Strongly Polynomial Algorithms for Some Parametric Global Minimum Cut Problems

Hassène Aissi / S. Thomas McCormick / Maurice Queyranne

Paris-Dauphine / Sauder School of Business, UBC $\times 2$

S. Thomas McCormick
Sauder School of Business
University of British Columbia

Outline

(1) Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems

Outline

(1) Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
(2) Faster Algorithms for P_{NB}
- Deterministic
- Randomized

Outline

(1) Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
(2) Faster Algorithms for P_{NB}
- Deterministic
- Randomized
(3) Faster Algorithms for $P_{\max }$
- Deterministic
- Randomized

Outline

(1) Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
(2) Faster Algorithms for P_{NB}
- Deterministic
- Randomized
(3) Faster Algorithms for $P_{\max }$
- Deterministic
- Randomized

4 Conclusion

Outline

(1) Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
(2) Faster Algorithms for P_{NB}
- Deterministic
- Randomized
(3) Faster Algorithms for $P_{\max }$
- Deterministic
- Randomized

4 Conclusion

Global Min Cut

- We are given an undirected graph $G=(V, E)$ with non-negative distances (costs) $c_{e} \in \mathbb{R}^{E}$.

Global Min Cut

- We are given an undirected graph $G=(V, E)$ with non-negative distances (costs) $c_{e} \in \mathbb{R}^{E}$.
- Set $m=|E|, n=|V|$ as usual.

Global Min Cut

- We are given an undirected graph $G=(V, E)$ with non-negative distances (costs) $c_{e} \in \mathbb{R}^{E}$.
- Set $m=|E|, n=|V|$ as usual.
- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C)=\{e \in E \mid$ exactly one end of e is in $C\}$.

Global Min Cut

- We are given an undirected graph $G=(V, E)$ with non-negative distances (costs) $c_{e} \in \mathbb{R}^{E}$.
- Set $m=|E|, n=|V|$ as usual.
- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C)=\{e \in E \mid$ exactly one end of e is in $C\}$.
- Then a global min cut C^{*} satisfies $c\left(\delta\left(C^{*}\right)\right)=\min _{\text {cuts } C} c(\delta(C))$.

Global Min Cut

- We are given an undirected graph $G=(V, E)$ with non-negative distances (costs) $c_{e} \in \mathbb{R}^{E}$.
- Set $m=|E|, n=|V|$ as usual.
- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C)=\{e \in E \mid$ exactly one end of e is in $C\}$.
- Then a global min cut C^{*} satisfies $c\left(\delta\left(C^{*}\right)\right)=\min _{\text {cuts } C} c(\delta(C))$.
- Can compute a global min cut in $O\left(m n+n^{2} \log n\right)$ deterministic time (Stoer-Wagner $=$ SW, Nagamochi-Ibaraki $=\mathrm{NI})$, or $\tilde{O}\left(n^{2}\right)$ randomized time (Karger-Stein $=\mathrm{KS}$), or $\tilde{O}(m)$ randomized time $($ Karger $=K)$.

Global Min Cut

- We are given an undirected graph $G=(V, E)$ with non-negative distances (costs) $c_{e} \in \mathbb{R}^{E}$.
- Set $m=|E|, n=|V|$ as usual.
- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C)=\{e \in E \mid$ exactly one end of e is in $C\}$.
- Then a global min cut C^{*} satisfies $c\left(\delta\left(C^{*}\right)\right)=\min _{\text {cuts } C} c(\delta(C))$.
- Can compute a global min cut in $O\left(m n+n^{2} \log n\right)$ deterministic time (Stoer-Wagner $=\mathrm{SW}$, Nagamochi-Ibaraki $=\mathrm{NI})$, or $\tilde{O}\left(n^{2}\right)$ randomized time (Karger-Stein $=\mathrm{KS}$), or $\tilde{O}(m)$ randomized time $($ Karger $=\mathrm{K})$.
- There are only $O\left(n^{\lfloor 2 \alpha\rfloor}\right) \alpha$-approximate min cuts; when $\alpha<\frac{4}{3}$ they can all be computed in $O\left(n^{4}\right)$ deterministic time (NI), or $\tilde{O}\left(n^{\lfloor 2 \alpha\rfloor}\right)=\tilde{O}\left(n^{2}\right)$ randomized time (KS).

Global Min Cut

- We are given an undirected graph $G=(V, E)$ with non-negative distances (costs) $c_{e} \in \mathbb{R}^{E}$.
- Set $m=|E|, n=|V|$ as usual.
- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C)=\{e \in E \mid$ exactly one end of e is in $C\}$.
- Then a global min cut C^{*} satisfies $c\left(\delta\left(C^{*}\right)\right)=\min _{\text {cuts } C} c(\delta(C))$.
- Can compute a global min cut in $O\left(m n+n^{2} \log n\right)$ deterministic time (Stoer-Wagner $=\mathrm{SW}$, Nagamochi-Ibaraki $=\mathrm{NI})$, or $\tilde{O}\left(n^{2}\right)$ randomized time (Karger-Stein $=\mathrm{KS}$), or $\tilde{O}(m)$ randomized time $($ Karger $=K$).
- There are only $O\left(n^{\lfloor 2 \alpha\rfloor}\right) \alpha$-approximate min cuts; when $\alpha<\frac{4}{3}$ they can all be computed in $O\left(n^{4}\right)$ deterministic time (NI), or $\tilde{O}\left(n^{\lfloor 2 \alpha\rfloor}\right)=\tilde{O}\left(n^{2}\right)$ randomized time (KS).
- A vitally important subproblem in separating TSP facets.

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.
- Thus we have $d+1$ edge cost functions c^{0}, \ldots, c^{d}, and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e)=c^{0}(e)+\sum_{i=1}^{d} \mu_{i} c^{i}(e)$.

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.
- Thus we have $d+1$ edge cost functions c^{0}, \ldots, c^{d}, and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e)=c^{0}(e)+\sum_{i=1}^{d} \mu_{i} c^{i}(e)$.
- We do not assume that all $c^{i}(e)$ are non-negative.

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.
- Thus we have $d+1$ edge cost functions c^{0}, \ldots, c^{d}, and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e)=c^{0}(e)+\sum_{i=1}^{d} \mu_{i} c^{i}(e)$.
- We do not assume that all $c^{i}(e)$ are non-negative.
- To avoid NP Hardness, we instead assume that μ is restricted to $M=\left\{\mu \in \mathbb{R}^{d} \mid c_{\mu}(e) \geq 0 \forall e \in E\right\}$.

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.
- Thus we have $d+1$ edge cost functions c^{0}, \ldots, c^{d}, and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e)=c^{0}(e)+\sum_{i=1}^{d} \mu_{i} c^{i}(e)$.
- We do not assume that all $c^{i}(e)$ are non-negative.
- To avoid NP Hardness, we instead assume that μ is restricted to $M=\left\{\mu \in \mathbb{R}^{d} \mid c_{\mu}(e) \geq 0 \forall e \in E\right\}$.
- Why is parametric global min cut interesting?

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.
- Thus we have $d+1$ edge cost functions c^{0}, \ldots, c^{d}, and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e)=c^{0}(e)+\sum_{i=1}^{d} \mu_{i} c^{i}(e)$.
- We do not assume that all $c^{i}(e)$ are non-negative.
- To avoid NP Hardness, we instead assume that μ is restricted to $M=\left\{\mu \in \mathbb{R}^{d} \mid c_{\mu}(e) \geq 0 \forall e \in E\right\}$.
- Why is parametric global min cut interesting?
- Models "attack-defend" graph problems where a Defender spends a fixed budget on d resources to reinforce edges against an Attacker.

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.
- Thus we have $d+1$ edge cost functions c^{0}, \ldots, c^{d}, and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e)=c^{0}(e)+\sum_{i=1}^{d} \mu_{i} c^{i}(e)$.
- We do not assume that all $c^{i}(e)$ are non-negative.
- To avoid NP Hardness, we instead assume that μ is restricted to $M=\left\{\mu \in \mathbb{R}^{d} \mid c_{\mu}(e) \geq 0 \forall e \in E\right\}$.
- Why is parametric global min cut interesting?
- Models "attack-defend" graph problems where a Defender spends a fixed budget on d resources to reinforce edges against an Attacker.
- Models situations where costs can change due to external variables.

Parametric Global Min Cut

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^{d}$.
- Thus we have $d+1$ edge cost functions c^{0}, \ldots, c^{d}, and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e)=c^{0}(e)+\sum_{i=1}^{d} \mu_{i} c^{i}(e)$.
- We do not assume that all $c^{i}(e)$ are non-negative.
- To avoid NP Hardness, we instead assume that μ is restricted to $M=\left\{\mu \in \mathbb{R}^{d} \mid c_{\mu}(e) \geq 0 \forall e \in E\right\}$.
- Why is parametric global min cut interesting?
- Models "attack-defend" graph problems where a Defender spends a fixed budget on d resources to reinforce edges against an Attacker.
- Models situations where costs can change due to external variables.
- It will turn out to further highlight how the small number of α-approximate solutions leads to more efficient algorithms.

The Global Min Cut Value Function

- Define $Z(\mu)$ to be the cost of a global min cut at μ.

The Global Min Cut Value Function

- Define $Z(\mu)$ to be the cost of a global min cut at μ.
- Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.

The Global Min Cut Value Function

- Define $Z(\mu)$ to be the cost of a global min cut at μ.
- Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.
- AMMQ ' 15 showed that the number of facets of $Z(\mu)$ is $O\left(m^{d} n^{2} \log ^{d-1} n\right)$ and they can be computed in $O\left(m^{d\left\lfloor\frac{d-1}{2}\right\rfloor} n^{2\left\lfloor\frac{d-1}{2}\right\rfloor} \log ^{(d-1)\left\lfloor\frac{d-1}{2}\right\rfloor+O(1)} n\right)$ deterministic time, and $O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$ when $d=1$.

The Global Min Cut Value Function

- Define $Z(\mu)$ to be the cost of a global min cut at μ.
- Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.
- AMMQ ' 15 showed that the number of facets of $Z(\mu)$ is $O\left(m^{d} n^{2} \log ^{d-1} n\right)$ and they can be computed in $O\left(m^{d\left\lfloor\frac{d-1}{2}\right\rfloor} n^{2\left\lfloor\frac{d-1}{2}\right\rfloor} \log ^{(d-1)\left\lfloor\frac{d-1}{2}\right\rfloor+O(1)} n\right)$ deterministic time, and $O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$ when $d=1$.
- When all $c^{i}(e) \geq 0$, Karger ' 16 improved this to show that the number of facets of $Z(\mu)$ is $O\left(n^{d+2}\right)$, and they can be computed in $O\left(n^{2 d+2} \log n\right)$ randomized time.

The Global Min Cut Value Function

- Define $Z(\mu)$ to be the cost of a global min cut at μ.
- Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.
- AMMQ ' 15 showed that the number of facets of $Z(\mu)$ is $O\left(m^{d} n^{2} \log ^{d-1} n\right)$ and they can be computed in $O\left(m^{d\left\lfloor\frac{d-1}{2}\right\rfloor} n^{2\left\lfloor\frac{d-1}{2}\right\rfloor} \log ^{(d-1)\left\lfloor\frac{d-1}{2}\right\rfloor+O(1)} n\right)$ deterministic time, and $O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$ when $d=1$.
- When all $c^{i}(e) \geq 0$, Karger ' 16 improved this to show that the number of facets of $Z(\mu)$ is $O\left(n^{d+2}\right)$, and they can be computed in $O\left(n^{2 d+2} \log n\right)$ randomized time.
- Computing all of $Z(\mu)$ is good, but is maybe too much?

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max _{\mu} Z(\mu)$.

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max _{\mu} Z(\mu)$.
- So define $P_{\max }$ to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max _{\mu} Z(\mu)$.
- So define $P_{\max }$ to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^{0} \in \mathbb{R}^{d}$ and direction $\nu \in \mathbb{R}^{d}$, find the next breakpoint of $Z(\mu)$ along the ray starting at μ^{0} in direction ν.

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max _{\mu} Z(\mu)$.
- So define $P_{\max }$ to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^{0} \in \mathbb{R}^{d}$ and direction $\nu \in \mathbb{R}^{d}$, find the next breakpoint of $Z(\mu)$ along the ray starting at μ^{0} in direction ν.
- P_{NB} is a sort of ray-shooting problem.

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max _{\mu} Z(\mu)$.
- So define $P_{\max }$ to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^{0} \in \mathbb{R}^{d}$ and direction $\nu \in \mathbb{R}^{d}$, find the next breakpoint of $Z(\mu)$ along the ray starting at μ^{0} in direction ν.
- P_{NB} is a sort of ray-shooting problem.
- P_{NB} is effectively a 1-parameter problem, to find the next breakpoint w.r.t. costs $\bar{c}^{0}+\lambda \bar{c}^{1}(e)$ with single parameter λ.

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max _{\mu} Z(\mu)$.
- So define $P_{\max }$ to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^{0} \in \mathbb{R}^{d}$ and direction $\nu \in \mathbb{R}^{d}$, find the next breakpoint of $Z(\mu)$ along the ray starting at μ^{0} in direction ν.
- P_{NB} is a sort of ray-shooting problem.
- P_{NB} is effectively a 1-parameter problem, to find the next breakpoint w.r.t. costs $\bar{c}^{0}+\lambda \bar{c}^{1}(e)$ with single parameter λ.
- We could solve $P_{\max }$ and $P_{\text {NB }}$ by computing $Z(\mu)$, but we want to find something faster.

Defining the Parametric Problems

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max _{\mu} Z(\mu)$.
- So define $P_{\max }$ to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^{0} \in \mathbb{R}^{d}$ and direction $\nu \in \mathbb{R}^{d}$, find the next breakpoint of $Z(\mu)$ along the ray starting at μ^{0} in direction ν.
- P_{NB} is a sort of ray-shooting problem.
- P_{NB} is effectively a 1-parameter problem, to find the next breakpoint w.r.t. costs $\bar{c}^{0}+\lambda \bar{c}^{1}(e)$ with single parameter λ.
- We could solve $P_{\max }$ and $P_{\text {NB }}$ by computing $Z(\mu)$, but we want to find something faster.
- We also want to see if one is harder than the other.

Megiddo's Parametric Framework

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.

Megiddo's Parametric Framework

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
- Here "linear" means that every comparison is between two affine functions of μ and the data.

Megiddo's Parametric Framework

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
- Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O\left(n^{2 d+3} \log ^{d} n\right)$ deterministic algorithm for $P_{\max }$, and $O\left(n^{5} \log d\right)$ for P_{NB}.

Megiddo's Parametric Framework

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
- Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O\left(n^{2 d+3} \log ^{d} n\right)$ deterministic algorithm for $P_{\max }$, and $O\left(n^{5} \log d\right)$ for P_{NB}.
- Tokuyama saw that KS is linear, so Megiddo+KS gives an $O\left(n^{2} \log ^{4 d+1} n\right)$ randomized algorithm for $P_{\text {max }}$, and $O\left(n^{2} \log ^{5} n\right)$ for P_{NB}.

Megiddo's Parametric Framework

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
- Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O\left(n^{2 d+3} \log ^{d} n\right)$ deterministic algorithm for $P_{\max }$, and $O\left(n^{5} \log d\right)$ for P_{NB}.
- Tokuyama saw that KS is linear, so Megiddo+KS gives an $O\left(n^{2} \log ^{4 d+1} n\right)$ randomized algorithm for $P_{\text {max }}$, and $O\left(n^{2} \log ^{5} n\right)$ for P_{NB}.
- These are a lot faster than the
$O\left(m^{d\left\lfloor\frac{d-1}{2}\right\rfloor} n^{2\left\lfloor\frac{d-1}{2}\right\rfloor} \log ^{(d-1)\left\lfloor\frac{d-1}{2}\right\rfloor+O(1)} n\right)$ deterministic and $O\left(n^{2 d+2} \log n\right)$ randomized algorithms for computing all of $Z(\mu)$.

Megiddo's Parametric Framework

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
- Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O\left(n^{2 d+3} \log ^{d} n\right)$ deterministic algorithm for $P_{\max }$, and $O\left(n^{5} \log d\right)$ for P_{NB}.
- Tokuyama saw that KS is linear, so Megiddo+KS gives an $O\left(n^{2} \log ^{4 d+1} n\right)$ randomized algorithm for $P_{\max }$, and $O\left(n^{2} \log ^{5} n\right)$ for P_{NB}.
- These are a lot faster than the
$O\left(m^{d\left\lfloor\left\lfloor\frac{d-1}{2}\right\rfloor\right.} n^{2\left\lfloor\frac{d-1}{2}\right\rfloor} \log (d-1)\left\lfloor\frac{d-1}{2}\right\rfloor+O(1) n\right)$ deterministic and $O\left(n^{2 d+2} \log n\right)$ randomized algorithms for computing all of $Z(\mu)$.
- However, we'd still like to do better than generic Megiddo.

Summary of Where We Are

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	$\mathrm{K} \tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	$\mathrm{NI} O\left(n^{4}\right)$	$\mathrm{KS} \tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	$\mathrm{SW} O\left(n^{5} \log n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	$\mathrm{SW} O\left(n^{2 d+3} \log ^{d} n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	(big) AMMQ	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$

Summary of running times so far.

Summary of Where We Are

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	$\mathrm{K} \tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	$\mathrm{NI} O\left(n^{4}\right)$	$\mathrm{KS} \tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	$\mathrm{SW} O\left(n^{5} \log n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	$(\mathrm{big}) \mathrm{AMMQ}$	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$

Big gap between non-parametric and computing all of $Z(\mu)$ running times, even for $d=1$

Summary of Where We Are

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	$\mathrm{K} \tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	NI $O\left(n^{4}\right)$	$\mathrm{KS} \tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	SW $O\left(n^{5} \log n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'I d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'I d	$(\mathrm{big}) \mathrm{AMMQ}$	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$

Much smaller gap between non-parametric and Megiddo running times (compare to $Z(\mu)$ times in blue); for $d=1, \mathrm{KS}$ gap is just logs. Note that using Megiddo to solve P_{NB} is just general Megiddo with d set to 1 .

Summary of Where We Are

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	K $\tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	NI $O\left(n^{4}\right)$	KS $\tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	SW $O\left(n^{5} \log n\right)$	KS $O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	KS $O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	(big) AMMQ	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$
$P_{\text {NB }}(\sim d=1)$???	$? ? ?$
$P_{\max }(\sim$ gen'l $d)$???	???

Hoped-for results in this paper in red. Compare to non-param lower bounds in green, various upper bounds in blue.

Reducing P_{NB} to $P_{\max }$ with $d=1$

- P_{NB} wants us to compute λ_{NB} :

Reducing P_{NB} to $P_{\max }$ with $d=1$

- P_{NB} wants us to compute λ_{NB} :

- If we rotate until the local slope at μ^{0} is just short of horizontal, then finding $\lambda_{\text {NB }}$ becomes equivalent to computing μ^{*} in this 1-dimensional problem:

Reducing P_{NB} to $P_{\max }$ with $d=1$

- P_{NB} wants us to compute λ_{NB} :

- If we rotate until the local slope at μ^{0} is just short of horizontal, then finding $\lambda_{\text {NB }}$ becomes equivalent to computing μ^{*} in this 1-dimensional problem:

- Thus $P_{\text {NB }}$ cannot be any harder than $P_{\max }$ for $d=1$, though it could be easier.

Outline

(1) Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
(2) Faster Algorithms for P_{NB}
- Deterministic
- Randomized
(3) Faster Algorithms for $P_{\max }$
- Deterministic
- Randomized

4 Conclusion

Using Stoer-Wagner to Solve P_{NB}

- SW finds a node ordering v_{1}, \ldots, v_{n} such that $\left(v_{n-1}, v_{n}\right)$ is a pendent pair, i.e., either $\delta\left(v_{n}\right)$ is a global min cut, or we can contract edge $\left\{v_{n-1}, v_{n}\right\}$ without losing any optimal cuts.

Using Stoer-Wagner to Solve P_{NB}

- SW finds a node ordering v_{1}, \ldots, v_{n} such that $\left(v_{n-1}, v_{n}\right)$ is a pendent pair, i.e., either $\delta\left(v_{n}\right)$ is a global min cut, or we can contract edge $\left\{v_{n-1}, v_{n}\right\}$ without losing any optimal cuts.
- Let G^{r} be contracted graph at iteration r. Define $Z^{r}(\lambda)$ to be min of $\bar{c}(\delta(v))$ for $v \in V^{r}$ and compute λ^{r} like:

λ

Using Stoer-Wagner to Solve P_{NB}

- SW finds a node ordering v_{1}, \ldots, v_{n} such that $\left(v_{n-1}, v_{n}\right)$ is a pendent pair, i.e., either $\delta\left(v_{n}\right)$ is a global min cut, or we can contract edge $\left\{v_{n-1}, v_{n}\right\}$ without losing any optimal cuts.
- Let G^{r} be contracted graph at iteration r. Define $Z^{r}(\lambda)$ to be min of $\bar{c}(\delta(v))$ for $v \in V^{r}$ and compute λ^{r} like:

- Update an UB $\bar{\lambda}$ on λ_{NB} by λ_{r}, and do SW to find and contract a pendent pair w.r.t. $\bar{\lambda}$; since $Z(\lambda)$ is concave, λ^{r} upper bounds λ_{NB}.

Using Stoer-Wagner to Solve P_{NB}

- SW finds a node ordering v_{1}, \ldots, v_{n} such that $\left(v_{n-1}, v_{n}\right)$ is a pendent pair, i.e., either $\delta\left(v_{n}\right)$ is a global min cut, or we can contract edge $\left\{v_{n-1}, v_{n}\right\}$ without losing any optimal cuts.
- Let G^{r} be contracted graph at iteration r. Define $Z^{r}(\lambda)$ to be min of $\bar{c}(\delta(v))$ for $v \in V^{r}$ and compute λ^{r} like:

- Update an UB $\bar{\lambda}$ on $\lambda_{\text {NB }}$ by λ_{r}, and do SW to find and contract a pendent pair w.r.t. $\bar{\lambda}$; since $Z(\lambda)$ is concave, λ^{r} upper bounds λ_{NB}.
- This is correct, and runs in same $O\left(m n+n^{2} \log n\right)$ time as SW.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	K $\tilde{O}(m)\left(\right.$ KS $\left.\tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	NI $O\left(n^{4}\right)$	KS $\tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	SW $O\left(n^{5} \log n\right)$	KS $O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	KS $O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	(big) AMMQ	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$
$P_{\text {NB }}(\sim d=1)$	SW $O\left(m n+n^{2} \log n\right)$	$? ? ?$
$P_{\max }(\sim$ gen'l $d)$???	???

Here we saved a lot w.r.t. Megiddo, and matched the non-parametric lower bound.

Using Karger-Stein to Solve P_{NB}

- KS selects an edge to contract randomly, proportional to its cost.

Using Karger-Stein to Solve P_{NB}

- KS selects an edge to contract randomly, proportional to its cost.
- After contracting to 2 nodes, KS show that the remaining induced cut is a min cut with probability at least $1 /\binom{n}{2}$, and this can be put into a framework that will identify a min cut with high probability.

Using Karger-Stein to Solve P_{NB}

- KS selects an edge to contract randomly, proportional to its cost.
- After contracting to 2 nodes, KS show that the remaining induced cut is a min cut with probability at least $1 /\binom{n}{2}$, and this can be put into a framework that will identify a min cut with high probability.
- Compute λ^{r} like this:

λ

Using Karger-Stein to Solve P_{NB}

- KS selects an edge to contract randomly, proportional to its cost.
- After contracting to 2 nodes, KS show that the remaining induced cut is a min cut with probability at least $1 /\binom{n}{2}$, and this can be put into a framework that will identify a min cut with high probability.
- Compute λ^{r} like this:

- Choose e to contract with probability proportional to $c_{\lambda^{r}}(e)$; since $Z(\lambda)$ is concave, λ^{r} upper bounds λ_{NB}.

Using Karger-Stein to Solve P_{NB}

- Compute λ_{NB} as the intersection of the final cut line and $L(\lambda)$, and repeat in the KS framework.

Using Karger-Stein to Solve P_{NB}

- Compute λ_{NB} as the intersection of the final cut line and $L(\lambda)$, and repeat in the KS framework.
- As in KS, when λ_{NB} exists, the probability that a global min cut survives all the contractions is at least $1 /\binom{n}{2}$; if there is no breakpoint in direction ν, then the algorithm recognizes this with probability one.

Using Karger-Stein to Solve P_{NB}

- Compute λ_{NB} as the intersection of the final cut line and $L(\lambda)$, and repeat in the KS framework.
- As in KS, when λ_{NB} exists, the probability that a global min cut survives all the contractions is at least $1 /\binom{n}{2}$; if there is no breakpoint in direction ν, then the algorithm recognizes this with probability one.
- Thus using the KS framework is correct, and runs in same $\tilde{O}\left(n^{2}\right)$ time as KS .

Using Karger-Stein to Solve P_{NB}

- Compute λ_{NB} as the intersection of the final cut line and $L(\lambda)$, and repeat in the KS framework.
- As in KS, when λ_{NB} exists, the probability that a global min cut survives all the contractions is at least $1 /\binom{n}{2}$; if there is no breakpoint in direction ν, then the algorithm recognizes this with probability one.
- Thus using the KS framework is correct, and runs in same $\tilde{O}\left(n^{2}\right)$ time as KS.
- There is a minor technical point about how to implement the random edge contractions: Here the parametric costs interfere with the KS matrix update technique, but we can replace the static matrices with separate matrices for \bar{c}^{0} and \bar{c}^{1} to achieve the same effect.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	K $\tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	NI $O\left(n^{4}\right)$	KS $\tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	SW $O\left(n^{5} \log n\right)$	KS $O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	KS $O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	(big)AMMQ	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$
$P_{\text {NB }}(\sim d=1)$	SW $O\left(m n+n^{2} \log n\right)$	KS $O\left(n^{2} \log ^{3} n\right)$
$P_{\max }(\sim$ gen'l $d)$???	???

Here we saved only log factors w.r.t. Megiddo, but that's all the gap we had to work with; our ideas don't seem to extend to Karger's improvement.

Outline

(1) Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
(2) Faster Algorithms for P_{NB}
- Deterministic
- Randomized
(3) Faster Algorithms for $P_{\max }$
- Deterministic
- Randomized
(4) Conclusion

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and $A M M Q$ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and $A M M Q$ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^{*} to a region small enough that the α-approximate min cuts include all cuts defining μ^{*}.

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^{*} to a region small enough that the α-approximate min cuts include all cuts defining μ^{*}.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^{*} to a region small enough that the α-approximate min cuts include all cuts defining μ^{*}.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^{*} to a region small enough that the α-approximate min cuts include all cuts defining μ^{*}.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
- a set \mathcal{H} of hyperplanes (think the μ s.t. $c_{\mu}(e)=c_{\mu}\left(e^{\prime}\right)$);

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^{*} to a region small enough that the α-approximate min cuts include all cuts defining μ^{*}.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
- a set \mathcal{H} of hyperplanes (think the μ s.t. $c_{\mu}(e)=c_{\mu}\left(e^{\prime}\right)$);
- a polytope P (think the region M where all $c_{\mu}(e) \geq 0$); and

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^{*} to a region small enough that the α-approximate min cuts include all cuts defining μ^{*}.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
- a set \mathcal{H} of hyperplanes (think the μ s.t. $c_{\mu}(e)=c_{\mu}\left(e^{\prime}\right)$);
- a polytope P (think the region M where all $c_{\mu}(e) \geq 0$); and
- an unknown target (think μ^{*}).

Solving $P_{\text {max }}$: Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^{*}=\max _{\mu} Z(\mu)$:
(1) Approximate duality between global MC and max spanning tree.
(2) Ability to compute all $O\left(n^{2}\right) \alpha$-approximate solutions for $\alpha<\frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^{*} to a region small enough that the α-approximate min cuts include all cuts defining μ^{*}.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
- a set \mathcal{H} of hyperplanes (think the μ s.t. $c_{\mu}(e)=c_{\mu}\left(e^{\prime}\right)$);
- a polytope P (think the region M where all $c_{\mu}(e) \geq 0$); and
- an unknown target (think μ^{*}).
- Then the task is to find a simplex in a cell of $\mathcal{H} \cap P$ containing μ^{*}.

Weak Duality between GMC and Max Spanning Tree

- Define \mathcal{H}_{1} as the set of $O\left(m^{2}\right)$ hyperplanes where $c_{\mu}(e)=c_{\mu}\left(e^{\prime}\right)$ and run PLA for $\left(\mathcal{H}_{1}, M, \mu^{*}\right)$ to get simplex S_{1}.

Weak Duality between GMC and Max Spanning Tree

- Define \mathcal{H}_{1} as the set of $O\left(m^{2}\right)$ hyperplanes where $c_{\mu}(e)=c_{\mu}\left(e^{\prime}\right)$ and run PLA for $\left(\mathcal{H}_{1}, M, \mu^{*}\right)$ to get simplex S_{1}.

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.

Weak Duality between GMC and Max Spanning Tree

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.

Weak Duality between GMC and Max Spanning Tree

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.
- Thus we can compute a max spanning tree T in S_{1}.

Weak Duality between GMC and Max Spanning Tree

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.
- Thus we can compute a max spanning tree T in S_{1}.
- Let \bar{e} be a min-cost edge in T.

Weak Duality between GMC and Max Spanning Tree

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.
- Thus we can compute a max spanning tree T in S_{1}.
- Let \bar{e} be a min-cost edge in T.
- Since every cut hits T we get $Z\left(\mu^{*}\right) \geq c_{\mu}(\bar{e})$ for all $\mu \in S_{1}$.

Weak Duality between GMC and Max Spanning Tree

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.
- Thus we can compute a max spanning tree T in S_{1}.
- Let \bar{e} be a min-cost edge in T.
- Since every cut hits T we get $Z\left(\mu^{*}\right) \geq c_{\mu}(\bar{e})$ for all $\mu \in S_{1}$.
- Let \bar{C} be the fundamental cut in $T-\bar{e}$; since T is a MST we have $Z\left(\mu^{*}\right) \leq c_{\mu^{*}}(\bar{C}) \leq m c_{\mu^{*}}(\bar{e})$.

Weak Duality between GMC and Max Spanning Tree

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.
- Thus we can compute a max spanning tree T in S_{1}.
- Let \bar{e} be a min-cost edge in T.
- Since every cut hits T we get $Z\left(\mu^{*}\right) \geq c_{\mu}(\bar{e})$ for all $\mu \in S_{1}$.
- Let \bar{C} be the fundamental cut in $T-\bar{e}$; since T is a MST we have $Z\left(\mu^{*}\right) \leq c_{\mu^{*}}(\bar{C}) \leq m c_{\mu^{*}}(\bar{e})$.
- Thus $c_{\mu^{*}}(\bar{e}) \leq Z\left(\mu^{*}\right) \leq m c_{\mu^{*}}(\bar{e})$, and so $c_{\mu^{*}}(\bar{e})$ is a fairly tight estimate of $Z\left(\mu^{*}\right)$.

Weak Duality between GMC and Max Spanning Tree

- By the definition of \mathcal{H}_{1} and PLA, we know that $\mu^{*} \in S_{1}$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_{1}$.
- Thus we can compute a max spanning tree T in S_{1}.
- Let \bar{e} be a min-cost edge in T.
- Since every cut hits T we get $Z\left(\mu^{*}\right) \geq c_{\mu}(\bar{e})$ for all $\mu \in S_{1}$.
- Let \bar{C} be the fundamental cut in $T-\bar{e}$; since T is a MST we have $Z\left(\mu^{*}\right) \leq c_{\mu^{*}}(\bar{C}) \leq m c_{\mu^{*}}(\bar{e})$.
- Thus $c_{\mu^{*}}(\bar{e}) \leq Z\left(\mu^{*}\right) \leq m c_{\mu^{*}}(\bar{e})$, and so $c_{\mu^{*}}(\bar{e})$ is a fairly tight estimate of $Z\left(\mu^{*}\right)$.
- Now we need to use PLA a second time to further narrow in on μ^{*} so we can get the cuts inducing it via α-approximate cuts.

Narrowing in on α-Approximate Cuts

- Choose

Narrowing in on α-Approximate Cuts

- Choose
- $\bar{\alpha}$ s.t. $1<\bar{\alpha}<\sqrt{\frac{4}{3}}\left(\right.$ note: $0<\frac{\bar{\alpha}^{2}-1}{m}<1$);

Narrowing in on α-Approximate Cuts

- Choose
- $\bar{\alpha}$ s.t. $1<\bar{\alpha}<\sqrt{\frac{4}{3}}\left(\right.$ note: $0<\frac{\bar{\alpha}^{2}-1}{m}<1$);
- $p=1+\left\lceil\log \frac{m^{2}}{\bar{\alpha}^{2}-1} / \log \bar{\alpha}^{2}\right\rceil$ so that $\frac{\bar{\alpha}^{2}-1}{m} \bar{\alpha}^{2(p-1)}>m$ (note: $p=O(\log n))$;

Narrowing in on α-Approximate Cuts

- Choose
- $\bar{\alpha}$ s.t. $1<\bar{\alpha}<\sqrt{\frac{4}{3}}$ (note: $0<\frac{\bar{\alpha}^{2}-1}{m}<1$);
- $p=1+\left\lceil\log \frac{m^{2}}{\bar{\alpha}^{2}-1} / \log \bar{\alpha}^{2}\right\rceil$ so that $\frac{\bar{\alpha}^{2}-1}{m} \bar{\alpha}^{2(p-1)}>m$ (note:
$p=O(\log n))$;
- $g_{i}(\bar{e}, \mu)=\frac{\bar{\alpha}^{2}-1}{m} \bar{\alpha}^{2(i-1)} c_{\mu}(\bar{e})$ for $i=1, \ldots, p, g_{0}(\bar{e}, \mu)=0$ (note:
$g_{1}(\bar{e}, \mu)<c_{\mu}(\bar{e})$ and $\left.g_{p}(\bar{e}, \mu)>m c_{\mu}(\bar{e})\right)$.

Narrowing in on α-Approximate Cuts

- Choose
- $\bar{\alpha}$ s.t. $1<\bar{\alpha}<\sqrt{\frac{4}{3}}\left(\right.$ note: $0<\frac{\bar{\alpha}^{2}-1}{m}<1$);
- $p=1+\left\lceil\log \frac{m^{2}}{\bar{\alpha}^{2}-1} / \log \bar{\alpha}^{2}\right\rceil$ so that $\frac{\bar{\alpha}^{2}-1}{m} \bar{\alpha}^{2(p-1)}>m$ (note: $p=O(\log n))$;
- $g_{i}(\bar{e}, \mu)=\frac{\bar{\alpha}^{2}-1}{m} \bar{\alpha}^{2(i-1)} c_{\mu}(\bar{e})$ for $i=1, \ldots, p, g_{0}(\bar{e}, \mu)=0$ (note: $g_{1}(\bar{e}, \mu)<c_{\mu}(\bar{e})$ and $\left.g_{p}(\bar{e}, \mu)>m c_{\mu}(\bar{e})\right)$.
- Define \mathcal{H}_{2} as the $O(m \log n)$ hyperplanes where $c_{\mu}(e)=g_{i}(\bar{e}, \mu), \forall$ $e \in E, i=1, \ldots, p$, and set $S_{2}=\operatorname{PLA}\left(\mathcal{H}_{2}, S_{1}, \mu^{*}\right)$:

Computing Min Cuts and μ^{*}

- Due to how we defined the $g_{i}(\bar{e}, \mu)$, we know that any cut defining μ^{*} must be an $\bar{\alpha}$-approximate cut for any $\mu \in S_{2}$.

Computing Min Cuts and μ^{*}

- Due to how we defined the $g_{i}(\bar{e}, \mu)$, we know that any cut defining μ^{*} must be an $\bar{\alpha}$-approximate cut for any $\mu \in S_{2}$.
- Thus we could compute the $O\left(n^{2}\right) \bar{\alpha}$-approximate cuts in \mathcal{C} and compute their lower envelope to get μ^{*}, but this would take $\Omega\left(n^{2 d}\right)$ time, too slow.

Computing Min Cuts and μ^{*}

- Due to how we defined the $g_{i}(\bar{e}, \mu)$, we know that any cut defining μ^{*} must be an $\bar{\alpha}$-approximate cut for any $\mu \in S_{2}$.
- Thus we could compute the $O\left(n^{2}\right) \bar{\alpha}$-approximate cuts in \mathcal{C} and compute their lower envelope to get μ^{*}, but this would take $\Omega\left(n^{2 d}\right)$ time, too slow.
- Instead, define \mathcal{H}_{3} as the $O\left(n^{4}\right)$ hyperplanes where $c_{\mu}(C)=c_{\mu}\left(C^{\prime}\right)$ for $C, C^{\prime} \in \mathcal{C}$ and set $S_{3}=\operatorname{PLA}\left(\mathcal{H}_{3}, S_{2}, \mu^{*}\right)$.

Computing Min Cuts and μ^{*}

- Since μ^{*} is the intersection of d cuts in \mathcal{C}, it must be a vertex of S_{3}, and so this last call of PLA finds μ^{*} more efficiently.

Computing Min Cuts and μ^{*}

- Since μ^{*} is the intersection of d cuts in \mathcal{C}, it must be a vertex of S_{3}, and so this last call of PLA finds μ^{*} more efficiently.
- PLA is a recursive procedure; when we solve the recursion, we get the claimed $O\left(n^{4} \log ^{d-1} n\right)$ running time.

Computing Min Cuts and μ^{*}

- Since μ^{*} is the intersection of d cuts in \mathcal{C}, it must be a vertex of S_{3}, and so this last call of PLA finds μ^{*} more efficiently.
- PLA is a recursive procedure; when we solve the recursion, we get the claimed $O\left(n^{4} \log ^{d-1} n\right)$ running time.
- I skipped a technicality that arises when $c_{\mu}(\bar{e})=0$ for some $\mu \in S_{1}$.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	K $\tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	NI $O\left(n^{4}\right)$	KS $\tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	SW $O\left(n^{5} \log n\right)$	KS $O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	KS $O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	(big) AMMQ	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$
$P_{\text {NB }}(\sim d=1)$	SW $O\left(m n+n^{2} \log n\right)$	KS $O\left(n^{2} \log ^{3} n\right)$
$P_{\max }(\sim$ gen'l $d)$	$O\left(n^{4} \log ^{d-1} n\right)$???

We saved a lot compared to Megiddo, but even for $d=1$ still much slower than our deterministic $P_{\text {NB }}$ algorithm, suggesting that $P_{\max }$ for $d=1$ is strictly harder than P_{NB}.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	$\mathrm{K} \tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	$\mathrm{NI} O\left(n^{4}\right)$	$\mathrm{KS} \tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	SW $O\left(n^{5} \log n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	KS $O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	$(\mathrm{big}) \mathrm{AMMQ}$	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$
$P_{\mathrm{NB}}(\sim d=1)$	$\mathrm{SW} O\left(m n+n^{2} \log n\right)$	$\mathrm{KS} O\left(n^{2} \log ^{3} n\right)$
$P_{\max }(\sim$ gen'l $d)$	$O\left(n^{4} \log ^{d-1} n\right)$???

Notice that running time for our $P_{\max }$ algorithm is just log factors more than for computing all $\bar{\alpha}$-approximate min cuts.

Solving $P_{\max }$ Randomly

- So far we don't know how to do this...

Final Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O\left(m n+n^{2} \log n\right)$	K $\tilde{O}(m)\left(\mathrm{KS} \tilde{O}\left(n^{2}\right)\right)$
All $\alpha<\frac{4}{3}$-approx	NI $O\left(n^{4}\right)$	KS $\tilde{O}\left(n^{2}\right)$
Megiddo $d=1$	SW $O\left(n^{5} \log n\right)$	KS $O\left(n^{2} \log ^{5} n\right)$
Megiddo gen'l d	SW $O\left(n^{2 d+3} \log ^{d} n\right)$	KS $O\left(n^{2} \log ^{4 d+1} n\right)$
$Z(\mu) d=1$	$O\left(m n^{4} \log n+n^{5} \log ^{2} n\right)$	$O\left(n^{4} \log n\right) \mathrm{K}$
$Z(\mu)$ gen'l d	(big) AMMQ	$O\left(n^{2 d+2} \log n\right) \mathrm{K}$
$P_{\text {NB }}(\sim d=1)$	SW $O\left(m n+n^{2} \log n\right)$	KS $O\left(n^{2} \log ^{3} n\right)$
$P_{\text {max }}(\sim$ gen'l $d)$	$O\left(n^{4} \log ^{d-1} n\right)$???

New results in this paper in red. Compare to non-param lower bounds in green, various upper bounds in blue.

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\text {NB }}$ and $P_{\max }$ for $d=1$ have the same complexity.

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\text {NB }}$ and $P_{\text {max }}$ for $d=1$ have the same complexity.
- Our algorithms suggest that P_{NB} is easier than $P_{\max }$ for $d=1$.

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that P_{NB} and $P_{\max }$ for $d=1$ have the same complexity.
- Our algorithms suggest that P_{NB} is easier than $P_{\max }$ for $d=1$.
- We propose specialized algorithms for solving $P_{\text {NB }}$ and $P_{\max }$ that are significantly faster than Megiddo.

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that P_{NB} and $P_{\max }$ for $d=1$ have the same complexity.
- Our algorithms suggest that P_{NB} is easier than $P_{\max }$ for $d=1$.
- We propose specialized algorithms for solving P_{NB} and $P_{\max }$ that are significantly faster than Megiddo.
- The P_{NB} algorithms are essentially as fast as the non-parametric algorithms.

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that P_{NB} and $P_{\max }$ for $d=1$ have the same complexity.
- Our algorithms suggest that P_{NB} is easier than $P_{\max }$ for $d=1$.
- We propose specialized algorithms for solving $P_{\text {NB }}$ and $P_{\max }$ that are significantly faster than Megiddo.
- The P_{NB} algorithms are essentially as fast as the non-parametric algorithms.
- The deterministic $P_{\max }$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that P_{NB} and $P_{\max }$ for $d=1$ have the same complexity.
- Our algorithms suggest that P_{NB} is easier than $P_{\max }$ for $d=1$.
- We propose specialized algorithms for solving $P_{\text {NB }}$ and $P_{\max }$ that are significantly faster than Megiddo.
- The P_{NB} algorithms are essentially as fast as the non-parametric algorithms.
- The deterministic $P_{\max }$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.
- Open questions:

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that P_{NB} and $P_{\max }$ for $d=1$ have the same complexity.
- Our algorithms suggest that P_{NB} is easier than $P_{\max }$ for $d=1$.
- We propose specialized algorithms for solving $P_{\text {NB }}$ and $P_{\max }$ that are significantly faster than Megiddo.
- The P_{NB} algorithms are essentially as fast as the non-parametric algorithms.
- The deterministic $P_{\max }$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.
- Open questions:
- Can we use Karger's ideas to further speed up P_{NB} to $\tilde{O}(m)$?

Conclusion

- Solving P_{NB} and $P_{\max }$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that P_{NB} and $P_{\max }$ for $d=1$ have the same complexity.
- Our algorithms suggest that P_{NB} is easier than $P_{\max }$ for $d=1$.
- We propose specialized algorithms for solving P_{NB} and $P_{\max }$ that are significantly faster than Megiddo.
- The P_{NB} algorithms are essentially as fast as the non-parametric algorithms.
- The deterministic $P_{\max }$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.
- Open questions:
- Can we use Karger's ideas to further speed up P_{NB} to $\tilde{O}(m)$?
- There should be a faster, specialized, randomized algorithm for $P_{\text {max }}$.

Any questions?

Questions?

Comments?

