Strongly Polynomial Algorithms for Some Parametric Global Minimum Cut Problems

Hassène Aissi / S. Thomas McCormick / Maurice Queyranne

Paris-Dauphine / Sauder School of Business, UBC $\times\,2$

S. Thomas McCormick

Sauder School of Business University of British Columbia

Aissi-Mc-Quey (Dauphine-UBC)

Param Global Min Cut

1 Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems

Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems

2 Faster Algorithms for $P_{\rm NB}$

- Deterministic
- Randomized

Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems

2 Faster Algorithms for $P_{\rm NB}$

- Deterministic
- Randomized
- 3 Faster Algorithms for P_{\max}
 - Deterministic
 - Randomized

🚺 Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems

2 Faster Algorithms for $P_{\rm NB}$

- Deterministic
- Randomized
- 3 Faster Algorithms for P_{\max}
 - Deterministic
 - Randomized

Conclusion

Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
-) Faster Algorithms for $P_{
 m NE}$
 - Deterministic
 - Randomized
- 3 Faster Algorithms for P_{\max}
 - Deterministic
 - Randomized

Conclusion

• We are given an undirected graph G = (V, E) with non-negative distances (costs) $c_e \in \mathbb{R}^E$.

- We are given an undirected graph G = (V, E) with non-negative distances (costs) $c_e \in \mathbb{R}^E$.
 - Set m = |E|, n = |V| as usual.

• We are given an undirected graph G = (V, E) with non-negative distances (costs) $c_e \in \mathbb{R}^E$.

• Set m = |E|, n = |V| as usual.

• A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C) = \{e \in E \mid \text{exactly one end of } e \text{ is in } C\}.$

• We are given an undirected graph G = (V, E) with non-negative distances (costs) $c_e \in \mathbb{R}^E$.

- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C) = \{e \in E \mid \text{exactly one end of } e \text{ is in } C\}.$
- Then a global min cut C^* satisfies $c(\delta(C^*)) = \min_{\text{cuts } C} c(\delta(C))$.

• We are given an undirected graph G = (V, E) with non-negative distances (costs) $c_e \in \mathbb{R}^E$.

- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C) = \{e \in E \mid \text{exactly one end of } e \text{ is in } C\}.$
- Then a global min cut C^* satisfies $c(\delta(C^*)) = \min_{\text{cuts } C} c(\delta(C))$.
- Can compute a global min cut in $O(mn + n^2 \log n)$ deterministic time (Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or $\tilde{O}(n^2)$ randomized time (Karger-Stein = KS), or $\tilde{O}(m)$ randomized time (Karger = K).

• We are given an undirected graph G = (V, E) with non-negative distances (costs) $c_e \in \mathbb{R}^E$.

- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C) = \{e \in E \mid \text{exactly one end of } e \text{ is in } C\}.$
- Then a global min cut C^* satisfies $c(\delta(C^*)) = \min_{\text{cuts } C} c(\delta(C))$.
- Can compute a global min cut in $O(mn + n^2 \log n)$ deterministic time (Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or $\tilde{O}(n^2)$ randomized time (Karger-Stein = KS), or $\tilde{O}(m)$ randomized time (Karger = K).
- There are only $O(n^{\lfloor 2\alpha \rfloor}) \alpha$ -approximate min cuts; when $\alpha < \frac{4}{3}$ they can all be computed in $O(n^4)$ deterministic time (NI), or $\tilde{O}(n^{\lfloor 2\alpha \rfloor}) = \tilde{O}(n^2)$ randomized time (KS).

• We are given an undirected graph G = (V, E) with non-negative distances (costs) $c_e \in \mathbb{R}^E$.

- A (global) cut is induced by node subset $\emptyset \subset C \subset V$, and includes edges $\delta(C) = \{e \in E \mid \text{exactly one end of } e \text{ is in } C\}.$
- Then a global min cut C^* satisfies $c(\delta(C^*)) = \min_{\text{cuts } C} c(\delta(C))$.
- Can compute a global min cut in $O(mn + n^2 \log n)$ deterministic time (Stoer-Wagner = SW, Nagamochi-Ibaraki = NI), or $\tilde{O}(n^2)$ randomized time (Karger-Stein = KS), or $\tilde{O}(m)$ randomized time (Karger = K).
- There are only $O(n^{\lfloor 2\alpha \rfloor}) \alpha$ -approximate min cuts; when $\alpha < \frac{4}{3}$ they can all be computed in $O(n^4)$ deterministic time (NI), or $\tilde{O}(n^{\lfloor 2\alpha \rfloor}) = \tilde{O}(n^2)$ randomized time (KS).
- A vitally important subproblem in separating TSP facets.

Parametric Global Min Cut

• Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$
- Thus we have d + 1 edge cost functions c^0, \ldots, c^d , and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e) = c^0(e) + \sum_{i=1}^d \mu_i c^i(e)$.

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$
- Thus we have d + 1 edge cost functions c^0, \ldots, c^d , and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e) = c^0(e) + \sum_{i=1}^d \mu_i c^i(e)$.
 - $\bullet\,$ We do $\mathit{not}\ \mathrm{assume}\ \mathrm{that}\ \mathrm{all}\ c^i(e)$ are non-negative.

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$
- Thus we have d + 1 edge cost functions c^0, \ldots, c^d , and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e) = c^0(e) + \sum_{i=1}^d \mu_i c^i(e)$.
 - We do not assume that all $c^i(e)$ are non-negative.
 - To avoid NP Hardness, we instead assume that μ is restricted to $M = \{\mu \in \mathbb{R}^d \mid c_\mu(e) \ge 0 \ \forall \ e \in E\}.$

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$
- Thus we have d + 1 edge cost functions c^0, \ldots, c^d , and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e) = c^0(e) + \sum_{i=1}^d \mu_i c^i(e)$.
 - ${\ensuremath{\, \bullet }}$ We do not assume that all $c^i(e)$ are non-negative.
 - To avoid NP Hardness, we instead assume that μ is restricted to $M = \{\mu \in \mathbb{R}^d \mid c_\mu(e) \ge 0 \ \forall \ e \in E\}.$
- Why is parametric global min cut interesting?

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$
- Thus we have d + 1 edge cost functions c^0, \ldots, c^d , and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e) = c^0(e) + \sum_{i=1}^d \mu_i c^i(e)$.
 - We do not assume that all $c^i(e)$ are non-negative.
 - To avoid NP Hardness, we instead assume that μ is restricted to $M = \{\mu \in \mathbb{R}^d \mid c_\mu(e) \ge 0 \ \forall \ e \in E\}.$
- Why is parametric global min cut interesting?
 - Models "attack-defend" graph problems where a Defender spends a fixed budget on *d* resources to reinforce edges against an Attacker.

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$
- Thus we have d + 1 edge cost functions c^0, \ldots, c^d , and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e) = c^0(e) + \sum_{i=1}^d \mu_i c^i(e)$.
 - We do not assume that all $c^i(e)$ are non-negative.
 - To avoid NP Hardness, we instead assume that μ is restricted to $M = \{\mu \in \mathbb{R}^d \mid c_\mu(e) \ge 0 \ \forall \ e \in E\}.$
- Why is parametric global min cut interesting?
 - Models "attack-defend" graph problems where a Defender spends a fixed budget on *d* resources to reinforce edges against an Attacker.
 - Models situations where costs can change due to external variables.

- Now suppose that edge costs are linear functions of d parameters $\mu \in \mathbb{R}^d.$
- Thus we have d + 1 edge cost functions c^0, \ldots, c^d , and the cost of $e \in E$ w.r.t. μ is $c_{\mu}(e) = c^0(e) + \sum_{i=1}^d \mu_i c^i(e)$.
 - We do not assume that all $c^i(e)$ are non-negative.
 - To avoid NP Hardness, we instead assume that μ is restricted to $M = \{\mu \in \mathbb{R}^d \mid c_\mu(e) \ge 0 \ \forall \ e \in E\}.$
- Why is parametric global min cut interesting?
 - Models "attack-defend" graph problems where a Defender spends a fixed budget on *d* resources to reinforce edges against an Attacker.
 - Models situations where costs can change due to external variables.
 - It will turn out to further highlight how the small number of α -approximate solutions leads to more efficient algorithms.

The Global Min Cut Value Function

• Define $Z(\mu)$ to be the cost of a global min cut at μ .

• Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.

- Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.
- AMMQ '15 showed that the number of facets of $Z(\mu)$ is $O(m^d n^2 \log^{d-1} n)$ and they can be computed in $O(m^d \lfloor \frac{d-1}{2} \rfloor n^2 \lfloor \frac{d-1}{2} \rfloor \log^{(d-1)} \lfloor \frac{d-1}{2} \rfloor + O(1) n)$ deterministic time, and $O(mn^4 \log n + n^5 \log^2 n)$ when d = 1.

- Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.
- AMMQ '15 showed that the number of facets of $Z(\mu)$ is $O(m^d n^2 \log^{d-1} n)$ and they can be computed in $O(m^d \lfloor \frac{d-1}{2} \rfloor n^2 \lfloor \frac{d-1}{2} \rfloor \log^{(d-1)} \lfloor \frac{d-1}{2} \rfloor + O(1) n)$ deterministic time, and $O(mn^4 \log n + n^5 \log^2 n)$ when d = 1.
- When all $c^i(e) \ge 0$, Karger '16 improved this to show that the number of facets of $Z(\mu)$ is $O(n^{d+2})$, and they can be computed in $O(n^{2d+2}\log n)$ randomized time.

- Since $Z(\mu)$ is the min of many affine functions (one for each cut), it is a piecewise-linear concave function.
- AMMQ '15 showed that the number of facets of $Z(\mu)$ is $O(m^d n^2 \log^{d-1} n)$ and they can be computed in $O(m^d \lfloor \frac{d-1}{2} \rfloor n^2 \lfloor \frac{d-1}{2} \rfloor \log^{(d-1)} \lfloor \frac{d-1}{2} \rfloor + O(1) n)$ deterministic time, and $O(mn^4 \log n + n^5 \log^2 n)$ when d = 1.
- When all $c^i(e) \ge 0$, Karger '16 improved this to show that the number of facets of $Z(\mu)$ is $O(n^{d+2})$, and they can be computed in $O(n^{2d+2}\log n)$ randomized time.
- Computing all of $Z(\mu)$ is good, but is maybe too much?

• Computing all of $Z(\mu)$ is good, but is maybe too much?

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max_{\mu} Z(\mu)$.

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max_{\mu} Z(\mu)$.
- So define P_{\max} to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max_{\mu} Z(\mu)$.
- So define P_{\max} to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^0 \in \mathbb{R}^d$ and direction $\nu \in \mathbb{R}^d$, find the next *breakpoint* of $Z(\mu)$ along the ray starting at μ^0 in direction ν .

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max_{\mu} Z(\mu)$.
- So define P_{\max} to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^0 \in \mathbb{R}^d$ and direction $\nu \in \mathbb{R}^d$, find the next *breakpoint* of $Z(\mu)$ along the ray starting at μ^0 in direction ν .
 - $P_{\rm NB}$ is a sort of *ray-shooting* problem.

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max_{\mu} Z(\mu)$.
- So define P_{\max} to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^0 \in \mathbb{R}^d$ and direction $\nu \in \mathbb{R}^d$, find the next *breakpoint* of $Z(\mu)$ along the ray starting at μ^0 in direction ν .
 - $P_{\rm NB}$ is a sort of *ray-shooting* problem.
 - $P_{\rm NB}$ is effectively a 1-parameter problem, to find the next breakpoint w.r.t. costs $\bar{c}^0 + \lambda \bar{c}^1(e)$ with single parameter λ .

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max_{\mu} Z(\mu)$.
- So define P_{\max} to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^0 \in \mathbb{R}^d$ and direction $\nu \in \mathbb{R}^d$, find the next *breakpoint* of $Z(\mu)$ along the ray starting at μ^0 in direction ν .
 - $P_{\rm NB}$ is a sort of *ray-shooting* problem.
 - $P_{\rm NB}$ is effectively a 1-parameter problem, to find the next breakpoint w.r.t. costs $\bar{c}^0 + \lambda \bar{c}^1(e)$ with single parameter λ .
- We could solve $P_{\rm max}$ and $P_{\rm NB}$ by computing $Z(\mu),$ but we want to find something faster.

- Computing all of $Z(\mu)$ is good, but is maybe too much?
- E.g., for attack-defend the Attacker only wants to solve $\max_{\mu} Z(\mu)$.
- So define P_{\max} to be the problem of computing the max over μ of $Z(\mu)$ (and an associated global min cut).
- In other applications (e.g. sensitivity analysis) we want to solve P_{NB} : Given $\mu^0 \in \mathbb{R}^d$ and direction $\nu \in \mathbb{R}^d$, find the next *breakpoint* of $Z(\mu)$ along the ray starting at μ^0 in direction ν .
 - $P_{\rm NB}$ is a sort of *ray-shooting* problem.
 - $P_{\rm NB}$ is effectively a 1-parameter problem, to find the next breakpoint w.r.t. costs $\bar{c}^0 + \lambda \bar{c}^1(e)$ with single parameter λ .
- We could solve $P_{\rm max}$ and $P_{\rm NB}$ by computing $Z(\mu),$ but we want to find something faster.
- We also want to see if one is harder than the other.

Megiddo's Parametric Framework

• Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.

Megiddo's Parametric Framework

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
 - Here "linear" means that every comparison is between two affine functions of μ and the data.
- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
 - $\bullet\,$ Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O(n^{2d+3}\log^d n)$ deterministic algorithm for P_{max} , and $O(n^5\log d)$ for P_{NB} .

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
 - $\bullet\,$ Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O(n^{2d+3}\log^d n)$ deterministic algorithm for P_{max} , and $O(n^5\log d)$ for P_{NB} .
- Tokuyama saw that KS is linear, so Megiddo+KS gives an $O(n^2\log^{4d+1}n)$ randomized algorithm for $P_{\rm max}$, and $O(n^2\log^5n)$ for $P_{\rm NB}.$

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
 - $\bullet\,$ Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O(n^{2d+3}\log^d n)$ deterministic algorithm for P_{\max} , and $O(n^5\log d)$ for $P_{\rm NB}$.
- Tokuyama saw that KS is linear, so Megiddo+KS gives an $O(n^2\log^{4d+1}n)$ randomized algorithm for $P_{\rm max}$, and $O(n^2\log^5n)$ for $P_{\rm NB}.$
- These are a lot faster than the $O(m^{d \lfloor \frac{d-1}{2} \rfloor} n^{2 \lfloor \frac{d-1}{2} \rfloor} \log^{(d-1) \lfloor \frac{d-1}{2} \rfloor + O(1)} n)$ deterministic and $O(n^{2d+2} \log n)$ randomized algorithms for computing all of $Z(\mu)$.

- Megiddo, later with Cohen, gave a black-box way to adapt linear algorithms for non-parametric problems to solve parametric problems.
 - $\bullet\,$ Here "linear" means that every comparison is between two affine functions of μ and the data.
- We show that SW is linear, so Megiddo+SW gives an $O(n^{2d+3}\log^d n)$ deterministic algorithm for P_{\max} , and $O(n^5\log d)$ for P_{NB} .
- Tokuyama saw that KS is linear, so Megiddo+KS gives an $O(n^2\log^{4d+1}n)$ randomized algorithm for $P_{\rm max}$, and $O(n^2\log^5n)$ for $P_{\rm NB}.$
- These are a lot faster than the $O(m^{d \lfloor \frac{d-1}{2} \rfloor} n^{2 \lfloor \frac{d-1}{2} \rfloor} \log^{(d-1) \lfloor \frac{d-1}{2} \rfloor + O(1)} n)$ deterministic and $O(n^{2d+2} \log n)$ randomized algorithms for computing all of $Z(\mu)$.
- However, we'd still like to do better than generic Megiddo.

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	K $\tilde{O}(m)$ (KS $\tilde{O}(n^2)$)
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
Megiddo $d = 1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	KS $O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4 \log n + n^5 \log^2 n)$	$O(n^4 \log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K

Summary of running times so far.

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	K $ ilde{O}(m)$ (KS $ ilde{O}(n^2)$)
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
Megiddo $d = 1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	KS $O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4\log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K

Big gap between non-parametric and computing all of $Z(\mu)$ running times, even for d=1

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	$K \; ilde{O}(m) \; (KS \; ilde{O}(n^2))$
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
Megiddo $d = 1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	KS $O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4\log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K

Much smaller gap between non-parametric and Megiddo running times (compare to $Z(\mu)$ times in blue); for d = 1, KS gap is just logs. Note that using Megiddo to solve $P_{\rm NB}$ is just general Megiddo with d set to 1.

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	K $\tilde{O}(m)$ (KS $\tilde{O}(n^2)$)
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
$\operatorname{Megiddo} d = 1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	KS $O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4\log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K
$P_{\rm NB}$ ($\sim d = 1$)	???	???
$P_{ m max}$ (\sim gen'l d)	???	???

Hoped-for results in this paper in red. Compare to non-param lower bounds in green, various upper bounds in blue.

Reducing $P_{\rm NB}$ to $P_{\rm max}$ with d=1

• $P_{\rm NB}$ wants us to compute $\lambda_{\rm NB}$:

Reducing $P_{\rm NB}$ to $P_{\rm max}$ with d=1

• $P_{\rm NB}$ wants us to compute $\lambda_{\rm NB}$:

• If we rotate until the local slope at μ^0 is just short of horizontal, then finding $\lambda_{\rm NB}$ becomes equivalent to computing μ^* in this 1-dimensional problem:

Reducing $P_{\rm NB}$ to $P_{\rm max}$ with d=1

• $P_{\rm NB}$ wants us to compute $\lambda_{\rm NB}$:

• If we rotate until the local slope at μ^0 is just short of horizontal, then finding $\lambda_{\rm NB}$ becomes equivalent to computing μ^* in this 1-dimensional problem:

• Thus $P_{\rm NB}$ cannot be any harder than $P_{\rm max}$ for d = 1, though it could be easier.

Outline

Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
- 2 Faster Algorithms for $P_{\rm NB}$
 - Deterministic
 - Randomized
- 3) Faster Algorithms for $P_{
 m max}$
 - Deterministic
 - Randomized

Conclusion

• SW finds a node ordering v_1, \ldots, v_n such that (v_{n-1}, v_n) is a pendent pair, i.e., either $\delta(v_n)$ is a global min cut, or we can contract edge $\{v_{n-1}, v_n\}$ without losing any optimal cuts.

- SW finds a node ordering v_1, \ldots, v_n such that (v_{n-1}, v_n) is a pendent pair, i.e., either $\delta(v_n)$ is a global min cut, or we can contract edge $\{v_{n-1}, v_n\}$ without losing any optimal cuts.
- Let G^r be contracted graph at iteration r. Define $Z^r(\lambda)$ to be min of $\bar{c}(\delta(v))$ for $v \in V^r$ and compute λ^r like:

- SW finds a node ordering v_1, \ldots, v_n such that (v_{n-1}, v_n) is a pendent pair, i.e., either $\delta(v_n)$ is a global min cut, or we can contract edge $\{v_{n-1}, v_n\}$ without losing any optimal cuts.
- Let G^r be contracted graph at iteration r. Define $Z^r(\lambda)$ to be min of $\bar{c}(\delta(v))$ for $v \in V^r$ and compute λ^r like:

• Update an UB $\overline{\lambda}$ on λ_{NB} by λ_r , and do SW to find and contract a pendent pair w.r.t. $\overline{\lambda}$; since $Z(\lambda)$ is concave, λ^r upper bounds λ_{NB} .

- SW finds a node ordering v_1, \ldots, v_n such that (v_{n-1}, v_n) is a pendent pair, i.e., either $\delta(v_n)$ is a global min cut, or we can contract edge $\{v_{n-1}, v_n\}$ without losing any optimal cuts.
- Let G^r be contracted graph at iteration r. Define $Z^r(\lambda)$ to be min of $\bar{c}(\delta(v))$ for $v \in V^r$ and compute λ^r like:

Update an UB λ̄ on λ_{NB} by λ_r, and do SW to find and contract a pendent pair w.r.t. λ̄; since Z(λ) is concave, λ^r upper bounds λ_{NB}.
This is correct, and runs in same O(mn + n² log n) time as SW.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	K $ ilde{O}(m)$ (KS $ ilde{O}(n^2)$)
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
$\operatorname{Megiddo} d = 1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	$KS\; O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4 \log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K
$P_{\rm NB}$ ($\sim d = 1$)	SW $O(mn + n^2 \log n)$???
$P_{ m max}$ (\sim gen'l d)	???	???

Here we saved a lot w.r.t. Megiddo, and matched the non-parametric lower bound.

• KS selects an edge to contract randomly, proportional to its cost.

- KS selects an edge to contract randomly, proportional to its cost.
- After contracting to 2 nodes, KS show that the remaining induced cut is a min cut with probability at least $1/\binom{n}{2}$, and this can be put into a framework that will identify a min cut with high probability.

- KS selects an edge to contract randomly, proportional to its cost.
- After contracting to 2 nodes, KS show that the remaining induced cut is a min cut with probability at least $1/\binom{n}{2}$, and this can be put into a framework that will identify a min cut with high probability.
- Compute λ^r like this:

- KS selects an edge to contract randomly, proportional to its cost.
- After contracting to 2 nodes, KS show that the remaining induced cut is a min cut with probability at least $1/\binom{n}{2}$, and this can be put into a framework that will identify a min cut with high probability.
- Compute λ^r like this:

• Choose e to contract with probability proportional to $c_{\lambda^r}(e)$; since $Z(\lambda)$ is concave, λ^r upper bounds $\lambda_{\rm NB}$.

Randomized

Using Karger-Stein to Solve $P_{\rm NB}$

• Compute $\lambda_{\rm NB}$ as the intersection of the final cut line and $L(\lambda)$, and repeat in the KS framework.

- Compute $\lambda_{\rm NB}$ as the intersection of the final cut line and $L(\lambda),$ and repeat in the KS framework.
- As in KS, when $\lambda_{\rm NB}$ exists, the probability that a global min cut survives all the contractions is at least $1/\binom{n}{2}$; if there is no breakpoint in direction ν , then the algorithm recognizes this with probability one.

- Compute $\lambda_{\rm NB}$ as the intersection of the final cut line and $L(\lambda),$ and repeat in the KS framework.
- As in KS, when $\lambda_{\rm NB}$ exists, the probability that a global min cut survives all the contractions is at least $1/\binom{n}{2}$; if there is no breakpoint in direction ν , then the algorithm recognizes this with probability one.
- Thus using the KS framework is correct, and runs in same $\tilde{O}(n^2)$ time as KS.

- Compute $\lambda_{\rm NB}$ as the intersection of the final cut line and $L(\lambda)$, and repeat in the KS framework.
- As in KS, when $\lambda_{\rm NB}$ exists, the probability that a global min cut survives all the contractions is at least $1/\binom{n}{2}$; if there is no breakpoint in direction ν , then the algorithm recognizes this with probability one.
- Thus using the KS framework is correct, and runs in same $\tilde{O}(n^2)$ time as KS.
- There is a minor technical point about how to implement the random edge contractions: Here the parametric costs interfere with the KS matrix update technique, but we can replace the static matrices with separate matrices for \bar{c}^0 and \bar{c}^1 to achieve the same effect.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	$K \; ilde{O}(m) \; (KS \; ilde{O}(n^2))$
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
$Megiddo\ d=1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	KS $O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4 \log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K
$P_{\rm NB}$ ($\sim d = 1$)	SW $O(mn + n^2 \log n)$	KS $O(n^2 \log^3 n)$
$P_{ m max}$ (\sim gen'l d)	???	???

Here we saved only log factors w.r.t. Megiddo, but that's all the gap we had to work with; our ideas don't seem to extend to Karger's improvement.

Outline

Global Min Cut

- Non-Parametric
- Parametric
- The Parametric Problems
- Faster Algorithms for $P_{
 m NB}$
 - Deterministic
 - Randomized
- 3 Faster Algorithms for P_{\max}
 - Deterministic
 - Randomized

Conclusion

Deterministic

Solving P_{max} : Overview and Techniques

• Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:

Deterministic

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2) \alpha$ -approximate solutions for $\alpha < \frac{4}{3}$.

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2) \alpha$ -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2) \alpha$ -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ* to a region small enough that the α-approximate min cuts include all cuts defining μ*.

Deterministic

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2)$ α -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^* to a region small enough that the α -approximate min cuts include all cuts defining μ^* .
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2) \alpha$ -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ* to a region small enough that the α-approximate min cuts include all cuts defining μ*.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2) \alpha$ -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ* to a region small enough that the α-approximate min cuts include all cuts defining μ*.
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
 - a set \mathcal{H} of hyperplanes (think the μ s.t. $c_{\mu}(e) = c_{\mu}(e')$);

Deterministic

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2) \alpha$ -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^* to a region small enough that the α -approximate min cuts include all cuts defining μ^* .
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
 - a set ${\cal H}$ of hyperplanes (think the μ s.t. $c_{\mu}(e) = c_{\mu}(e')$);
 - a polytope P (think the region M where all $c_{\mu}(e) \geq 0$); and
Deterministic

Solving P_{max} : Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - 2 Ability to compute all $O(n^2)$ α -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^* to a region small enough that the α -approximate min cuts include all cuts defining μ^* .
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
 - a set \mathcal{H} of hyperplanes (think the μ s.t. $c_{\mu}(e) = c_{\mu}(e')$);
 - a polytope P (think the region M where all $c_{\mu}(e) \geq 0$); and
 - an unknown target (think μ^*).

Solving P_{max} : Overview and Techniques

- Following Mulmuley and AMMQ we want to use two ideas to compute $\mu^* = \max_{\mu} Z(\mu)$:
 - Approximate duality between global MC and max spanning tree.
 - **2** Ability to compute all $O(n^2) \alpha$ -approximate solutions for $\alpha < \frac{4}{3}$.
- But max spanning tree makes sense only when all costs are linearly ordered, and parametric costs typically are not.
- And we need to narrow down our search for μ^* to a region small enough that the α -approximate min cuts include all cuts defining μ^* .
- We use a technique from computational geometry called point location in arrangements (PLA) to achieve both of these.
- In PLA we are given:
 - a set $\mathcal H$ of hyperplanes (think the μ s.t. $c_{\mu}(e) = c_{\mu}(e')$);
 - a polytope P (think the region M where all $c_{\mu}(e)\geq 0);$ and
 - an unknown target (think μ^*).
- Then the task is to find a simplex in a cell of $\mathcal{H} \cap P$ containing μ^* .

• Define \mathcal{H}_1 as the set of $O(m^2)$ hyperplanes where $c_{\mu}(e) = c_{\mu}(e')$ and run PLA for $(\mathcal{H}_1, M, \mu^*)$ to get simplex S_1 .

• Define \mathcal{H}_1 as the set of $O(m^2)$ hyperplanes where $c_{\mu}(e) = c_{\mu}(e')$ and run PLA for $(\mathcal{H}_1, M, \mu^*)$ to get simplex S_1 .

• By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.

• By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.

- By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.
- Thus we can compute a max spanning tree T in S_1 .

- By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.
- Thus we can compute a max spanning tree T in S_1 .
- Let \bar{e} be a min-cost edge in T.

- By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.
- Thus we can compute a max spanning tree T in S_1 .
- Let \bar{e} be a min-cost edge in T.
 - Since every cut hits T we get $Z(\mu^*) \ge c_{\mu}(\bar{e})$ for all $\mu \in S_1$.

- By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.
- Thus we can compute a max spanning tree T in S_1 .
- Let \bar{e} be a min-cost edge in T.
 - Since every cut hits T we get $Z(\mu^*) \ge c_{\mu}(\bar{e})$ for all $\mu \in S_1$.
 - Let \overline{C} be the fundamental cut in $T \overline{e}$; since T is a MST we have $Z(\mu^*) \leq c_{\mu^*}(\overline{C}) \leq mc_{\mu^*}(\overline{e})$.

- By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.
- Thus we can compute a max spanning tree T in S_1 .
- Let \bar{e} be a min-cost edge in T.
 - Since every cut hits T we get $Z(\mu^*) \ge c_{\mu}(\bar{e})$ for all $\mu \in S_1$.
 - Let \overline{C} be the fundamental cut in $T \overline{e}$; since T is a MST we have $Z(\mu^*) \leq c_{\mu^*}(\overline{C}) \leq mc_{\mu^*}(\overline{e})$.
 - Thus $c_{\mu^*}(\bar{e}) \leq Z(\mu^*) \leq mc_{\mu^*}(\bar{e})$, and so $c_{\mu^*}(\bar{e})$ is a fairly tight estimate of $Z(\mu^*)$.

- By the definition of \mathcal{H}_1 and PLA, we know that $\mu^* \in S_1$ and all $c_{\mu}(e)$ are linearly ordered for $\mu \in S_1$.
- Thus we can compute a max spanning tree T in S_1 .
- Let \bar{e} be a min-cost edge in T.
 - Since every cut hits T we get $Z(\mu^*) \ge c_{\mu}(\bar{e})$ for all $\mu \in S_1$.
 - Let \overline{C} be the fundamental cut in $T \overline{e}$; since T is a MST we have $Z(\mu^*) \leq c_{\mu^*}(\overline{C}) \leq mc_{\mu^*}(\overline{e}).$
 - Thus $c_{\mu^*}(\bar{e}) \leq Z(\mu^*) \leq mc_{\mu^*}(\bar{e})$, and so $c_{\mu^*}(\bar{e})$ is a fairly tight estimate of $Z(\mu^*)$.
- Now we need to use PLA a second time to further narrow in on μ^* so we can get the cuts inducing it via α -approximate cuts.

Narrowing in on α -Approximate Cuts

Narrowing in on α -Approximate Cuts

•
$$\bar{\alpha}$$
 s.t. $1 < \bar{\alpha} < \sqrt{\frac{4}{3}}$ (note: $0 < \frac{\bar{\alpha}^2 - 1}{m} < 1$);

Narrowing in on α -Approximate Cuts

•
$$\bar{\alpha}$$
 s.t. $1 < \bar{\alpha} < \sqrt{\frac{4}{3}}$ (note: $0 < \frac{\bar{\alpha}^2 - 1}{m} < 1$);
• $p = 1 + \lceil \log \frac{m^2}{\bar{\alpha}^2 - 1} / \log \bar{\alpha}^2 \rceil$ so that $\frac{\bar{\alpha}^2 - 1}{m} \bar{\alpha}^{2(p-1)} > m$ (note: $p = O(\log n)$);

Deterministic

Narrowing in on α -Approximate Cuts

•
$$\bar{\alpha}$$
 s.t. $1 < \bar{\alpha} < \sqrt{\frac{4}{3}}$ (note: $0 < \frac{\bar{\alpha}^2 - 1}{m} < 1$);
• $p = 1 + \lceil \log \frac{m^2}{\bar{\alpha}^2 - 1} / \log \bar{\alpha}^2 \rceil$ so that $\frac{\bar{\alpha}^2 - 1}{m} \bar{\alpha}^{2(p-1)} > m$ (note: $p = O(\log n)$);
• $g_i(\bar{e}, \mu) = \frac{\bar{\alpha}^2 - 1}{m} \bar{\alpha}^{2(i-1)} c_\mu(\bar{e})$ for $i = 1, \dots, p$, $g_0(\bar{e}, \mu) = 0$ (note: $g_1(\bar{e}, \mu) < c_\mu(\bar{e})$ and $g_p(\bar{e}, \mu) > mc_\mu(\bar{e})$).

Deterministic

Narrowing in on α -Approximate Cuts

Choose

•
$$\bar{\alpha} \text{ s.t. } 1 < \bar{\alpha} < \sqrt{\frac{4}{3}} \text{ (note: } 0 < \frac{\bar{\alpha}^2 - 1}{m} < 1\text{);}$$

• $p = 1 + \lceil \log \frac{m^2}{\bar{\alpha}^2 - 1} / \log \bar{\alpha}^2 \rceil$ so that $\frac{\bar{\alpha}^2 - 1}{m} \bar{\alpha}^{2(p-1)} > m$ (note: $p = O(\log n)$);
• $g_i(\bar{e}, \mu) = \frac{\bar{\alpha}^2 - 1}{m} \bar{\alpha}^{2(i-1)} c_\mu(\bar{e}) \text{ for } i = 1, \dots, p, \ g_0(\bar{e}, \mu) = 0$ (note: $g_1(\bar{e}, \mu) < c_\mu(\bar{e}) \text{ and } g_p(\bar{e}, \mu) > mc_\mu(\bar{e})$).

• Define \mathcal{H}_2 as the $O(m \log n)$ hyperplanes where $c_{\mu}(e) = g_i(\bar{e}, \mu), \forall$ $e \in E, i = 1, ..., p$, and set $S_2 = PLA(\mathcal{H}_2, S_1, \mu^*)$:

Computing Min Cuts and μ^*

• Due to how we defined the $g_i(\bar{e},\mu)$, we know that any cut defining μ^* must be an $\bar{\alpha}$ -approximate cut for any $\mu \in S_2$.

Computing Min Cuts and μ^*

- Due to how we defined the $g_i(\bar{e},\mu)$, we know that any cut defining μ^* must be an $\bar{\alpha}$ -approximate cut for any $\mu \in S_2$.
- Thus we could compute the $O(n^2)$ $\bar{\alpha}\text{-approximate cuts in }\mathcal{C}$ and compute their lower envelope to get μ^* , but this would take $\Omega(n^{2d})$ time, too slow.

Deterministic

Computing Min Cuts and μ^*

- Due to how we defined the $g_i(\bar{e},\mu)$, we know that any cut defining μ^* must be an $\bar{\alpha}$ -approximate cut for any $\mu \in S_2$.
- Thus we could compute the $O(n^2)$ $\bar{\alpha}\text{-approximate cuts in }\mathcal{C}$ and compute their lower envelope to get μ^* , but this would take $\Omega(n^{2d})$ time, too slow.
- Instead, define \mathcal{H}_3 as the $O(n^4)$ hyperplanes where $c_{\mu}(C) = c_{\mu}(C')$ for $C, C' \in \mathcal{C}$ and set $S_3 = PLA(\mathcal{H}_3, S_2, \mu^*)$.

Computing Min Cuts and μ^*

• Since μ^* is the intersection of d cuts in C, it must be a vertex of S_3 , and so this last call of PLA finds μ^* more efficiently.

Deterministic

Computing Min Cuts and μ^*

- Since μ^* is the intersection of d cuts in C, it must be a vertex of S_3 , and so this last call of PLA finds μ^* more efficiently.
- PLA is a recursive procedure; when we solve the recursion, we get the claimed $O(n^4 \log^{d-1} n)$ running time.

Deterministic

Computing Min Cuts and μ^*

- Since μ^* is the intersection of d cuts in C, it must be a vertex of S_3 , and so this last call of PLA finds μ^* more efficiently.
- PLA is a recursive procedure; when we solve the recursion, we get the claimed $O(n^4 \log^{d-1} n)$ running time.
- I skipped a technicality that arises when $c_{\mu}(\bar{e}) = 0$ for some $\mu \in S_1$.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	K $\tilde{O}(m)$ (KS $\tilde{O}(n^2)$)
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
$\operatorname{Megiddo} d = 1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	KS $O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4 \log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K
$P_{\rm NB}$ ($\sim d = 1$)	SW $O(mn + n^2 \log n)$	KS $O(n^2 \log^3 n)$
$P_{ m max}$ (\sim gen'l d)	$O(n^4 \log^{d-1} n)$???

We saved a lot compared to Megiddo, but even for d = 1 still much slower than our deterministic $P_{\rm NB}$ algorithm, suggesting that $P_{\rm max}$ for d = 1 is strictly harder than $P_{\rm NB}$.

Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	K $ ilde{O}(m)$ (KS $ ilde{O}(n^2)$)
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
$\operatorname{Megiddo} d = 1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	$KS\; O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4 \log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K
$P_{\rm NB}$ ($\sim d = 1$)	SW $O(mn + n^2 \log n)$	$KS\;O(n^2\log^3 n)$
$P_{ m max}$ (\sim gen'l d)	$O(n^4 \log^{d-1} n)$???

Notice that running time for our $P_{\rm max}$ algorithm is just log factors more than for computing all $\bar{\alpha}$ -approximate min cuts.

Solving P_{\max} Randomly

• So far we don't know how to do this

Final Summary of Running Times

Problem	Deterministic	Randomized
Non-param GMC	SW $O(mn + n^2 \log n)$	$K \ ilde{O}(m) \ (KS \ ilde{O}(n^2))$
All $\alpha < \frac{4}{3}$ -approx	NI $O(n^4)$	KS $ ilde{O}(n^2)$
$Megiddo\ d=1$	SW $O(n^5 \log n)$	KS $O(n^2 \log^5 n)$
Megiddo gen'l d	SW $O(n^{2d+3}\log^d n)$	KS $O(n^2 \log^{4d+1} n)$
$Z(\mu) \ d = 1$	$O(mn^4\log n + n^5\log^2 n)$	$O(n^4\log n)$ K
$Z(\mu)$ gen'l d	(big) AMMQ	$O(n^{2d+2}\log n)$ K
$P_{\rm NB}$ ($\sim d = 1$)	SW $O(mn + n^2 \log n)$	KS $O(n^2 \log^3 n)$
$P_{ m max}$ (\sim gen'l d)	$O(n^4 \log^{d-1} n)$???

New results in this paper in red. Compare to non-param lower bounds in green, various upper bounds in blue.

• Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.
 - Our algorithms suggest that $P_{\rm NB}$ is easier than $P_{\rm max}$ for d=1.

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.
 - Our algorithms suggest that $P_{\rm NB}$ is easier than $P_{\rm max}$ for d=1.
- We propose specialized algorithms for solving $P_{\rm NB}$ and $P_{\rm max}$ that are significantly faster than Megiddo.

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.
 - Our algorithms suggest that $P_{\rm NB}$ is easier than $P_{\rm max}$ for d=1.
- We propose specialized algorithms for solving $P_{\rm NB}$ and $P_{\rm max}$ that are significantly faster than Megiddo.
 - $\bullet~{\rm The}~P_{\rm NB}$ algorithms are essentially as fast as the non-parametric algorithms.

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.
 - Our algorithms suggest that $P_{\rm NB}$ is easier than $P_{\rm max}$ for d=1.
- We propose specialized algorithms for solving $P_{\rm NB}$ and $P_{\rm max}$ that are significantly faster than Megiddo.
 - $\bullet~{\rm The}~P_{\rm NB}$ algorithms are essentially as fast as the non-parametric algorithms.
 - The deterministic $P_{\rm max}$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.
 - Our algorithms suggest that $P_{\rm NB}$ is easier than $P_{\rm max}$ for d=1.
- We propose specialized algorithms for solving $P_{\rm NB}$ and $P_{\rm max}$ that are significantly faster than Megiddo.
 - $\bullet\,$ The $P_{\rm NB}$ algorithms are essentially as fast as the non-parametric algorithms.
 - The deterministic $P_{\rm max}$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.
- Open questions:

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.
 - Our algorithms suggest that $P_{\rm NB}$ is easier than $P_{\rm max}$ for d=1.
- We propose specialized algorithms for solving $P_{\rm NB}$ and $P_{\rm max}$ that are significantly faster than Megiddo.
 - $\bullet\,$ The $P_{\rm NB}$ algorithms are essentially as fast as the non-parametric algorithms.
 - The deterministic $P_{\rm max}$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.
- Open questions:
 - Can we use Karger's ideas to further speed up $P_{\rm NB}$ to $ilde{O}(m)$?

- Solving $P_{\rm NB}$ and $P_{\rm max}$ by computing $Z(\mu)$ is slow.
- We could use Megiddo+SW to solve them faster deterministically, or Megiddo+KS to solve them faster randomly, which give the impression that $P_{\rm NB}$ and $P_{\rm max}$ for d = 1 have the same complexity.
 - Our algorithms suggest that $P_{\rm NB}$ is easier than $P_{\rm max}$ for d=1.
- We propose specialized algorithms for solving $P_{\rm NB}$ and $P_{\rm max}$ that are significantly faster than Megiddo.
 - $\bullet\,$ The $P_{\rm NB}$ algorithms are essentially as fast as the non-parametric algorithms.
 - The deterministic $P_{\rm max}$ algorithm further elaborates computational geometry techniques and is much faster than Megiddo+SW.
- Open questions:
 - Can we use Karger's ideas to further speed up $P_{\rm NB}$ to $\tilde{O}(m)?$
 - $\bullet\,$ There should be a faster, specialized, randomized algorithm for $P_{\rm max}.$

27 / 28

Any questions?

Questions?

Comments?