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Trade-offs are common: improving performance in one task
undermines performance in another

The whole organism is so tied together that when slight variations in one part occur, and are
accumulated through natural selection, other parts become modified (Darwin)

from Roff & Fairbairn, J Evol
Biol 2006
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Trade-offs are often driven by allocation of a finite resource (the Y-model).



Partly inspired by growth of yeast on mixtures of sugars, we wish to
better understand how trade-offs determine evolution
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We consider growth in a chemostat with two potentially rate-limiting
nutrients
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Cells have a discrete phenotype — the degree of specialization for each
of the two nutrients — that exhibits a trade-oft
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To allow the substrates to have different yields, cells grow by passing
through discrete states of growth
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The yield of a substrate is the amount by which the cells’s state of growth increases
on metabolizing the substrate.



Evolution is modelled with a weak rate of mutation
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Mutations only arise after the chemostat reaches steady-state and there is then
competition between the resident and mutant populations.



There are 10 parameters:

Dilution rate of the chemostat

Influx rate into the chemostat of substrates u and v

Maximum rates of import of u and v

Rates of metabolism of u and v

Yields of u and v

Maximum size of mutation

A mutation from s, is equally likely to any s, that obeys
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Cell growth and competition between cells of different phenotypes are
both deterministic

For Ns states of growth, ny(t) = (n1.(t), n2x(), ... . 1N, (1))
and
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To find the network of mutational paths for a given set of parameters,
we first determine the invasion map

An illustrative example with 3 phenotypes:
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We next determine the conditional probabilities that one phenotype
can be reached from another by mutation

An example with a small maximum size of mutation:
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E.g. phenotype A can only mutate into phenotype B.



Combining the invasion map with the matrix of possible mutations
gives the network of mutational paths
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This network of mutational paths has two recurrent states (squares):
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The network of mutational paths changes if the maximum size of

mutation changes
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The network of mutational paths has now one recurrent state (square):
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We characterize networks of mutational paths by their long-term,
evolutionary outcomes (types of recurrent states)
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Example: multiple recurrent states are possible
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Increasing the maximum size of mutations changes the network and
the recurrent states
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Context (the state of the environment) partly determines the successtful penotypes.



Multiple recurrent states are possible
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Multiple recurrent states that are connected undergo evolutionary
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Evolution can be bottle-necked
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Two highly connected subnetworks are themselves connected by only a few
mutation-invasion events.



As a control, we run stochastic simulations with a continuous
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The recurrent states persist
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The recurrent states persist
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Discrete phenotypes can however preserve some recurrent states
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but need not
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s the type of recurrent state determined by
the environment and nutrients?



Fixing one parameter and varying the others, there is no clear pattern
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Fixing one parameter and varying the others, there is no clear pattern
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Even a hierarchical classification scheme performs poorly
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The average recall is 0.78.



The evolutionary outcomes form clusters, but these clusters are not
distinct
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Monomorphic specialists
permeate parameter space
and are typically close to all
other outcomes

Environmental perturbations
therefore are more likely to
reduce rather than increase
diversity.
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s the evolutionary outcome determined by the
network’s mutational paths?



We characterize a network by its distribution of mutational paths
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The repeatability of adaptation (the path entropy) depends on the
evolutionary outcome
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We use six properties to characterize the distribution of mutational

paths
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Combining the six properties of the mutational pathways, we can
distinguish different evolutionary outcomes
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We use a linear discriminant analysis.




Can we predict the evolutionary outcome of an
incomplete network?
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We consider six centralities for each vertex (a measure of its importance)

In-degree: number of edges arriving
Out-degree: number of edges leaving

Closeness: reciprocal of the average shortest distance to all other
vertices (potential of diversitfication)

Betweeness: a measure of the number of shortest paths that
pass through a vertex (potential of bottlenecking)

HITS hub & authority: hubs can be invaded by multiple mutants;
authorities are the outcomes of multiple different invasion events

HITS
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Changes in the network’s topology are reflected in the statistics of
the centralities
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A good statistic converges quickly and is discriminatory

Three examples:

Mean of the feature error
(the distance between the
statistic’s current value and its
value on completion of the
network)

feature mutual
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Evolutionary outcomes can be predicted from incomplete networks

Network completion
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Summary

We develop an eco-evolutionary model with a trade-off that
has surprisingly diverse evolutionary outcomes

Working with the networks of mutational paths is insightful
Evolutionary outcomes cannot be determined from
environmental conditions, but can be determined from their

networks of mutational paths even for incomplete networks

The dynamics of adaptation is a key variable for predicting
long-term evolutionary behaviours
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relevant elements

true negatives

selected elements

How many selected How many relevant
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