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A convex body K in Rn is a compact, convex set with nonempty interior.

A convex floating body Kδ for a convex body K is the intersection of all
halfspaces whose defining hyperplanes cut off a set of volume δ from K .

Kδ =
⋂

voln(K∩H−)≤δ

H+
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It has been shown that [S.-Werner]

lim
δ→0+

voln(K )− voln(Kδ)

δ
2

n+1

=
1

2

(
n + 1

voln−1(Bn−1
2 )

) 2
n+1 ∫

∂K
κ(x)

1
n+1 dµ∂K (x),

where κ(x) is the generalized Gauß–Kronecker curvature, µ∂K denotes the
surface measure on the boundary ∂K and Bn−1

2 is the (n − 1)-dimensional
Euclidean unit ball. We put

as(K ) =

∫
∂K
κ(x)

1
n+1 dµ∂K (x)
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Definition (Faces and Flags)

Let P be a convex polytope in Rn.

We call a subset F of P a face of P, if
for all x , y ∈ P with 1

2(x + y) ∈ F we have x , y ∈ F .
We call F an i-face, i = 0, . . . , n, of P if F spans an i-dimensional affine
subspace. The set of faces, respectively i-faces, of P is denoted by
face(P), respectively facei (P). A flag of P is a tuple F = (F0, . . . ,Fn−1)
of faces, such that for all i = 0, . . . , n − 1 we have

(i) Fi is an i-dimensional face of P.

(ii) Fi ⊂ Fi+1.

We call the n + 1-tuple (∅,F0, . . . ,Fn−1,P) a complete flag. The set of
flags of P is denoted by flag(P).
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Example

(i) The flag number of a simplex is (n + 1)!.

(ii) The flag number of a cross polytope is 2nn!.

(iii) The flag number of a cube is 2nn!.
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Let P be a convex polytope in Rn that contains the origin as an interior
point.

The conjugate face of a face F of P is

F̂ = {x ∈ P◦|∀y ∈ F : 〈x , y〉 = 1}.

Lemma

Let F be a k-dimensional face of P. Then F̂ is a n − 1− k-dimensional
face of P◦.

Therefore, if F = (F0, . . . ,Fn−1) is a flag of P, then F̂ = (F̂n−1, . . . , F̂0) is
a flag of P◦.
In particular, the number of flags of P and P◦ are the same.
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In [S.] it was shown that for polytopes

lim
δ→0+

voln(P)− voln(Pδ)

δ
(
ln 1

δ

)n−1 =
|flag(P)|
n! nn−1

,

where |flag(P)| is the total number of complete flags of P.
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Why is the last equality interesting?

The affine isoperimetric inequality is

as(K )

as(Bn
2 )
≤
(

voln(K )

voln(Bn
2 )

) n−1
n+1

The affine isoperimetric inequality gives the Blaschke-Santaló inequality

voln(K ) voln(K ◦) ≤ voln(Bn
2 )2,
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The Mahler conjecture says that for all centrally symmetric, convex bodies
K

voln(Cn) voln(C ◦n ) ≤ voln(K ) voln(K ◦)

This gives rise to the question, whether there is an analogous inequality to
the affine isoperimetric inequality that gives the Mahler conjecture?
It cannot involve the affine surface area, since the affine surface area of a
polytope is 0.
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On the other hand,

lim
δ→0+
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δ
(
ln 1

δ
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This suggests that
|flag(P)|

is something like a polytopal affine surface area.
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A polytopal affine isoperimetric inequality would be for arbitrary convex
polytopes P

flag(S) ≤ flag(P),

where S is a simplex. This is easily proved by induction.

For centrally symmetric, convex polytopes

flag(Cn) ≤ flag(P),

where Cn is the n-dimensional cube. We have

2nn! = flag(Cn) = flag(Hanner polytope in Rn).

Kalai conjectured the inequality for centrally symmetric polytopes.

So the above conjecture and the Mahler conjecture both hold for centrally
symmetric, convex polytopes with equality for Hanner polytopes. This may
be a conincidence, but I guess it is more than a coincidence.
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F. Besau, C. Schütt and E. Werner Floating Bodies and Flag Numbers May 2018 10 / 16



Bárány proved that the inequality for centrally symmetric convex
polytopes holds for simplicial polytopes.

Figiel-Lindenstrauss-Milman showed

log
|F0(P)|

2
log
|Fn−1(P)|

2
≥ c · n

It follows that there is c > 1 such that

flag(P) ≥ c
√
n
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Let φ : K → (0,∞) be a continuous function and denote by Φ the
measure with density φ, i.e., for every Borel A ⊂ K

Φ(A) =

∫
A
φ(x)dλn(x).

The weighted floating body is defined by

Kφ
δ =

⋂{
H+|Φ(K ∩ H−) ≤ δ

}
,

Clearly, if φ ≡ 1, then the weighted floating body is the convex floating
body, i.e., Kφ

δ = Kδ.
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Theorem

Let P be a n-dimensional convex polytope and let φ, ψ : P → (0,∞) be
continuous functions. Then

lim
δ→0+

Ψ(P)−Ψ(Pφδ )

δ
(
ln 1

δ

)n−1 =
∑

v∈vertP

ψ(v)

φ(v)

|flagv P|
n! nn−1

,

where vertP is the set of vertices of P and |flagv P| is the number of flags
that have v as a vertex.
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We describe the 2-dimensional case.

Figure:
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Let x ∈ ∂P and let ∆(x) be the distance of x to ∂Pδ

voln(P)− voln(Pδ) ∼
∫
∂P

∆(x)dµ∂P(x)

Let F be a face of P and x ∈ F . Then

∆(x) ∼

{
δ
|F | if x is the middle of F√
δ if x is a vertex

We conclude that the volume of the set P \ Pδ sits nearby the vertices.
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Figure:
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