∗)) = mincuts C c(δ(C)).

Can compute a global min cut in O(mn+ n2 log n) deterministic time
(Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or Õ(n2)
randomized time (Karger-Stein = KS), or Õ(m) randomized time
(Karger = K).

There are only O(nb2αc) α-approximate min cuts; when α < 4
3 they

can all be computed in O(n4) deterministic time (NI), or
Õ(nb2αc) = Õ(n2) randomized time (KS).

A vitally important subproblem in separating TSP facets.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 4 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.
To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.
Models situations where costs can change due to external variables.
It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.
To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.
Models situations where costs can change due to external variables.
It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.

To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.
Models situations where costs can change due to external variables.
It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.
To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.
Models situations where costs can change due to external variables.
It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.
To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.
Models situations where costs can change due to external variables.
It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.
To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.

Models situations where costs can change due to external variables.
It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.
To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.
Models situations where costs can change due to external variables.

It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

Parametric Global Min Cut

Now suppose that edge costs are linear functions of d parameters
µ ∈ Rd.

Thus we have d+ 1 edge cost functions c0, . . . , cd, and the cost of
e ∈ E w.r.t. µ is cµ(e) = c0(e) +

∑d
i=1 µic

i(e).

We do not assume that all ci(e) are non-negative.
To avoid NP Hardness, we instead assume that µ is restricted to
M = {µ ∈ Rd | cµ(e) ≥ 0 ∀ e ∈ E}.

Why is parametric global min cut interesting?

Models “attack-defend” graph problems where a Defender spends a
fixed budget on d resources to reinforce edges against an Attacker.
Models situations where costs can change due to external variables.
It will turn out to further highlight how the small number of
α-approximate solutions leads to more efficient algorithms.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 5 / 28

Global Min Cut Parametric

The Global Min Cut Value Function

Define Z(µ) to be the cost of a global min cut at µ.

Since Z(µ) is the min of many affine functions (one for each cut), it is
a piecewise-linear concave function.
AMMQ ’15 showed that the number of facets of Z(µ) is
O(mdn2 logd−1 n) and they can be computed in

O(mdb d−1
2 cn2b d−1

2 c log(d−1)b d−1
2 c+O(1) n) deterministic time, and

O(mn4 log n+ n5 log2 n) when d = 1.
When all ci(e) ≥ 0, Karger ’16 improved this to show that the number
of facets of Z(µ) is O(nd+2), and they can be computed in
O(n2d+2 log n) randomized time.

Computing all of Z(µ) is good, but is maybe too much?

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 6 / 28

Global Min Cut Parametric

The Global Min Cut Value Function

Define Z(µ) to be the cost of a global min cut at µ.

Since Z(µ) is the min of many affine functions (one for each cut), it is
a piecewise-linear concave function.

AMMQ ’15 showed that the number of facets of Z(µ) is
O(mdn2 logd−1 n) and they can be computed in

O(mdb d−1
2 cn2b d−1

2 c log(d−1)b d−1
2 c+O(1) n) deterministic time, and

O(mn4 log n+ n5 log2 n) when d = 1.
When all ci(e) ≥ 0, Karger ’16 improved this to show that the number
of facets of Z(µ) is O(nd+2), and they can be computed in
O(n2d+2 log n) randomized time.

Computing all of Z(µ) is good, but is maybe too much?

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 6 / 28

Global Min Cut Parametric

The Global Min Cut Value Function

Define Z(µ) to be the cost of a global min cut at µ.

Since Z(µ) is the min of many affine functions (one for each cut), it is
a piecewise-linear concave function.
AMMQ ’15 showed that the number of facets of Z(µ) is
O(mdn2 logd−1 n) and they can be computed in

O(mdb d−1
2 cn2b d−1

2 c log(d−1)b d−1
2 c+O(1) n) deterministic time, and

O(mn4 log n+ n5 log2 n) when d = 1.

When all ci(e) ≥ 0, Karger ’16 improved this to show that the number
of facets of Z(µ) is O(nd+2), and they can be computed in
O(n2d+2 log n) randomized time.

Computing all of Z(µ) is good, but is maybe too much?

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 6 / 28

Global Min Cut Parametric

The Global Min Cut Value Function

Define Z(µ) to be the cost of a global min cut at µ.

Since Z(µ) is the min of many affine functions (one for each cut), it is
a piecewise-linear concave function.
AMMQ ’15 showed that the number of facets of Z(µ) is
O(mdn2 logd−1 n) and they can be computed in

O(mdb d−1
2 cn2b d−1

2 c log(d−1)b d−1
2 c+O(1) n) deterministic time, and

O(mn4 log n+ n5 log2 n) when d = 1.
When all ci(e) ≥ 0, Karger ’16 improved this to show that the number
of facets of Z(µ) is O(nd+2), and they can be computed in
O(n2d+2 log n) randomized time.

Computing all of Z(µ) is good, but is maybe too much?

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 6 / 28

Global Min Cut Parametric

The Global Min Cut Value Function

Define Z(µ) to be the cost of a global min cut at µ.

Since Z(µ) is the min of many affine functions (one for each cut), it is
a piecewise-linear concave function.
AMMQ ’15 showed that the number of facets of Z(µ) is
O(mdn2 logd−1 n) and they can be computed in

O(mdb d−1
2 cn2b d−1

2 c log(d−1)b d−1
2 c+O(1) n) deterministic time, and

O(mn4 log n+ n5 log2 n) when d = 1.
When all ci(e) ≥ 0, Karger ’16 improved this to show that the number
of facets of Z(µ) is O(nd+2), and they can be computed in
O(n2d+2 log n) randomized time.

Computing all of Z(µ) is good, but is maybe too much?

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 6 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.
PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.
PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.
PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.
PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.

PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.
PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.
PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Defining the Parametric Problems

Computing all of Z(µ) is good, but is maybe too much?

E.g., for attack-defend the Attacker only wants to solve maxµ Z(µ).

So define Pmax to be the problem of computing the max over µ of
Z(µ) (and an associated global min cut).

In other applications (e.g. sensitivity analysis) we want to solve PNB:
Given µ0 ∈ Rd and direction ν ∈ Rd, find the next breakpoint of
Z(µ) along the ray starting at µ0 in direction ν.

PNB is a sort of ray-shooting problem.
PNB is effectively a 1-parameter problem, to find the next breakpoint
w.r.t. costs c̄0 + λc̄1(e) with single parameter λ.

We could solve Pmax and PNB by computing Z(µ), but we want to
find something faster.

We also want to see if one is harder than the other.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 7 / 28

Global Min Cut The Parametric Problems

Megiddo’s Parametric Framework

Megiddo, later with Cohen, gave a black-box way to adapt linear
algorithms for non-parametric problems to solve parametric problems.

Here “linear” means that every comparison is between two affine
functions of µ and the data.

We show that SW is linear, so Megiddo+SW gives an O(n2d+3 logd n)
deterministic algorithm for Pmax, and O(n5 log d) for PNB.

Tokuyama saw that KS is linear, so Megiddo+KS gives an
O(n2 log4d+1 n) randomized algorithm for Pmax, and O(n2 log5 n) for
PNB.

These are a lot faster than the
O(mdb d−1

2 cn2b
d−1
2 c log(d−1)b

d−1
2 c+O(1) n) deterministic and

O(n2d+2 log n) randomized algorithms for computing all of Z(µ).

However, we’d still like to do better than generic Megiddo.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 8 / 28

Global Min Cut The Parametric Problems

Megiddo’s Parametric Framework

Megiddo, later with Cohen, gave a black-box way to adapt linear
algorithms for non-parametric problems to solve parametric problems.

Here “linear” means that every comparison is between two affine
functions of µ and the data.

We show that SW is linear, so Megiddo+SW gives an O(n2d+3 logd n)
deterministic algorithm for Pmax, and O(n5 log d) for PNB.

Tokuyama saw that KS is linear, so Megiddo+KS gives an
O(n2 log4d+1 n) randomized algorithm for Pmax, and O(n2 log5 n) for
PNB.

These are a lot faster than the
O(mdb d−1

2 cn2b
d−1
2 c log(d−1)b

d−1
2 c+O(1) n) deterministic and

O(n2d+2 log n) randomized algorithms for computing all of Z(µ).

However, we’d still like to do better than generic Megiddo.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 8 / 28

Global Min Cut The Parametric Problems

Megiddo’s Parametric Framework

Megiddo, later with Cohen, gave a black-box way to adapt linear
algorithms for non-parametric problems to solve parametric problems.

Here “linear” means that every comparison is between two affine
functions of µ and the data.

We show that SW is linear, so Megiddo+SW gives an O(n2d+3 logd n)
deterministic algorithm for Pmax, and O(n5 log d) for PNB.

Tokuyama saw that KS is linear, so Megiddo+KS gives an
O(n2 log4d+1 n) randomized algorithm for Pmax, and O(n2 log5 n) for
PNB.

These are a lot faster than the
O(mdb d−1

2 cn2b
d−1
2 c log(d−1)b

d−1
2 c+O(1) n) deterministic and

O(n2d+2 log n) randomized algorithms for computing all of Z(µ).

However, we’d still like to do better than generic Megiddo.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 8 / 28

Global Min Cut The Parametric Problems

Megiddo’s Parametric Framework

Megiddo, later with Cohen, gave a black-box way to adapt linear
algorithms for non-parametric problems to solve parametric problems.

Here “linear” means that every comparison is between two affine
functions of µ and the data.

We show that SW is linear, so Megiddo+SW gives an O(n2d+3 logd n)
deterministic algorithm for Pmax, and O(n5 log d) for PNB.

Tokuyama saw that KS is linear, so Megiddo+KS gives an
O(n2 log4d+1 n) randomized algorithm for Pmax, and O(n2 log5 n) for
PNB.

These are a lot faster than the
O(mdb d−1

2 cn2b
d−1
2 c log(d−1)b

d−1
2 c+O(1) n) deterministic and

O(n2d+2 log n) randomized algorithms for computing all of Z(µ).

However, we’d still like to do better than generic Megiddo.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 8 / 28

Global Min Cut The Parametric Problems

Megiddo’s Parametric Framework

Megiddo, later with Cohen, gave a black-box way to adapt linear
algorithms for non-parametric problems to solve parametric problems.

Here “linear” means that every comparison is between two affine
functions of µ and the data.

We show that SW is linear, so Megiddo+SW gives an O(n2d+3 logd n)
deterministic algorithm for Pmax, and O(n5 log d) for PNB.

Tokuyama saw that KS is linear, so Megiddo+KS gives an
O(n2 log4d+1 n) randomized algorithm for Pmax, and O(n2 log5 n) for
PNB.

These are a lot faster than the
O(mdb d−1

2 cn2b
d−1
2 c log(d−1)b

d−1
2 c+O(1) n) deterministic and

O(n2d+2 log n) randomized algorithms for computing all of Z(µ).

However, we’d still like to do better than generic Megiddo.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 8 / 28

Global Min Cut The Parametric Problems

Megiddo’s Parametric Framework

Megiddo, later with Cohen, gave a black-box way to adapt linear
algorithms for non-parametric problems to solve parametric problems.

Here “linear” means that every comparison is between two affine
functions of µ and the data.

We show that SW is linear, so Megiddo+SW gives an O(n2d+3 logd n)
deterministic algorithm for Pmax, and O(n5 log d) for PNB.

Tokuyama saw that KS is linear, so Megiddo+KS gives an
O(n2 log4d+1 n) randomized algorithm for Pmax, and O(n2 log5 n) for
PNB.

These are a lot faster than the
O(mdb d−1

2 cn2b
d−1
2 c log(d−1)b

d−1
2 c+O(1) n) deterministic and

O(n2d+2 log n) randomized algorithms for computing all of Z(µ).

However, we’d still like to do better than generic Megiddo.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 8 / 28

Global Min Cut The Parametric Problems

Summary of Where We Are

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

Summary of running times so far.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 9 / 28

Global Min Cut The Parametric Problems

Summary of Where We Are

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

Big gap between non-parametric and computing all of Z(µ) running times,
even for d = 1

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 9 / 28

Global Min Cut The Parametric Problems

Summary of Where We Are

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

Much smaller gap between non-parametric and Megiddo running times
(compare to Z(µ) times in blue); for d = 1, KS gap is just logs. Note
that using Megiddo to solve PNB is just general Megiddo with d set to 1.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 9 / 28

Global Min Cut The Parametric Problems

Summary of Where We Are

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

PNB (∼ d = 1) ??? ???
Pmax (∼ gen’l d) ??? ???

Hoped-for results in this paper in red. Compare to non-param lower bounds
in green, various upper bounds in blue.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 9 / 28

Global Min Cut The Parametric Problems

Reducing PNB to Pmax with d = 1

PNB wants us to compute λNB:

µ0 µ0 + λNBν

If we rotate until the local slope at µ0 is just short of horizontal, then
finding λNB becomes equivalent to computing µ∗ in this
1-dimensional problem:

µ∗

Thus PNB cannot be any harder than Pmax for d = 1, though it could
be easier.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 10 / 28

Global Min Cut The Parametric Problems

Reducing PNB to Pmax with d = 1

PNB wants us to compute λNB:

µ0 µ0 + λNBν

If we rotate until the local slope at µ0 is just short of horizontal, then
finding λNB becomes equivalent to computing µ∗ in this
1-dimensional problem:

µ∗

Thus PNB cannot be any harder than Pmax for d = 1, though it could
be easier.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 10 / 28

Global Min Cut The Parametric Problems

Reducing PNB to Pmax with d = 1

PNB wants us to compute λNB:

µ0 µ0 + λNBν

If we rotate until the local slope at µ0 is just short of horizontal, then
finding λNB becomes equivalent to computing µ∗ in this
1-dimensional problem:

µ∗

Thus PNB cannot be any harder than Pmax for d = 1, though it could
be easier.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 10 / 28

Faster Algorithms for PNB Deterministic

Outline

1 Global Min Cut
Non-Parametric
Parametric
The Parametric Problems

2 Faster Algorithms for PNB

Deterministic
Randomized

3 Faster Algorithms for Pmax

Deterministic
Randomized

4 Conclusion

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 11 / 28

Faster Algorithms for PNB Deterministic

Using Stoer-Wagner to Solve PNB

SW finds a node ordering v1, . . . , vn such that (vn−1, vn) is a pendent
pair, i.e., either δ(vn) is a global min cut, or we can contract edge
{vn−1, vn} without losing any optimal cuts.

Let Gr be contracted graph at iteration r. Define Zr(λ) to be min of
c̄(δ(v)) for v ∈ V r and compute λr like:

Update an UB λ̄ on λNB by λr, and do SW to find and contract a
pendent pair w.r.t. λ̄; since Z(λ) is concave, λr upper bounds λNB.
This is correct, and runs in same O(mn+ n2 log n) time as SW.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 12 / 28

Faster Algorithms for PNB Deterministic

Using Stoer-Wagner to Solve PNB

SW finds a node ordering v1, . . . , vn such that (vn−1, vn) is a pendent
pair, i.e., either δ(vn) is a global min cut, or we can contract edge
{vn−1, vn} without losing any optimal cuts.
Let Gr be contracted graph at iteration r. Define Zr(λ) to be min of
c̄(δ(v)) for v ∈ V r and compute λr like:

λ

node cuts in Gr

L(λ) = local cut slope in direction ν

λr

cut
value

Zr(λ) = min of

Update an UB λ̄ on λNB by λr, and do SW to find and contract a
pendent pair w.r.t. λ̄; since Z(λ) is concave, λr upper bounds λNB.
This is correct, and runs in same O(mn+ n2 log n) time as SW.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 12 / 28

Faster Algorithms for PNB Deterministic

Using Stoer-Wagner to Solve PNB

SW finds a node ordering v1, . . . , vn such that (vn−1, vn) is a pendent
pair, i.e., either δ(vn) is a global min cut, or we can contract edge
{vn−1, vn} without losing any optimal cuts.
Let Gr be contracted graph at iteration r. Define Zr(λ) to be min of
c̄(δ(v)) for v ∈ V r and compute λr like:

λNB

node cuts in Gr

L(λ) = local cut slope in direction ν

actual cut value
in direction ν

λr

cut
value

λ

Zr(λ) = min of

Update an UB λ̄ on λNB by λr, and do SW to find and contract a
pendent pair w.r.t. λ̄; since Z(λ) is concave, λr upper bounds λNB.

This is correct, and runs in same O(mn+ n2 log n) time as SW.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 12 / 28

Faster Algorithms for PNB Deterministic

Using Stoer-Wagner to Solve PNB

SW finds a node ordering v1, . . . , vn such that (vn−1, vn) is a pendent
pair, i.e., either δ(vn) is a global min cut, or we can contract edge
{vn−1, vn} without losing any optimal cuts.
Let Gr be contracted graph at iteration r. Define Zr(λ) to be min of
c̄(δ(v)) for v ∈ V r and compute λr like:

λNB

node cuts in Gr

L(λ) = local cut slope in direction ν

actual cut value
in direction ν

λr

cut
value

λ

Zr(λ) = min of

Update an UB λ̄ on λNB by λr, and do SW to find and contract a
pendent pair w.r.t. λ̄; since Z(λ) is concave, λr upper bounds λNB.
This is correct, and runs in same O(mn+ n2 log n) time as SW.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 12 / 28

Faster Algorithms for PNB Deterministic

Summary of Running Times

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

PNB (∼ d = 1) SW O(mn+ n2 log n) ???
Pmax (∼ gen’l d) ??? ???

Here we saved a lot w.r.t. Megiddo, and matched the non-parametric lower
bound.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 13 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

KS selects an edge to contract randomly, proportional to its cost.

After contracting to 2 nodes, KS show that the remaining induced cut
is a min cut with probability at least 1/

(
n
2

)
, and this can be put into a

framework that will identify a min cut with high probability.

Compute λr like this:

Choose e to contract with probability proportional to cλr(e); since
Z(λ) is concave, λr upper bounds λNB.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 14 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

KS selects an edge to contract randomly, proportional to its cost.

After contracting to 2 nodes, KS show that the remaining induced cut
is a min cut with probability at least 1/

(
n
2

)
, and this can be put into a

framework that will identify a min cut with high probability.

Compute λr like this:

Choose e to contract with probability proportional to cλr(e); since
Z(λ) is concave, λr upper bounds λNB.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 14 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

KS selects an edge to contract randomly, proportional to its cost.

After contracting to 2 nodes, KS show that the remaining induced cut
is a min cut with probability at least 1/

(
n
2

)
, and this can be put into a

framework that will identify a min cut with high probability.

Compute λr like this:

L(λ) = local cut slope in direction ν

UBr(λ) = avg of

λr

cut
value

λ

node cuts in Gr

Choose e to contract with probability proportional to cλr(e); since
Z(λ) is concave, λr upper bounds λNB.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 14 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

KS selects an edge to contract randomly, proportional to its cost.

After contracting to 2 nodes, KS show that the remaining induced cut
is a min cut with probability at least 1/

(
n
2

)
, and this can be put into a

framework that will identify a min cut with high probability.

Compute λr like this:

L(λ) = local cut slope in direction ν

UBr(λ) = avg of

λr

cut
value

λ

λNB

actual cut value
in direction ν

node cuts in Gr

Choose e to contract with probability proportional to cλr(e); since
Z(λ) is concave, λr upper bounds λNB.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 14 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

Compute λNB as the intersection of the final cut line and L(λ), and
repeat in the KS framework.

As in KS, when λNB exists, the probability that a global min cut
survives all the contractions is at least 1/

(
n
2

)
; if there is no breakpoint

in direction ν, then the algorithm recognizes this with probability one.

Thus using the KS framework is correct, and runs in same Õ(n2) time
as KS.

There is a minor technical point about how to implement the random
edge contractions: Here the parametric costs interfere with the KS
matrix update technique, but we can replace the static matrices with
separate matrices for c̄0 and c̄1 to achieve the same effect.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 15 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

Compute λNB as the intersection of the final cut line and L(λ), and
repeat in the KS framework.

As in KS, when λNB exists, the probability that a global min cut
survives all the contractions is at least 1/

(
n
2

)
; if there is no breakpoint

in direction ν, then the algorithm recognizes this with probability one.

Thus using the KS framework is correct, and runs in same Õ(n2) time
as KS.

There is a minor technical point about how to implement the random
edge contractions: Here the parametric costs interfere with the KS
matrix update technique, but we can replace the static matrices with
separate matrices for c̄0 and c̄1 to achieve the same effect.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 15 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

Compute λNB as the intersection of the final cut line and L(λ), and
repeat in the KS framework.

As in KS, when λNB exists, the probability that a global min cut
survives all the contractions is at least 1/

(
n
2

)
; if there is no breakpoint

in direction ν, then the algorithm recognizes this with probability one.

Thus using the KS framework is correct, and runs in same Õ(n2) time
as KS.

There is a minor technical point about how to implement the random
edge contractions: Here the parametric costs interfere with the KS
matrix update technique, but we can replace the static matrices with
separate matrices for c̄0 and c̄1 to achieve the same effect.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 15 / 28

Faster Algorithms for PNB Randomized

Using Karger-Stein to Solve PNB

Compute λNB as the intersection of the final cut line and L(λ), and
repeat in the KS framework.

As in KS, when λNB exists, the probability that a global min cut
survives all the contractions is at least 1/

(
n
2

)
; if there is no breakpoint

in direction ν, then the algorithm recognizes this with probability one.

Thus using the KS framework is correct, and runs in same Õ(n2) time
as KS.

There is a minor technical point about how to implement the random
edge contractions: Here the parametric costs interfere with the KS
matrix update technique, but we can replace the static matrices with
separate matrices for c̄0 and c̄1 to achieve the same effect.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 15 / 28

Faster Algorithms for PNB Randomized

Summary of Running Times

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

PNB (∼ d = 1) SW O(mn+ n2 log n) KS O(n2 log3 n)
Pmax (∼ gen’l d) ??? ???

Here we saved only log factors w.r.t. Megiddo, but that’s all the gap we had
to work with; our ideas don’t seem to extend to Karger’s improvement.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 16 / 28

Faster Algorithms for Pmax Deterministic

Outline

1 Global Min Cut
Non-Parametric
Parametric
The Parametric Problems

2 Faster Algorithms for PNB

Deterministic
Randomized

3 Faster Algorithms for Pmax

Deterministic
Randomized

4 Conclusion

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 17 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.

2 Ability to compute all O(n2) α-approximate solutions for α < 4
3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));

a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and

an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Solving Pmax: Overview and Techniques

Following Mulmuley and AMMQ we want to use two ideas to
compute µ∗ = maxµ Z(µ):

1 Approximate duality between global MC and max spanning tree.
2 Ability to compute all O(n2) α-approximate solutions for α < 4

3 .

But max spanning tree makes sense only when all costs are linearly
ordered, and parametric costs typically are not.

And we need to narrow down our search for µ∗ to a region small
enough that the α-approximate min cuts include all cuts defining µ∗.

We use a technique from computational geometry called point
location in arrangements (PLA) to achieve both of these.

In PLA we are given:

a set H of hyperplanes (think the µ s.t. cµ(e) = cµ(e′));
a polytope P (think the region M where all cµ(e) ≥ 0); and
an unknown target (think µ∗).

Then the task is to find a simplex in a cell of H ∩ P containing µ∗.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 18 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

Define H1 as the set of O(m2) hyperplanes where cµ(e) = cµ(e′) and
run PLA for (H1,M, µ∗) to get simplex S1.

M
µ∗

S1

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 19 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

Define H1 as the set of O(m2) hyperplanes where cµ(e) = cµ(e′) and
run PLA for (H1,M, µ∗) to get simplex S1.

M
µ∗

S1

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 19 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Thus we can compute a max spanning tree T in S1.

Let ē be a min-cost edge in T .

Since every cut hits T we get Z(µ∗) ≥ cµ(ē) for all µ ∈ S1.
Let C̄ be the fundamental cut in T − ē; since T is a MST we have
Z(µ∗) ≤ cµ∗(C̄) ≤ mcµ∗(ē).
Thus cµ∗(ē) ≤ Z(µ∗) ≤ mcµ∗(ē), and so cµ∗(ē) is a fairly tight
estimate of Z(µ∗).

Now we need to use PLA a second time to further narrow in on µ∗ so
we can get the cuts inducing it via α-approximate cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 20 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Thus we can compute a max spanning tree T in S1.

Let ē be a min-cost edge in T .

Since every cut hits T we get Z(µ∗) ≥ cµ(ē) for all µ ∈ S1.
Let C̄ be the fundamental cut in T − ē; since T is a MST we have
Z(µ∗) ≤ cµ∗(C̄) ≤ mcµ∗(ē).
Thus cµ∗(ē) ≤ Z(µ∗) ≤ mcµ∗(ē), and so cµ∗(ē) is a fairly tight
estimate of Z(µ∗).

Now we need to use PLA a second time to further narrow in on µ∗ so
we can get the cuts inducing it via α-approximate cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 20 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Thus we can compute a max spanning tree T in S1.

Let ē be a min-cost edge in T .

Since every cut hits T we get Z(µ∗) ≥ cµ(ē) for all µ ∈ S1.
Let C̄ be the fundamental cut in T − ē; since T is a MST we have
Z(µ∗) ≤ cµ∗(C̄) ≤ mcµ∗(ē).
Thus cµ∗(ē) ≤ Z(µ∗) ≤ mcµ∗(ē), and so cµ∗(ē) is a fairly tight
estimate of Z(µ∗).

Now we need to use PLA a second time to further narrow in on µ∗ so
we can get the cuts inducing it via α-approximate cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 20 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Thus we can compute a max spanning tree T in S1.

Let ē be a min-cost edge in T .

Since every cut hits T we get Z(µ∗) ≥ cµ(ē) for all µ ∈ S1.

Let C̄ be the fundamental cut in T − ē; since T is a MST we have
Z(µ∗) ≤ cµ∗(C̄) ≤ mcµ∗(ē).
Thus cµ∗(ē) ≤ Z(µ∗) ≤ mcµ∗(ē), and so cµ∗(ē) is a fairly tight
estimate of Z(µ∗).

Now we need to use PLA a second time to further narrow in on µ∗ so
we can get the cuts inducing it via α-approximate cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 20 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Thus we can compute a max spanning tree T in S1.

Let ē be a min-cost edge in T .

Since every cut hits T we get Z(µ∗) ≥ cµ(ē) for all µ ∈ S1.
Let C̄ be the fundamental cut in T − ē; since T is a MST we have
Z(µ∗) ≤ cµ∗(C̄) ≤ mcµ∗(ē).

Thus cµ∗(ē) ≤ Z(µ∗) ≤ mcµ∗(ē), and so cµ∗(ē) is a fairly tight
estimate of Z(µ∗).

Now we need to use PLA a second time to further narrow in on µ∗ so
we can get the cuts inducing it via α-approximate cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 20 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Thus we can compute a max spanning tree T in S1.

Let ē be a min-cost edge in T .

Since every cut hits T we get Z(µ∗) ≥ cµ(ē) for all µ ∈ S1.
Let C̄ be the fundamental cut in T − ē; since T is a MST we have
Z(µ∗) ≤ cµ∗(C̄) ≤ mcµ∗(ē).
Thus cµ∗(ē) ≤ Z(µ∗) ≤ mcµ∗(ē), and so cµ∗(ē) is a fairly tight
estimate of Z(µ∗).

Now we need to use PLA a second time to further narrow in on µ∗ so
we can get the cuts inducing it via α-approximate cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 20 / 28

Faster Algorithms for Pmax Deterministic

Weak Duality between GMC and Max Spanning Tree

By the definition of H1 and PLA, we know that µ∗ ∈ S1 and all cµ(e)
are linearly ordered for µ ∈ S1.

Thus we can compute a max spanning tree T in S1.

Let ē be a min-cost edge in T .

Since every cut hits T we get Z(µ∗) ≥ cµ(ē) for all µ ∈ S1.
Let C̄ be the fundamental cut in T − ē; since T is a MST we have
Z(µ∗) ≤ cµ∗(C̄) ≤ mcµ∗(ē).
Thus cµ∗(ē) ≤ Z(µ∗) ≤ mcµ∗(ē), and so cµ∗(ē) is a fairly tight
estimate of Z(µ∗).

Now we need to use PLA a second time to further narrow in on µ∗ so
we can get the cuts inducing it via α-approximate cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 20 / 28

Faster Algorithms for Pmax Deterministic

Narrowing in on α-Approximate Cuts

Choose

ᾱ s.t. 1 < ᾱ <
√

4
3 (note: 0 < ᾱ2−1

m < 1);

p = 1 + dlog m2

ᾱ2−1/ log ᾱ2e so that ᾱ2−1
m ᾱ2(p−1) > m (note:

p = O(log n));

gi(ē, µ) = ᾱ2−1
m ᾱ2(i−1)cµ(ē) for i = 1, . . . , p, g0(ē, µ) = 0 (note:

g1(ē, µ) < cµ(ē) and gp(ē, µ) > mcµ(ē)).

Define H2 as the O(m log n) hyperplanes where cµ(e) = gi(ē, µ), ∀
e ∈ E, i = 1, . . . , p, and set S2 = PLA(H2, S1, µ

∗):

S1

µ∗

S2

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 21 / 28

Faster Algorithms for Pmax Deterministic

Narrowing in on α-Approximate Cuts

Choose

ᾱ s.t. 1 < ᾱ <
√

4
3 (note: 0 < ᾱ2−1

m < 1);

p = 1 + dlog m2

ᾱ2−1/ log ᾱ2e so that ᾱ2−1
m ᾱ2(p−1) > m (note:

p = O(log n));

gi(ē, µ) = ᾱ2−1
m ᾱ2(i−1)cµ(ē) for i = 1, . . . , p, g0(ē, µ) = 0 (note:

g1(ē, µ) < cµ(ē) and gp(ē, µ) > mcµ(ē)).

Define H2 as the O(m log n) hyperplanes where cµ(e) = gi(ē, µ), ∀
e ∈ E, i = 1, . . . , p, and set S2 = PLA(H2, S1, µ

∗):

S1

µ∗

S2

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 21 / 28

Faster Algorithms for Pmax Deterministic

Narrowing in on α-Approximate Cuts

Choose

ᾱ s.t. 1 < ᾱ <
√

4
3 (note: 0 < ᾱ2−1

m < 1);

p = 1 + dlog m2

ᾱ2−1/ log ᾱ2e so that ᾱ2−1
m ᾱ2(p−1) > m (note:

p = O(log n));

gi(ē, µ) = ᾱ2−1
m ᾱ2(i−1)cµ(ē) for i = 1, . . . , p, g0(ē, µ) = 0 (note:

g1(ē, µ) < cµ(ē) and gp(ē, µ) > mcµ(ē)).

Define H2 as the O(m log n) hyperplanes where cµ(e) = gi(ē, µ), ∀
e ∈ E, i = 1, . . . , p, and set S2 = PLA(H2, S1, µ

∗):

S1

µ∗

S2

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 21 / 28

Faster Algorithms for Pmax Deterministic

Narrowing in on α-Approximate Cuts

Choose

ᾱ s.t. 1 < ᾱ <
√

4
3 (note: 0 < ᾱ2−1

m < 1);

p = 1 + dlog m2

ᾱ2−1/ log ᾱ2e so that ᾱ2−1
m ᾱ2(p−1) > m (note:

p = O(log n));

gi(ē, µ) = ᾱ2−1
m ᾱ2(i−1)cµ(ē) for i = 1, . . . , p, g0(ē, µ) = 0 (note:

g1(ē, µ) < cµ(ē) and gp(ē, µ) > mcµ(ē)).

Define H2 as the O(m log n) hyperplanes where cµ(e) = gi(ē, µ), ∀
e ∈ E, i = 1, . . . , p, and set S2 = PLA(H2, S1, µ

∗):

S1

µ∗

S2

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 21 / 28

Faster Algorithms for Pmax Deterministic

Narrowing in on α-Approximate Cuts

Choose

ᾱ s.t. 1 < ᾱ <
√

4
3 (note: 0 < ᾱ2−1

m < 1);

p = 1 + dlog m2

ᾱ2−1/ log ᾱ2e so that ᾱ2−1
m ᾱ2(p−1) > m (note:

p = O(log n));

gi(ē, µ) = ᾱ2−1
m ᾱ2(i−1)cµ(ē) for i = 1, . . . , p, g0(ē, µ) = 0 (note:

g1(ē, µ) < cµ(ē) and gp(ē, µ) > mcµ(ē)).

Define H2 as the O(m log n) hyperplanes where cµ(e) = gi(ē, µ), ∀
e ∈ E, i = 1, . . . , p, and set S2 = PLA(H2, S1, µ

∗):

S1

µ∗

S2

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 21 / 28

Faster Algorithms for Pmax Deterministic

Computing Min Cuts and µ∗

Due to how we defined the gi(ē, µ), we know that any cut defining µ∗

must be an ᾱ-approximate cut for any µ ∈ S2.

Thus we could compute the O(n2) ᾱ-approximate cuts in C and
compute their lower envelope to get µ∗, but this would take Ω(n2d)
time, too slow.
Instead, define H3 as the O(n4) hyperplanes where cµ(C) = cµ(C ′)
for C, C ′ ∈ C and set S3 = PLA(H3, S2, µ

∗).

µ∗

S2
S3

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 22 / 28

Faster Algorithms for Pmax Deterministic

Computing Min Cuts and µ∗

Due to how we defined the gi(ē, µ), we know that any cut defining µ∗

must be an ᾱ-approximate cut for any µ ∈ S2.
Thus we could compute the O(n2) ᾱ-approximate cuts in C and
compute their lower envelope to get µ∗, but this would take Ω(n2d)
time, too slow.

Instead, define H3 as the O(n4) hyperplanes where cµ(C) = cµ(C ′)
for C, C ′ ∈ C and set S3 = PLA(H3, S2, µ

∗).

µ∗

S2
S3

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 22 / 28

Faster Algorithms for Pmax Deterministic

Computing Min Cuts and µ∗

Due to how we defined the gi(ē, µ), we know that any cut defining µ∗

must be an ᾱ-approximate cut for any µ ∈ S2.
Thus we could compute the O(n2) ᾱ-approximate cuts in C and
compute their lower envelope to get µ∗, but this would take Ω(n2d)
time, too slow.
Instead, define H3 as the O(n4) hyperplanes where cµ(C) = cµ(C ′)
for C, C ′ ∈ C and set S3 = PLA(H3, S2, µ

∗).

µ∗

S2
S3

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 22 / 28

Faster Algorithms for Pmax Deterministic

Computing Min Cuts and µ∗

Since µ∗ is the intersection of d cuts in C, it must be a vertex of S3,
and so this last call of PLA finds µ∗ more efficiently.

PLA is a recursive procedure; when we solve the recursion, we get the
claimed O(n4 logd−1 n) running time.

I skipped a technicality that arises when cµ(ē) = 0 for some µ ∈ S1.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 23 / 28

Faster Algorithms for Pmax Deterministic

Computing Min Cuts and µ∗

Since µ∗ is the intersection of d cuts in C, it must be a vertex of S3,
and so this last call of PLA finds µ∗ more efficiently.

PLA is a recursive procedure; when we solve the recursion, we get the
claimed O(n4 logd−1 n) running time.

I skipped a technicality that arises when cµ(ē) = 0 for some µ ∈ S1.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 23 / 28

Faster Algorithms for Pmax Deterministic

Computing Min Cuts and µ∗

Since µ∗ is the intersection of d cuts in C, it must be a vertex of S3,
and so this last call of PLA finds µ∗ more efficiently.

PLA is a recursive procedure; when we solve the recursion, we get the
claimed O(n4 logd−1 n) running time.

I skipped a technicality that arises when cµ(ē) = 0 for some µ ∈ S1.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 23 / 28

Faster Algorithms for Pmax Deterministic

Summary of Running Times

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

PNB (∼ d = 1) SW O(mn+ n2 log n) KS O(n2 log3 n)

Pmax (∼ gen’l d) O(n4 logd−1 n) ???

We saved a lot compared to Megiddo, but even for d = 1 still much slower
than our deterministic PNB algorithm, suggesting that Pmax for d = 1 is
strictly harder than PNB.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 24 / 28

Faster Algorithms for Pmax Deterministic

Summary of Running Times

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

PNB (∼ d = 1) SW O(mn+ n2 log n) KS O(n2 log3 n)

Pmax (∼ gen’l d) O(n4 logd−1 n) ???

Notice that running time for our Pmax algorithm is just log factors more
than for computing all ᾱ-approximate min cuts.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 24 / 28

Faster Algorithms for Pmax Randomized

Solving Pmax Randomly

So far we don’t know how to do this . . .

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 25 / 28

Faster Algorithms for Pmax Randomized

Final Summary of Running Times

Problem Deterministic Randomized

Non-param GMC SW O(mn+ n2 log n) K Õ(m) (KS Õ(n2))

All α < 4
3 -approx NI O(n4) KS Õ(n2)

Megiddo d = 1 SW O(n5 log n) KS O(n2 log5 n)

Megiddo gen’l d SW O(n2d+3 logd n) KS O(n2 log4d+1 n)
Z(µ) d = 1 O(mn4 log n+ n5 log2 n) O(n4 log n) K
Z(µ) gen’l d (big) AMMQ O(n2d+2 log n) K

PNB (∼ d = 1) SW O(mn+ n2 log n) KS O(n2 log3 n)

Pmax (∼ gen’l d) O(n4 logd−1 n) ???

New results in this paper in red. Compare to non-param lower bounds in
green, various upper bounds in blue.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 26 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.

The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?

There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Conclusion

Solving PNB and Pmax by computing Z(µ) is slow.

We could use Megiddo+SW to solve them faster deterministically, or
Megiddo+KS to solve them faster randomly, which give the
impression that PNB and Pmax for d = 1 have the same complexity.

Our algorithms suggest that PNB is easier than Pmax for d = 1.

We propose specialized algorithms for solving PNB and Pmax that are
significantly faster than Megiddo.

The PNB algorithms are essentially as fast as the non-parametric
algorithms.
The deterministic Pmax algorithm further elaborates computational
geometry techniques and is much faster than Megiddo+SW.

Open questions:

Can we use Karger’s ideas to further speed up PNB to Õ(m)?
There should be a faster, specialized, randomized algorithm for Pmax.

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 27 / 28

Conclusion

Any questions?

Questions?

Comments?

Aissi-Mc-Quey (Dauphine-UBC) Param Global Min Cut BIRS TSP Sept 2018 28 / 28

	Global Min Cut
	Non-Parametric
	Parametric
	The Parametric Problems

	Faster Algorithms for PNB
	Deterministic
	Randomized

	Faster Algorithms for Pmax
	Deterministic
	Randomized

	Conclusion

