# Compact, Provably-Good LP Relaxations for Orienteering and RVRP 

Zachary Friggstad

with

Chaitanya Swamy

BIRS TSP Workshop - 2018

## Orienteering

Starting from Corbet Hall, visit as many sights in Banff during the Wednesday break.


## Orienteering

Starting from Corbet Hall, visit as many sights in Banff during the Wednesday break.

$\bigcirc$

## Rooted Orienteering

Given metric distances $d()$ over points $V \cup\{r\}$ where:

- $V$ - clients
- $r$-depot

Each $v \in V$ has a reward $\rho(v) \geq 0$. Also have a distance bound $D \geq 0$.


## Rooted Orienteering

Given metric distances $d()$ over points $V \cup\{r\}$ where:

- $V$ - clients
- $r$-depot

Each $v \in V$ has a reward $\rho(v) \geq 0$. Also have a distance bound $D \geq 0$.


Objective
Find an $r$-rooted path $P$ with $d(P) \leq D$ of maximum reward $\rho(P)$.

## Rooted Orienteering

Given metric distances $d()$ over points $V \cup\{r\}$ where:

- $V$ - clients
- $r$-depot

Each $v \in V$ has a reward $\rho(v) \geq 0$. Also have a distance bound $D \geq 0$.


Objective
Find an $r$-rooted path $P$ with $d(P) \leq D$ of maximum reward $\rho(P)$.
If an end vertex $t$ is also specified (could be $t=r$ ), we call this Point-to-Point Orienteering.

## A Brief History

- First, a 4-approximation for rooted orienteering [Blum et al, 1994].
- Then, a 3-approximation for Point-to-Point Orienteering. [Bansal et al, 2004].
- The best is a $(2+\epsilon)$ for Point-to-Point. [Chekuri, Korula, and Pal, 2012].


## A Brief History

- First, a 4-approximation for rooted orienteering [Blum et al, 1994].
- Then, a 3-approximation for Point-to-Point Orienteering. [Bansal et al, 2004].
- The best is a $(2+\epsilon)$ for Point-to-Point. [Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

- An $O\left(\log ^{2} O P T\right)$-approximation. [Chekuri, Korula, and Pal, 2007].
- An $O(\rho \cdot \log n)$-approximation: $\rho=$ ATSP integrality gap. [Nagarajan and Ravi, 2007].
At the time, $\rho=O(\log n)$ but now we know better!


## A Brief History

- First, a 4-approximation for rooted orienteering [Blum et al, 1994].
- Then, a 3-approximation for Point-to-Point Orienteering. [Bansal et al, 2004].
- The best is a $(2+\epsilon)$ for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

- An $O\left(\log ^{2} O P T\right)$-approximation. [Chekuri, Korula, and Pal, 2007].
- An $O(\rho \cdot \log n)$-approximation: $\rho=$ ATSP integrality gap. [Nagarajan and Ravi, 2007].
At the time, $\rho=O(\log n)$ but now we know better!

Notice: The improved integrality gap bound for ATSP led to an improved approximation for a different problem!

## Specific Results

Poly-size LP relaxations with the following integrality gap bounds.

- Rooted Orienteering: 3
- Point-to-Point Orienteering: 6
- RVRP: A natural relaxation with a gap of 27, an unnatural relaxation with a gap of 15 .
This beats a 28.86-approximation that used a large configuration LP [F. and Swamy, 2014].


## The Regret Metric

We shift focus to a new metric called the regret metric.

$$
d^{r e g}(u, v):=d(r, u)+d(u, v)-d(r, v) .
$$

How much longer is $r \rightarrow u \rightarrow v$ than $r \rightarrow v$ directly?


$$
d^{r e g}(u, v)=3+5-6=2
$$

## The Regret Metric

We shift focus to a new metric called the regret metric.

$$
d^{r e g}(u, v):=d(r, u)+d(u, v)-d(r, v) .
$$

How much longer is $r \rightarrow u \rightarrow v$ than $r \rightarrow v$ directly?


$$
d^{r e g}(u, v)=3+5-6=2
$$

Key Properties:

- For any $v \in V, d^{r e g}(r, v)=0$.
- For any $r \rightarrow v$ path $P, d^{r e g}(P)=d(P)-d(r, v)$.


## Pruning w.r.t. Regret

Before presenting the LP, we briefly discuss a slightly weaker goal.
Observe a rooted $r-w$ path $P$ is a feasible orienteering solution iff $d^{r e g}(P) \leq D-d(r, v)$.

Now suppose $P$ is an $r-w$ path with $d^{r e g}(P) \leq \alpha \cdot(D-d(r, w))$.


## Claim

If $w$ has maximum distance from $r$ among all clients, we can chop $P$ to a feasible solution with value $\geq \rho(P) /\lceil\alpha\rceil$.

## Pruning w.r.t. Regret

First, break $P-\{r\}$ into $\lceil\alpha\rceil$ subpaths, each having $d^{\text {reg }}$-distance $\leq D-d(r, w)$.


## Pruning w.r.t. Regret

Make each subpath a rooted path by prepending $r$. Recall $d^{\text {reg }}(r, x)=0$ for all $x \in V$.


## Pruning w.r.t. Regret

Make each subpath a rooted path by prepending $r$. Recall $d^{\text {reg }}(r, x)=0$ for all $x \in V$.


Any of these $r$-rooted subpaths $P^{\prime}$ ending at, say, $v$ has length

$$
d^{r e g}\left(P^{\prime}\right)+d(r, v) \leq(D-d(r, w))+d(r, v) \leq D
$$

## Pruning w.r.t. Regret

Make each subpath a rooted path by prepending $r$. Recall $d^{r e g}(r, x)=0$ for all $x \in V$.


Any of these $r$-rooted subpaths $P^{\prime}$ ending at, say, $v$ has length

$$
d^{r e g}\left(P^{\prime}\right)+d(r, v) \leq(D-d(r, w))+d(r, v) \leq D
$$

So the most profitable path has value $\geq \rho(P) /\lceil\alpha\rceil$.

## The LP

Before forming the LP, guess the node $w$ on the optimum path that is furthest from $r$ and discard farther nodes.

## The LP

Before forming the LP, guess the node $w$ on the optimum path that is furthest from $r$ and discard farther nodes.

## Variables

We deal with a bidirected-cut relaxation of the problem.

- $z_{v}$ - indicating we visit $v$.
- $x_{e}$ - indicating we use edge/arc $e$.


## The LP

Before forming the LP, guess the node $w$ on the optimum path that is furthest from $r$ and discard farther nodes.

## Variables

We deal with a bidirected-cut relaxation of the problem.

- $z_{v}$ - indicating we visit $v$.
- $x_{e}$ - indicating we use edge/arc $e$.

$$
\begin{array}{rlrlrl}
\max : & \sum_{v} \rho(v) \cdot z_{v} & & & \\
\text { s.t. : } & x\left(\delta^{\text {in }}(v)\right) & \geq x\left(\delta^{\text {out }}(v)\right) & v \in V & & \text { (preflow) } \\
x\left(\text { in }^{\text {in }}(S)\right) & \geq z_{v} & v \in S \subseteq V & & \text { (clients reachable) } \\
x\left(\delta^{\text {out }}(r)\right) & =1 & & \text { (one path) } \\
z_{w} & =1 & & \text { (visits } w \text { ) } \\
& \sum_{e} d(e) \cdot x_{e} & \leq D & & \text { (distance bound) } \\
x, z & \geq 0 & & &
\end{array}
$$

## The LP

Before forming the LP, guess the node $w$ on the optimum path that is furthest from $r$ and discard farther nodes.

## Variables

We deal with a bidirected-cut relaxation of the problem.

- $z_{v}$ - indicating we visit $v$.
- $x_{e}$ - indicating we use edge/arc e.

$$
\begin{array}{rlrlrl}
\max : & \sum_{v} \rho(v) \cdot z_{v} & & & & \\
\text { s.t. : } & x\left(\delta^{\text {in }}(v)\right) & \geq x\left(\delta^{\text {out }}(v)\right) & v \in V & & \text { (preflow) } \\
x\left(\delta^{\text {in }}(S)\right) & \geq z_{v} & v \in S \subseteq V & & \text { (clients reachable) } \\
x\left(\delta^{\text {out }}(r)\right) & =1 & & \text { (one path) } \\
z_{w} & =1 & & \text { (visits } w \text { ) } \\
& \sum_{e} d(e) \cdot x_{e} & \leq D & & \text { (distance bound) } \\
x, z & \geq 0 & & &
\end{array}
$$

Notes: Can "fold" the guess into the LP to avoid guessing. i.e. $\left(x^{w}, z^{w}\right)$ variables. Can make poly-size using flow variables.

## A Decomposition Theorem

Let $D=(V+r, A)$ be a multi-digraph satisfying preflow conditions at each $v \in V$ :

$$
\left|\delta^{i n}(v)\right| \geq\left|\delta^{o u t}(v)\right|
$$

Let $\lambda_{v}$ be the $r-v$ edge connectivity.

## Theorem (Bang-Jensen, Frank, and Jackson, 1995)

For any $K>0$, there are $K$ arc-disjoint $r$-branchings where each vertex $v$ lies on $\min \left\{K, \lambda_{v}\right\}$ branchings.


The fractional version:

## Theorem

The preflow $x$ dominates a convex combination of $r$-branchings where each $v \in V$ lies on a $z_{v}$-weight of these branchings.

Note, w lies on each branching.


Can be found in poly-time [Post and Swamy, 2015].

## The Rounding Algorithm

Sample a random branching $B$ in the decomposition.


The expected $d()$-cost of $B$ is $\leq D$.

## The Rounding Algorithm

Double edges not on the $r-w$ path.


The expected $d()$-cost is $\leq D+(D-d(r, w))$.

## The Rounding Algorithm

Of course, shortcut the resulting Eulerian walk to an $r-w$ path.


The expected $d()$-cost of these paths is still $\leq D+(D-d(r, w))$.
Equivalently: The expected $d^{r e g}()$-cost is $\leq 2 \cdot(D-d(r, w))$.

Chop into rooted paths with $d^{r e g}()$-distance $\leq D-d(r, w)$. i.e. Feasible orienteering solutions!


If the original path $P$ had regret $\alpha_{P} \cdot(D-d(r, w))$, this creates
$\leq\left\lceil\alpha_{P}\right\rceil \leq \alpha_{P}+1$ paths.

Chop into rooted paths with $d^{r e g}()$-distance $\leq D-d(r, w)$. i.e. Feasible orienteering solutions!


If the original path $P$ had regret $\alpha_{P} \cdot(D-d(r, w))$, this creates $\leq\left\lceil\alpha_{P}\right\rceil \leq \alpha_{P}+1$ paths.

This creates $\leq 3$ subpaths in expectation as $\mathbf{E}\left[\alpha_{P}\right] \leq 2$.

Chop into rooted paths with $d^{r e g}()$-distance $\leq D-d(r, w)$. i.e. Feasible orienteering solutions!


If the original path $P$ had regret $\alpha_{P} \cdot(D-d(r, w))$, this creates $\leq\left\lceil\alpha_{P}\right\rceil \leq \alpha_{P}+1$ paths.

This creates $\leq 3$ subpaths in expectation as $\mathbf{E}\left[\alpha_{P}\right] \leq 2$.

Some subpath created this way has value $\geq O P T_{L P} / 3$.

## Algorithm Summary

1. Guess the furthest node w.
2. Solve the LP.
3. Decompose $(x, z)$ into branchings.
4. For each branching:

- Double edges not on the $r-w$ path.
- Shortcut the Eulerian path.
- Chop into feasible solutions.

5. Return the best subpath created.

## Algorithm Summary

1. Guess the furthest node w.
2. Solve the LP.
3. Decompose $(x, z)$ into branchings.
4. For each branching:

- Double edges not on the $r-w$ path.
- Shortcut the Eulerian path.
- Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding $w$ into the LP and performing this rounding for each $\left(x^{w}, z^{w}\right)$-family of variables.

## Algorithm Summary

1. Guess the furthest node $w$.
2. Solve the LP.
3. Decompose $(x, z)$ into branchings.
4. For each branching:

- Double edges not on the $r-w$ path.
- Shortcut the Eulerian path.
- Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding $w$ into the LP and performing this rounding for each $\left(x^{w}, z^{w}\right)$-family of variables.

## Comment

Without the guess, the gap is very bad. Even if we just guess the furthest distance but not the node itself!

## Point-to-Point Orienteering

Suppose we want an $r-t$ path of bounded length.


Guess the node $w$ on opt. with largest $d(r, w)+d(w, t)$.

## Point-to-Point Orienteering

Suppose we want an $r-t$ path of bounded length.


Guess the node $w$ on opt. with largest $d(r, w)+d(w, t)$.
LP: one unit of $r-w$ flow $x^{L}$ and one unit of $w-t$ flow $x^{R}$.
Also $z_{v}^{L}$ and $z_{v}^{R}$ variables indicating if $v$ is visited before $w$ or after $w$, respectively.

To round it, the $x^{L}$-flow is a preflow from $r$ with cost at most $D-d(w, t)$, so do as before.

This produces a path ending at some $v$ with length

$$
\leq D-d(w, t)+d(r, v)-d(r, w)
$$



To round it, the $x^{L}$-flow is a preflow from $r$ with cost at most $D-d(w, t)$, so do as before.

This produces a path ending at some $v$ with length

$$
\leq D-d(w, t)+d(r, v)-d(r, w)
$$



Extending from $v$ to an $r-t$ path yields a path with distance

$$
D+[d(r, v)+d(v, t)]-[d(r, w)+d(w, t)] \leq D
$$

with at least $1 / 3$ the value of $z^{L}$.

Similarly, the reverse of $x^{R}$ is a preflow out of $t$ so we can get a feasible solution with at least $1 / 3$ the value of $z^{R}$.

The best solution overall has value $\geq O P T_{L P} / 6$.

Similarly, the reverse of $x^{R}$ is a preflow out of $t$ so we can get a feasible solution with at least $1 / 3$ the value of $z^{R}$.

The best solution overall has value $\geq O P T_{L P} / 6$.

## Wrapping Up

Recent: One can even avoid solving the LP; consider Rooted Orienteering again.

Similarly, the reverse of $x^{R}$ is a preflow out of $t$ so we can get a feasible solution with at least $1 / 3$ the value of $z^{R}$.

The best solution overall has value $\geq O P T_{L P} / 6$.

## Wrapping Up

Recent: One can even avoid solving the LP; consider Rooted Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm for the Prize-Collecting Arborescence problem that finds a solution with cost $\leq$ the optimum prize-collecting path solution..

Similarly, the reverse of $x^{R}$ is a preflow out of $t$ so we can get a feasible solution with at least $1 / 3$ the value of $z^{R}$.

The best solution overall has value $\geq O P T_{L P} / 6$.

## Wrapping Up

Recent: One can even avoid solving the LP; consider Rooted Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm for the Prize-Collecting Arborescence problem that finds a solution with cost $\leq$ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint "solution": two branchings spanning the guess $w$ with "average" cost $\leq D$ and average profit $\geq O P T$.

Similarly, the reverse of $x^{R}$ is a preflow out of $t$ so we can get a feasible solution with at least $1 / 3$ the value of $z^{R}$.

The best solution overall has value $\geq O P T_{L P} / 6$.

## Wrapping Up

Recent: One can even avoid solving the LP; consider Rooted Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm for the Prize-Collecting Arborescence problem that finds a solution with cost $\leq$ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint "solution": two branchings spanning the guess $w$ with "average" cost $\leq D$ and average profit $\geq O P T$.

## All done! <br> Thank You

