Compact, Provably-Good LP Relaxations for Orienteering and RVRP

Zachary Friggstad

with

Chaitanya Swamy

BIRS TSP Workshop - 2018

Orienteering

Starting from **Corbet Hall**, visit as many sights in Banff during the Wednesday break.

Orienteering

Starting from **Corbet Hall**, visit as many sights in Banff during the Wednesday break.

Rooted Orienteering

Given metric distances d() over points $V \cup \{r\}$ where:

- V clients
- r depot

Each $v \in V$ has a reward $\rho(v) \ge 0$. Also have a distance bound $D \ge 0$.

Rooted Orienteering

Given metric distances d() over points $V \cup \{r\}$ where:

- V clients
- r depot

Each $v \in V$ has a reward $\rho(v) \ge 0$. Also have a distance bound $D \ge 0$.

Objective

Find an *r*-rooted path *P* with $d(P) \leq D$ of maximum reward $\rho(P)$.

Rooted Orienteering

Given metric distances d() over points $V \cup \{r\}$ where:

- V clients
- r depot

Each $v \in V$ has a reward $\rho(v) \ge 0$. Also have a distance bound $D \ge 0$.

Objective

Find an *r*-rooted path *P* with $d(P) \leq D$ of maximum reward $\rho(P)$.

If an end vertex t is also specified (could be t = r), we call this **Point-to-Point Orienteering**.

A Brief History

- First, a 4-approximation for rooted orienteering [Blum et al, 1994].
- Then, a 3-approximation for Point-to-Point Orienteering. [Bansal et al, 2004].
- ► The best is a (2 + ϵ) for Point-to-Point. [Chekuri, Korula, and Pal, 2012].

A Brief History

- First, a 4-approximation for rooted orienteering [Blum et al, 1994].
- Then, a 3-approximation for Point-to-Point Orienteering. [Bansal et al, 2004].
- ► The best is a (2 + ϵ) for Point-to-Point. [Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

- An O(log² OPT)-approximation.
 [Chekuri, Korula, and Pal, 2007].
- An $O(\rho \cdot \log n)$ -approximation: $\rho = \text{ATSP}$ integrality gap. [Nagarajan and Ravi, 2007].

At the time, $\rho = O(\log n)$ but now we know better!

A Brief History

- First, a 4-approximation for rooted orienteering [Blum et al, 1994].
- Then, a 3-approximation for Point-to-Point Orienteering. [Bansal et al, 2004].
- ► The best is a (2 + ϵ) for Point-to-Point. [Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

- An O(log² OPT)-approximation.
 [Chekuri, Korula, and Pal, 2007].
- An O(ρ · log n)-approximation: ρ = ATSP integrality gap. [Nagarajan and Ravi, 2007].
 At the time, ρ = O(log n) but now we know better!

Notice: The improved integrality gap bound for ATSP led to an improved approximation for a different problem!

Specific Results

Poly-size LP relaxations with the following integrality gap bounds.

- Rooted Orienteering: 3
- Point-to-Point Orienteering: 6

RVRP: A natural relaxation with a gap of 27, an unnatural relaxation with a gap of 15.
 This beats a 28.86-approximation that used a large configuration LP [F. and Swamy, 2014].

The Regret Metric

We shift focus to a new metric called the regret metric.

$$d^{reg}(u,v) := d(r,u) + d(u,v) - d(r,v).$$

How much longer is $r \rightarrow u \rightarrow v$ than $r \rightarrow v$ directly?

$$d^{reg}(u,v) = 3 + 5 - 6 = 2$$

The Regret Metric

We shift focus to a new metric called the regret metric.

$$d^{reg}(u,v) := d(r,u) + d(u,v) - d(r,v).$$

How much longer is $r \rightarrow u \rightarrow v$ than $r \rightarrow v$ directly?

$$d^{reg}(u,v) = 3 + 5 - 6 = 2$$

Key Properties:

For any $v \in V$, $d^{reg}(r, v) = 0$.

• For any $r \to v$ path P, $d^{reg}(P) = d(P) - d(r, v)$.

Before presenting the LP, we briefly discuss a slightly weaker goal.

Observe a rooted r - w path P is a feasible orienteering solution iff $d^{reg}(P) \leq D - d(r, v)$.

Now suppose P is an r - w path with $d^{reg}(P) \le \alpha \cdot (D - d(r, w))$.

Claim

If w has maximum distance from r among all clients, we can *chop* P to a feasible solution with value $\geq \rho(P)/\lceil \alpha \rceil$.

First, break $P - \{r\}$ into $\lceil \alpha \rceil$ subpaths, each having d^{reg} -distance $\leq D - d(r, w)$.

Make each subpath a rooted path by prepending r. Recall $d^{reg}(r, x) = 0$ for all $x \in V$.

Make each subpath a rooted path by prepending r. Recall $d^{reg}(r, x) = 0$ for all $x \in V$.

Any of these r-rooted subpaths P' ending at, say, v has length

$$d^{reg}(P')+d(r,v)\leq (D-d(r,w))+d(r,v)\leq D.$$

Make each subpath a rooted path by prepending r. Recall $d^{reg}(r, x) = 0$ for all $x \in V$.

Any of these *r*-rooted subpaths P' ending at, say, *v* has length

$$d^{reg}(P')+d(r,v)\leq (D-d(r,w))+d(r,v)\leq D.$$

So the most profitable path has value $\geq \rho(P)/\lceil \alpha \rceil$.

Before forming the LP, guess the node w on the optimum path that is furthest from r and discard farther nodes.

Before forming the LP, guess the node w on the optimum path that is furthest from r and discard farther nodes.

Variables

We deal with a **bidirected-cut** relaxation of the problem.

- z_v indicating we visit v.
- x_e indicating we use edge/arc e.

Before forming the LP, guess the node w on the optimum path that is furthest from r and discard farther nodes.

Variables

We deal with a **bidirected-cut** relaxation of the problem.

- > z_v indicating we visit v.
- x_e indicating we use edge/arc e.

$$\begin{array}{rcl} \max : & \sum_{v} \rho(v) \cdot z_{v} \\ \text{s.t.} : & x(\delta^{in}(v)) \geq x(\delta^{out}(v)) & v \in V & (\text{preflow}) \\ & x(\delta^{in}(S)) \geq z_{v} & v \in S \subseteq V & (\text{clients reachable}) \\ & x(\delta^{out}(r)) = 1 & (\text{one path}) \\ & z_{w} = 1 & (\text{visits } w) \\ & \sum_{e} d(e) \cdot x_{e} \leq D & (\text{distance bound}) \\ & x, z \geq 0 \end{array}$$

Before forming the LP, guess the node w on the optimum path that is furthest from r and discard farther nodes.

Variables

We deal with a **bidirected-cut** relaxation of the problem.

- z_v indicating we visit v.
- x_e indicating we use edge/arc e.

$$\begin{array}{rcl} \max : & \sum_{v} \rho(v) \cdot z_{v} \\ \mathrm{s.t.} : & x(\delta^{in}(v)) \geq x(\delta^{out}(v)) & v \in V & (\mathsf{preflow}) \\ & x(\delta^{in}(S)) \geq z_{v} & v \in S \subseteq V & (\mathsf{clients reachable}) \\ & x(\delta^{out}(r)) = 1 & (\mathsf{one path}) \\ & z_{w} = 1 & (\mathsf{visits } w) \\ & \sum_{e} d(e) \cdot x_{e} \leq D & (\mathsf{distance bound}) \\ & x, z \geq 0 \end{array}$$

Notes: Can "fold" the guess into the LP to avoid guessing. *i.e.* (x^w, z^w) variables. Can make poly-size using flow variables.

A Decomposition Theorem

Let D = (V + r, A) be a multi-digraph satisfying preflow conditions at each $v \in V$:

 $|\delta^{in}(\mathbf{v})| \geq |\delta^{out}(\mathbf{v})|.$

Let λ_v be the r - v edge connectivity.

Theorem (Bang-Jensen, Frank, and Jackson, 1995)

For any K > 0, there are K arc-disjoint r-branchings where each vertex v lies on min $\{K, \lambda_v\}$ branchings.

The fractional version:

Theorem

The preflow x dominates a convex combination of r-branchings where each $v \in V$ lies on a z_v -weight of these branchings.

Note, w lies on each branching.

Can be found in poly-time [Post and Swamy, 2015].

The Rounding Algorithm

Sample a random branching B in the decomposition.

The expected d()-cost of B is $\leq D$.

The Rounding Algorithm

Double edges not on the r - w path.

The expected d()-cost is $\leq D + (D - d(r, w))$.

The Rounding Algorithm

Of course, shortcut the resulting Eulerian walk to an r - w path.

The expected d()-cost of these paths is still $\leq D + (D - d(r, w))$. Equivalently: The expected $d^{reg}()$ -cost is $\leq 2 \cdot (D - d(r, w))$. Chop into rooted paths with $d^{reg}()$ -distance $\leq D - d(r, w)$. *i.e.* Feasible orienteering solutions!

If the original path P had regret $\alpha_P \cdot (D - d(r, w))$, this creates $\leq \lceil \alpha_P \rceil \leq \alpha_P + 1$ paths.

Chop into rooted paths with $d^{reg}()$ -distance $\leq D - d(r, w)$. *i.e.* Feasible orienteering solutions!

If the original path P had regret $\alpha_P \cdot (D - d(r, w))$, this creates $\leq \lceil \alpha_P \rceil \leq \alpha_P + 1$ paths.

This creates \leq 3 subpaths in expectation as $\mathbf{E}[\alpha_P] \leq 2$.

Chop into rooted paths with $d^{reg}()$ -distance $\leq D - d(r, w)$. *i.e.* Feasible orienteering solutions!

If the original path P had regret $\alpha_P \cdot (D - d(r, w))$, this creates $\leq \lceil \alpha_P \rceil \leq \alpha_P + 1$ paths.

This creates \leq 3 subpaths in expectation as $\mathbf{E}[\alpha_P] \leq 2$.

Some subpath created this way has value $\geq OPT_{LP}/3$.

Algorithm Summary

- 1. Guess the furthest node w.
- 2. Solve the LP.
- 3. Decompose (x, z) into branchings.
- 4. For each branching:
 - Double edges not on the r w path.
 - Shortcut the Eulerian path.
 - Chop into feasible solutions.
- 5. Return the best subpath created.

Algorithm Summary

- 1. Guess the furthest node w.
- 2. Solve the LP.
- 3. Decompose (x, z) into branchings.
- 4. For each branching:
 - Double edges not on the r w path.
 - Shortcut the Eulerian path.
 - Chop into feasible solutions.
- 5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and performing this rounding for each (x^w, z^w) -family of variables.

Algorithm Summary

- 1. Guess the furthest node w.
- 2. Solve the LP.
- 3. Decompose (x, z) into branchings.
- 4. For each branching:
 - Double edges not on the r w path.
 - Shortcut the Eulerian path.
 - Chop into feasible solutions.
- 5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and performing this rounding for each (x^w, z^w) -family of variables.

Comment

Without the guess, the gap is very bad. Even if we just guess the furthest distance but not the node itself!

Point-to-Point Orienteering

Suppose we want an r - t path of bounded length.

Guess the node w on opt. with largest d(r, w) + d(w, t).

Point-to-Point Orienteering

Suppose we want an r - t path of bounded length.

Guess the node w on opt. with largest d(r, w) + d(w, t).

LP: one unit of r - w flow x^L and one unit of w - t flow x^R .

Also z_v^L and z_v^R variables indicating if v is visited before w or after w, respectively.

To round it, the x^{L} -flow is a preflow from r with cost at most D - d(w, t), so do as before.

This produces a path ending at some v with length

$$\leq D - d(w,t) + d(r,v) - d(r,w).$$

To round it, the x^{L} -flow is a preflow from r with cost at most D - d(w, t), so do as before.

This produces a path ending at some v with length

$$\leq D - d(w,t) + d(r,v) - d(r,w).$$

Extending from v to an r - t path yields a path with distance

$$D+[d(r,v)+d(v,t)]-[d(r,w)+d(w,t)] \leq D$$

with at least 1/3 the value of z^{L} .

The best solution overall has value $\geq OPT_{LP}/6$.

The best solution overall has value $\geq OPT_{LP}/6$.

Wrapping Up

Recent: One can even avoid solving the LP; consider **Rooted Orienteering** again.

The best solution overall has value $\geq OPT_{LP}/6$.

Wrapping Up

Recent: One can even avoid solving the LP; consider **Rooted Orienteering** again.

Post and Swamy describe a combinatorial, primal-dual algorithm for the Prize-Collecting Arborescence problem that finds a solution with cost \leq the optimum prize-collecting path solution..

The best solution overall has value $\geq OPT_{LP}/6$.

Wrapping Up

Recent: One can even avoid solving the LP; consider **Rooted Orienteering** again.

Post and Swamy describe a combinatorial, primal-dual algorithm for the Prize-Collecting Arborescence problem that finds a solution with cost \leq the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint "solution": two branchings spanning the guess w with "average" cost $\leq D$ and average profit $\geq OPT$.

The best solution overall has value $\geq OPT_{LP}/6$.

Wrapping Up

Recent: One can even avoid solving the LP; consider **Rooted Orienteering** again.

Post and Swamy describe a combinatorial, primal-dual algorithm for the Prize-Collecting Arborescence problem that finds a solution with cost \leq the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint "solution": two branchings spanning the guess w with "average" cost $\leq D$ and average profit $\geq OPT$.

All done! Thank You