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The whole organism is so tied together that when slight variations in one part occur, and are 
accumulated through natural selection, other parts become modified (Darwin)

from Roff & Fairbairn, J Evol 
Biol 2006

the genetic correlation between traits is exactly )1. This
condition is also specified, as noted above, by one of the
eigenvalues of the matrix being zero. To obtain a visual
understanding of this condition consider what happens if
we rotate the axes such that they now fall along the
major and minor axes of the bivariate normal distribu-
tion (Fig. 1): the equations specifying this rotation are
given by the eigenvectors of the matrix. We now have
two uncorrelated traits made up from a linear combina-
tion of the original two correlated traits, with the
eigenvalues being the genetic variances of these two
synthesized traits (Kirkpatrick & Lofsvold, 1992). When
r ¼ )1 there is no variation in the direction of the minor
axis (the second eigenvalue) and thus selection will be
totally ineffective in producing a change in this direction.
Note, however, that there can still be genetic variation
for both of the original traits.

When the genetic correlation is greater than )1, the
above scenario presents a logical conundrum, because if
both traits covary positively with fitness there is appar-
ently nothing stopping the population moving off to ever
increasing values of each trait. We postulate that this
does not happen because the variation about the line
does not truly reflect a bivariate normal distribution but
is an approximation built up from the interaction of
multiple traits, which together do prevent evolution in
particular directions, or at least so biases it that particular
directions are highly unlikely. In other words, the
statistical description of the trade-off is a consequence
of a functional trade-off in multivariate space being
projected onto a two-dimensional surface. To illustrate
this, consider the situation in which three traits are
functionally constrained to lie upon a plane as shown in
Fig. 2. It is immediately obvious that selection cannot
drive the population to any combination of trait values
that lie off the plane, although there can be genetic
variation for all three traits. However, if we project the
observed trait values onto the X-Y plane (i.e. rotate the
axes such that the Z-axis is perpendicular to the surface
of the page; Fig. 2), we observe a scatter of points with an
overall trade-off indicated by a statistically significant

negative correlation between traits X and Y that is greater
than )1. From this we could, incorrectly conclude that
evolution in any direction is possible. In fact, depending
on the distribution of points, the projection of points onto
the X-Y plane could produce a zero correlation, and thus
it could appear that there was no trade-off between traits
X and Y. This is what Pease & Bull (1988) referred to as
‘the problem of dimensionality’. A bivariate genetic
correlation less than )1 is clearly insufficient evidence
for the conclusion that all evolutionary trajectories are
possible. In general, statistical representations of bivariate
trade-offs permit, at best, only weak inferences about
how constrained, in the sense of being biased, evolu-
tionary trajectories are likely to be. While it is probably
true that, in most cases, selection in the direction of the
largest eigenvalue will be the fastest, failure to include
other traits could still lead to misleading predictions.

Even if there are no eigenvalues that are exactly zero,
movement along a particular evolutionary trajectory may
be very slow if the eigenvalue in that direction is very
small relative to the other eigenvalues (Blows &
Hoffmann, 2005). If we wish to make statements about
the importance of particular trade-offs in modulating and
directing evolutionary change, it is necessary to know
how this trade-off is integrated with other traits, and thus
the extent to which variation observed on the X-Y plane
actually represents variation that is in actuality more
restrictive than implied by the simple bivariate statistical
relationship. While this is possible, in principle, by
measuring the variances and covariances of a wide suite
of traits, such an approach is time consuming, potentially
costly and not guaranteed to include the requisite suite of
traits. We suggest that a better approach is to combine a
quantitative genetic analysis with a phenotypic analysis
that focuses on the underlying functional relationships,
paying particular attention to the possible influence of
unmeasured variables (path analysis may be of consider-
able use in this). Charlesworth’s (1990) analysis of a
hypothetical life history with functional constraints
illustrates this approach, as does the theoretical and
empirical analyses of the evolution of growth trajectories
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Fig. 1 A quantitative genetic view of a

trade-off between traits X and Y shown from

two orientations. Each plot shows the

bivariate normal probability distribution of

breeding values for each trait (where P(X,Y)

denotes the probability of the XY combina-

tion), with the left plot showing it in ‘con-

tour’ perspective and the right plot showing

it in ‘3D’ mode. The solid lines in the left plot

show the major and minor axes.
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Trade-offs are common: improving performance in one task 
undermines performance in another

Trade-offs are often driven by allocation of a finite resource (the Y-model).



Figure 2. A short-lag strain induces GAL genes hours before the diauxic shift. (A) Top: Schematic of
GAL1pr-YFP transcriptional reporter and cartoon of fluorescence distribution as measured by flow cytometry.
Bottom: Schematic of diauxic growth GAL gene induction experiment. (B) Definitions of induction metrics, tlow
and thigh, when reporter expression is at low but above-basal or near-maximal levels, respectively. Diauxic
growth for strains (C) YJM978 and (D) BC187, with GAL reporter expression distributions (gray shading),
GAL reporter median (red line), glucose concentration (purple circles), and galactose concentration (orange
circles). Time is defined relative to the moment when the culture achieves a density of 106 cells/ml (S4 Fig.).
Purple and orange lines are smoothing-spline fits to glucose and galactose measurements. Dotted purple line
indicates time of glucose exhaustion, calculated using a local linear fit (Materials and Methods). Data shown
in (B) and (C) represent two replicate experiments. GAL reporter expression distribution is shown for only one
of the two replicates. (E) Comparison of induction start time, tlow, and near-maximal induction time, thigh, for
YJM978 (red bars) and BC187 (blue bars) cultures. Bars and error bars represent the mean and range,
respectively, of two replicates.

doi:10.1371/journal.pbio.1002041.g002
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Partly inspired by growth of yeast on mixtures of sugars, we wish to 
better understand how trade-offs determine evolution

from Wang et al., PLoS 
Biology 2015



proportional to the concentrations of these substrates in the
chemostat, and the imported substrates are metabolized to give
biomass to the cell, which divides once a threshold of biomass is
crossed. We therefore structure the microbial population into
discrete states of growth through which the cell progresses before
replicating. Accordingly, cells that metabolize u and v molecules
transition to a higher state of growth by an integer amount of
states, which we call the substrate’s yield, and replicate when they
exceed a maximum growth state (Fig. 1c).

Mutation-limited adaptation as a Markov process. In our
model, microbes will almost always produce offspring that inherit
their parents’ metabolic specialization, but, rarely, a mutation
may result in a phenotypically distinct population that will
compete with the (resident) parent population or community. We
follow the theory of adaptive dynamics to include phenotypic
mutations only on evolutionary timescales11, 12; i.e., mutations
are sufficiently rare that mutants emerge only after the chemo-
stat’s ecology has reached steady-state. This assumption is typi-
cally referred to as the ‘weak mutation’ limit29 and separates the
ecological and evolutionary timescales. If, for example, the che-
mostat contains a single phenotypic population then invasion by
a mutant has three possible outcomes: the mutant becomes
extinct, or the resident becomes extinct, or the two phenotypes
co-exist in a community (Fig. 1d). In our spatially homogeneous
model at most two populations can co-exist—following the
competitive exclusion principle30, which states that at most k
species may co-exist on k growth-limiting substrates.

Simulating the map of invasion events. When adaptation is
limited by the availability of mutations, mutational paths emerge
according to the sequence and outcome of mutation and invasion
events. Successful invasion of a resident community by a new
mutant modifies the chemostat’s environment through changing

the steady-state levels of the available substrates. Therefore the
context in which future mutation and invasion events occur is
modified through the construction and destruction of ecological
niches2, 8, 18, 23, 31.

To generate the mutational paths, we first create an invasion
map for the outcome of competitions between all resident
communities and all mutants. To do so efficiently, we developed a
dynamic programming algorithm to simulate invasion events
assuming rare mutations on a discretized phenotype space
(Fig. 2a). Briefly, the algorithm treats the invasion map as a tree:
nodes are communities of phenotypes that can co-exist at steady-
state and are connected by edges representing single mutation
and invasion events. The algorithm iteratively constructs the tree
by perturbing the steady-state of the community at each parent
node to introduce a small population of mutants. The resulting
competition is simulated (Methods section), and the outcome at
the new steady-state is analyzed and recorded as a connected
child node. We terminate a path of mutation and invasion events
if the path arrives at a node that has already been placed in the
tree. By doing so, we avoid redundant simulations because the
sub-trees below two identical nodes are always the same. The
algorithm completes when all paths have terminated (Supple-
mentary Note 3).

We found that invasion fitness—the ability of a phenotype to
invade another when initially rare—was dependent on the
frequency and type of other phenotypes in the environment.
For example, in the example shown in Fig. 2a, phenotype C can
always invade and drive A to extinction in pairwise competition;
the converse is not possible. Phenotypes B and C are mutually
invasible and establish a community of co-residents. This
community can be invaded by phenotype A, driving B to
extinction, thereby establishing a co-existence with phenotype C.
The A,C community would not have been possible without the
intermediate environmental modification effected by phenotype
B. Frequency-dependent effects through niche creation and
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Fig. 1 Modeling microbial ecology in the chemostat with a metabolic trade-off between two substrates. a The chemostat is a homogeneous environment.
The two substrates (u and v) are added continuously, and cells and substrates are diluted at a constant rate. b Cells specializing in using one substrate
cannot also specialize in the other. The metabolic specialization of each cell is parameterized by a number, s, between zero and one: values near zero
indicate a v-specialist; values near one indicate u-specialist; intermediate values are generalists. c To replicate, cells must progress through a series of
discrete states of growth by metabolizing substrates. The yield of a substrate is the amount by which a cell’s state of growth increases by metabolizing the
substrate. Cells replicate when their growth state exceeds a critical value. When a cell encounters a u substrate molecule, the molecule is imported with
probability of s; when a cell encounters a v substrate molecule, the molecule is imported with a probability of (1 − s). d A rare mutation leads to competition
between the (high abundance) resident phenotype and the (low abundance) invading phenotype and has three possible qualitative outcomes
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We consider growth in a chemostat with two potentially rate-limiting 
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proportional to the concentrations of these substrates in the
chemostat, and the imported substrates are metabolized to give
biomass to the cell, which divides once a threshold of biomass is
crossed. We therefore structure the microbial population into
discrete states of growth through which the cell progresses before
replicating. Accordingly, cells that metabolize u and v molecules
transition to a higher state of growth by an integer amount of
states, which we call the substrate’s yield, and replicate when they
exceed a maximum growth state (Fig. 1c).

Mutation-limited adaptation as a Markov process. In our
model, microbes will almost always produce offspring that inherit
their parents’ metabolic specialization, but, rarely, a mutation
may result in a phenotypically distinct population that will
compete with the (resident) parent population or community. We
follow the theory of adaptive dynamics to include phenotypic
mutations only on evolutionary timescales11, 12; i.e., mutations
are sufficiently rare that mutants emerge only after the chemo-
stat’s ecology has reached steady-state. This assumption is typi-
cally referred to as the ‘weak mutation’ limit29 and separates the
ecological and evolutionary timescales. If, for example, the che-
mostat contains a single phenotypic population then invasion by
a mutant has three possible outcomes: the mutant becomes
extinct, or the resident becomes extinct, or the two phenotypes
co-exist in a community (Fig. 1d). In our spatially homogeneous
model at most two populations can co-exist—following the
competitive exclusion principle30, which states that at most k
species may co-exist on k growth-limiting substrates.

Simulating the map of invasion events. When adaptation is
limited by the availability of mutations, mutational paths emerge
according to the sequence and outcome of mutation and invasion
events. Successful invasion of a resident community by a new
mutant modifies the chemostat’s environment through changing

the steady-state levels of the available substrates. Therefore the
context in which future mutation and invasion events occur is
modified through the construction and destruction of ecological
niches2, 8, 18, 23, 31.

To generate the mutational paths, we first create an invasion
map for the outcome of competitions between all resident
communities and all mutants. To do so efficiently, we developed a
dynamic programming algorithm to simulate invasion events
assuming rare mutations on a discretized phenotype space
(Fig. 2a). Briefly, the algorithm treats the invasion map as a tree:
nodes are communities of phenotypes that can co-exist at steady-
state and are connected by edges representing single mutation
and invasion events. The algorithm iteratively constructs the tree
by perturbing the steady-state of the community at each parent
node to introduce a small population of mutants. The resulting
competition is simulated (Methods section), and the outcome at
the new steady-state is analyzed and recorded as a connected
child node. We terminate a path of mutation and invasion events
if the path arrives at a node that has already been placed in the
tree. By doing so, we avoid redundant simulations because the
sub-trees below two identical nodes are always the same. The
algorithm completes when all paths have terminated (Supple-
mentary Note 3).

We found that invasion fitness—the ability of a phenotype to
invade another when initially rare—was dependent on the
frequency and type of other phenotypes in the environment.
For example, in the example shown in Fig. 2a, phenotype C can
always invade and drive A to extinction in pairwise competition;
the converse is not possible. Phenotypes B and C are mutually
invasible and establish a community of co-residents. This
community can be invaded by phenotype A, driving B to
extinction, thereby establishing a co-existence with phenotype C.
The A,C community would not have been possible without the
intermediate environmental modification effected by phenotype
B. Frequency-dependent effects through niche creation and
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Fig. 1 Modeling microbial ecology in the chemostat with a metabolic trade-off between two substrates. a The chemostat is a homogeneous environment.
The two substrates (u and v) are added continuously, and cells and substrates are diluted at a constant rate. b Cells specializing in using one substrate
cannot also specialize in the other. The metabolic specialization of each cell is parameterized by a number, s, between zero and one: values near zero
indicate a v-specialist; values near one indicate u-specialist; intermediate values are generalists. c To replicate, cells must progress through a series of
discrete states of growth by metabolizing substrates. The yield of a substrate is the amount by which a cell’s state of growth increases by metabolizing the
substrate. Cells replicate when their growth state exceeds a critical value. When a cell encounters a u substrate molecule, the molecule is imported with
probability of s; when a cell encounters a v substrate molecule, the molecule is imported with a probability of (1 − s). d A rare mutation leads to competition
between the (high abundance) resident phenotype and the (low abundance) invading phenotype and has three possible qualitative outcomes
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proportional to the concentrations of these substrates in the
chemostat, and the imported substrates are metabolized to give
biomass to the cell, which divides once a threshold of biomass is
crossed. We therefore structure the microbial population into
discrete states of growth through which the cell progresses before
replicating. Accordingly, cells that metabolize u and v molecules
transition to a higher state of growth by an integer amount of
states, which we call the substrate’s yield, and replicate when they
exceed a maximum growth state (Fig. 1c).

Mutation-limited adaptation as a Markov process. In our
model, microbes will almost always produce offspring that inherit
their parents’ metabolic specialization, but, rarely, a mutation
may result in a phenotypically distinct population that will
compete with the (resident) parent population or community. We
follow the theory of adaptive dynamics to include phenotypic
mutations only on evolutionary timescales11, 12; i.e., mutations
are sufficiently rare that mutants emerge only after the chemo-
stat’s ecology has reached steady-state. This assumption is typi-
cally referred to as the ‘weak mutation’ limit29 and separates the
ecological and evolutionary timescales. If, for example, the che-
mostat contains a single phenotypic population then invasion by
a mutant has three possible outcomes: the mutant becomes
extinct, or the resident becomes extinct, or the two phenotypes
co-exist in a community (Fig. 1d). In our spatially homogeneous
model at most two populations can co-exist—following the
competitive exclusion principle30, which states that at most k
species may co-exist on k growth-limiting substrates.

Simulating the map of invasion events. When adaptation is
limited by the availability of mutations, mutational paths emerge
according to the sequence and outcome of mutation and invasion
events. Successful invasion of a resident community by a new
mutant modifies the chemostat’s environment through changing

the steady-state levels of the available substrates. Therefore the
context in which future mutation and invasion events occur is
modified through the construction and destruction of ecological
niches2, 8, 18, 23, 31.

To generate the mutational paths, we first create an invasion
map for the outcome of competitions between all resident
communities and all mutants. To do so efficiently, we developed a
dynamic programming algorithm to simulate invasion events
assuming rare mutations on a discretized phenotype space
(Fig. 2a). Briefly, the algorithm treats the invasion map as a tree:
nodes are communities of phenotypes that can co-exist at steady-
state and are connected by edges representing single mutation
and invasion events. The algorithm iteratively constructs the tree
by perturbing the steady-state of the community at each parent
node to introduce a small population of mutants. The resulting
competition is simulated (Methods section), and the outcome at
the new steady-state is analyzed and recorded as a connected
child node. We terminate a path of mutation and invasion events
if the path arrives at a node that has already been placed in the
tree. By doing so, we avoid redundant simulations because the
sub-trees below two identical nodes are always the same. The
algorithm completes when all paths have terminated (Supple-
mentary Note 3).

We found that invasion fitness—the ability of a phenotype to
invade another when initially rare—was dependent on the
frequency and type of other phenotypes in the environment.
For example, in the example shown in Fig. 2a, phenotype C can
always invade and drive A to extinction in pairwise competition;
the converse is not possible. Phenotypes B and C are mutually
invasible and establish a community of co-residents. This
community can be invaded by phenotype A, driving B to
extinction, thereby establishing a co-existence with phenotype C.
The A,C community would not have been possible without the
intermediate environmental modification effected by phenotype
B. Frequency-dependent effects through niche creation and
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Fig. 1 Modeling microbial ecology in the chemostat with a metabolic trade-off between two substrates. a The chemostat is a homogeneous environment.
The two substrates (u and v) are added continuously, and cells and substrates are diluted at a constant rate. b Cells specializing in using one substrate
cannot also specialize in the other. The metabolic specialization of each cell is parameterized by a number, s, between zero and one: values near zero
indicate a v-specialist; values near one indicate u-specialist; intermediate values are generalists. c To replicate, cells must progress through a series of
discrete states of growth by metabolizing substrates. The yield of a substrate is the amount by which a cell’s state of growth increases by metabolizing the
substrate. Cells replicate when their growth state exceeds a critical value. When a cell encounters a u substrate molecule, the molecule is imported with
probability of s; when a cell encounters a v substrate molecule, the molecule is imported with a probability of (1 − s). d A rare mutation leads to competition
between the (high abundance) resident phenotype and the (low abundance) invading phenotype and has three possible qualitative outcomes
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proportional to the concentrations of these substrates in the
chemostat, and the imported substrates are metabolized to give
biomass to the cell, which divides once a threshold of biomass is
crossed. We therefore structure the microbial population into
discrete states of growth through which the cell progresses before
replicating. Accordingly, cells that metabolize u and v molecules
transition to a higher state of growth by an integer amount of
states, which we call the substrate’s yield, and replicate when they
exceed a maximum growth state (Fig. 1c).

Mutation-limited adaptation as a Markov process. In our
model, microbes will almost always produce offspring that inherit
their parents’ metabolic specialization, but, rarely, a mutation
may result in a phenotypically distinct population that will
compete with the (resident) parent population or community. We
follow the theory of adaptive dynamics to include phenotypic
mutations only on evolutionary timescales11, 12; i.e., mutations
are sufficiently rare that mutants emerge only after the chemo-
stat’s ecology has reached steady-state. This assumption is typi-
cally referred to as the ‘weak mutation’ limit29 and separates the
ecological and evolutionary timescales. If, for example, the che-
mostat contains a single phenotypic population then invasion by
a mutant has three possible outcomes: the mutant becomes
extinct, or the resident becomes extinct, or the two phenotypes
co-exist in a community (Fig. 1d). In our spatially homogeneous
model at most two populations can co-exist—following the
competitive exclusion principle30, which states that at most k
species may co-exist on k growth-limiting substrates.

Simulating the map of invasion events. When adaptation is
limited by the availability of mutations, mutational paths emerge
according to the sequence and outcome of mutation and invasion
events. Successful invasion of a resident community by a new
mutant modifies the chemostat’s environment through changing

the steady-state levels of the available substrates. Therefore the
context in which future mutation and invasion events occur is
modified through the construction and destruction of ecological
niches2, 8, 18, 23, 31.

To generate the mutational paths, we first create an invasion
map for the outcome of competitions between all resident
communities and all mutants. To do so efficiently, we developed a
dynamic programming algorithm to simulate invasion events
assuming rare mutations on a discretized phenotype space
(Fig. 2a). Briefly, the algorithm treats the invasion map as a tree:
nodes are communities of phenotypes that can co-exist at steady-
state and are connected by edges representing single mutation
and invasion events. The algorithm iteratively constructs the tree
by perturbing the steady-state of the community at each parent
node to introduce a small population of mutants. The resulting
competition is simulated (Methods section), and the outcome at
the new steady-state is analyzed and recorded as a connected
child node. We terminate a path of mutation and invasion events
if the path arrives at a node that has already been placed in the
tree. By doing so, we avoid redundant simulations because the
sub-trees below two identical nodes are always the same. The
algorithm completes when all paths have terminated (Supple-
mentary Note 3).

We found that invasion fitness—the ability of a phenotype to
invade another when initially rare—was dependent on the
frequency and type of other phenotypes in the environment.
For example, in the example shown in Fig. 2a, phenotype C can
always invade and drive A to extinction in pairwise competition;
the converse is not possible. Phenotypes B and C are mutually
invasible and establish a community of co-residents. This
community can be invaded by phenotype A, driving B to
extinction, thereby establishing a co-existence with phenotype C.
The A,C community would not have been possible without the
intermediate environmental modification effected by phenotype
B. Frequency-dependent effects through niche creation and
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Fig. 1 Modeling microbial ecology in the chemostat with a metabolic trade-off between two substrates. a The chemostat is a homogeneous environment.
The two substrates (u and v) are added continuously, and cells and substrates are diluted at a constant rate. b Cells specializing in using one substrate
cannot also specialize in the other. The metabolic specialization of each cell is parameterized by a number, s, between zero and one: values near zero
indicate a v-specialist; values near one indicate u-specialist; intermediate values are generalists. c To replicate, cells must progress through a series of
discrete states of growth by metabolizing substrates. The yield of a substrate is the amount by which a cell’s state of growth increases by metabolizing the
substrate. Cells replicate when their growth state exceeds a critical value. When a cell encounters a u substrate molecule, the molecule is imported with
probability of s; when a cell encounters a v substrate molecule, the molecule is imported with a probability of (1 − s). d A rare mutation leads to competition
between the (high abundance) resident phenotype and the (low abundance) invading phenotype and has three possible qualitative outcomes
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There are 10 parameters:

Yields of u and v

Maximum rates of import of u and v

Rates of metabolism of u and v

Dilution rate of the chemostat

Influx rate into the chemostat of substrates u and v

Maximum size of mutation

destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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A mutation from sx is equally likely to any sy that obeys



invasions, perhaps following a dynamic algorithm to direct and
reduce the number of necessary experiments (Fig. 2), the mutants
could be co-cultured and the results combined to construct
empirical networks of steady-state microbial communities. Such
networks could be directly compared to those generated in silico.

In conclusion, we present a model that demonstrates the
importance of trade-offs for generating metabolic complexity in
microbial communities1, 5. If a cell is able to evolve its response to
one substrate unconstrained by its response to the other, then
only one evolutionary outcome is possible: a phenotype that
maximally depletes both substrates. Metabolic trade-offs, how-
ever, preclude this single optimal phenotype and together with
dynamic environmental niches2, 8, 18 and a limited distribution of
(possibly large effect) mutations63 generate intricate dynamics of
adaptation and long-term behaviors. Intracellular trade-offs are
expected to be common26, 64, 65, and our results support the idea
that the resulting frustration of optimal responses is a major
factor generating the complexity observed in microbial
communities.

Methods
Modeling the chemostat with two substitutable substrates. The model of the
chemostat is the ecological component of our eco-evolutionary framework.
Assuming rare mutations, we consider the model’s ecology in the absence of
evolutionary change and only later incorporate an evolutionary process. The
environment in the well-mixed chemostat is spatially homogeneous, and the
abundance of the biotic components is modeled over time using ordinary differ-
ential equations21. We include a second substrate that is perfectly substitutable with
regards to the first5, 22: either substrate is sufficient for growth. We name the
substrates u and v.

To include growth, we structure microbial populations into Ns states of growth
that a cell must pass through to replicate. A cell can exist in any one of the possible
growth states and in all of these states can bind either a u or a v substrate, but not
both simultaneously. Let nxðtÞ ¼ n1;xðtÞ; n2;xðtÞ; ¼ ; nNs ;xðtÞ

! "
be the abundance

of cells with phenotype x in each growth state and nðuÞx ðtÞ and nðvÞx ðtÞ be the
corresponding vectors for when a cell is bound by and is metabolizing u and v. The
system of ordinary differential equations describing the ecological dynamics can
then be written in matrix notation as

_nxðtÞ ¼ $nx ukusx þ vkv 1$ sxð Þ þ D½ '

þmu ΓðuÞ# $T
nðuÞx þmv ΓðvÞ# $T

nðvÞx

_nðuÞx ðtÞ ¼ nxukusx $ nðuÞx mu þ Dð Þ
_nðvÞx ðtÞ ¼ nxvkv 1$ sxð Þ $ nðvÞx mv þ Dð Þ

_uðtÞ ¼ uð0Þ $ u Dþ ku
P
x
1Tnxsx

% &

_vðtÞ ¼ vð0Þ $ v Dþ kv
P
x
1Tnx 1$ sxð Þ

% &

ð1Þ

where: ku and kv are the maximal rates of import for u and v; mu and mv are the
substrate-specific metabolic rates; u(0) and v(0) are the influx concentrations for the
two substrates; and D is the chemostat’s dilution rate. The metabolic specialization
of phenotype x is parametrized by sx, a value between 0 and 1.

Progression through the growth states is encoded in the Γ(u) and Γ(v) matrices
and depends on the yields of each substrate, γu and γv, which are measured in
increments to the growth state. Transitions from a state p to a state q are
proportional to:

ΓðuÞ
p;q ¼ δpþγu ;q þ δpþγu$Ns ;q þ δp;1θ pþ γu $ Nsð Þ

ΓðvÞ
p;q ¼ δpþγv ;q þ δpþγv$Ns ;q þ δp;1θ pþ γv $ Nsð Þ

ð2Þ

where δp,q is the Kronecker delta and θ(z) is the Heaviside function. In both
equations, the first term describes a cell transitioning directly from state p to state q
through metabolizing a u or a v substrate. The second and third term are non-zero
when a cell metabolizes enough substrate to divide (increment its growth state past
Ns): the second term is the leftover ‘mass’ in the mother cell that determines its new
growth state following replication, and the third term describes the birth of a new
daughter cell (and therefore can only be non-zero for q= 1).

We note that if the size (the number of phenotypic values) of the space of
discrete phenotypes is Np, then the model has Np equations for each of nx, n

ðuÞ
x , and

nðvÞx , following Eq. (1). We have chosen Np= 11 throughout.

Simulating invasion by a mutant phenotype. To resolve the outcome of invasion
and competition between any combination of residents and a mutant, we
numerically integrated the model (Eq. (1)) for all phenotypes to steady-state after
including a small mutant population.

Let N(
x denote the steady-state abundance of the microbial population with

phenotypic value sx, i.e.,

N(
x ¼

XNs

i¼1

ni;x þ nðuÞi;x þ nðvÞi;x

h i
: ð3Þ

We consider vectors over all Np phenotypic values (over all discrete values of sx),
and at most two elements of these vectors are non-zero at steady-state because at
most two phenotypes can co-exist at steady-state because we have two substrates. If
the steady-state before invasion by a mutant is

N(
0 ;N

(
1 ; ¼ ;N(

Np
; u(; v(

' (
; ð4Þ

then when a nascent mutant with phenotype, y, emerges, we perturb this steady-
state to include a small population of mutants with abundance ϵ. The magnitude of
ϵ is determined by multiplying the steady-state abundance of the smallest, positive
resident by a constant factor, δ. If the chemostat contains no resident, we set ϵ to δ.

The model, Eq. (1), is numerically integrated to steady-state using the initial
condition

N(
0 ; ¼ ;N(

y þ ϵ; ¼ ;N(
Np
; u(; v(

' (
; ð5Þ

and this steady-state will be different from the original steady-state if the invasion
is successful. Numerically, we define a steady-state to be when the relative

magnitude of all derivatives is smaller than a threshold: _ni;x
ni;x

)))
)))<10$3.

We use the composition of extant phenotypes to distinguish the different
steady-states of the ecological model. In our model, like others66, there is one
unique, globally attracting steady-state67. For simplicity, we represent the
composition of extant phenotypes (indexed by x) in a steady-state k by a binary
vector of length Np, C(k), where CðkÞ

x ¼ 1 if N(
x>ϵ and CðkÞ

x ¼ 0 otherwise. Here ϵ
has the same magnitude as the ϵ used for the initial size of the populations of
mutants. This choice means that neutral mutations, which neither grow or decline
when they first emerge in some resident community, will not be preserved in our
chemostat; therefore, our model of adaptive evolution does not include neutral
evolution.

Eco-evolutionary model in the weak-mutation limit. We calculate solutions to all
possible invasions that can arise in the eco-evolutionary setting using dynamic
programming and the results are stored in an invasion map (Fig. 2a and Supple-
mentary Note 3).

We next construct the discrete-time, embedded Markov chain in the limit
where the ecological and evolutionary timescales are perfectly separated (following
adaptive dynamics11, 12, 32). Assuming that the process has phenotypic vector C(i),
then the probability of a transition to state C(j) from a single mutation and invasion
event in a small unit of evolutionary time, Δt, is

pjjiðΔtÞ ¼
P

x2CðiÞ ;y=2CðiÞ
N xjCðiÞ! "

b xjCðiÞ! "
μ xjCðiÞ! "

MyjxI yjCðjÞ;CðiÞ! "
Δt ð6Þ

for j≠ i. In Eq. (6), N(x|C(i)) is the abundance of the phenotypes in the population
indexed by x at steady-state i; b(x|C(i)) is the per capita birth rate of population x at
steady-state i, which in the chemostat is always equal to the dilution rate;
μ(x|C(i)) = μ is the mutation probability per birth, which we assume is constant;My|

x is the probability that a mutant offspring of a cell with phenotype sx will instead
have phenotype sy. We call M the phenotype adjacency matrix, which here is
symmetric and uniform and defined by the maximum size of mutation size, ΔSmax

∈ (0, 1]. We first write ~Myjx ¼ 1 if |sx − sy|≤ΔSmax, and ~Myjx ¼ 0 otherwise, and
then row-normalize to include boundary effects so that Myjx ¼ ~Myjx=

PNp
z

~Mzjx .
Finally, I(y|C(j), C(i)) is the probability that a rare sy phenotype invading a resident
of phenotypic composition C(i) will transform the composition to C(j) and is either
0 or 1 because our ecological models are deterministic (Eq. (1)). Nevertheless,
stochastic extinction because of a small initial number of mutants can be
incorporated into this term.

We need only consider transition probabilities at ecological steady-states. When
mutations are rare, the chemostat will be at steady-state when a new invasion and
mutation event occurs and transition probabilities will evaluate to zero in the limit
Δt → 0 otherwise. Adaptation in the weak-mutation limit can be modeled as a
‘jump’ process, where time is interpreted in terms of successful mutation and
invasion events, or jumps.
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Cell growth and competition between cells of different phenotypes are 
both deterministic

invasions, perhaps following a dynamic algorithm to direct and
reduce the number of necessary experiments (Fig. 2), the mutants
could be co-cultured and the results combined to construct
empirical networks of steady-state microbial communities. Such
networks could be directly compared to those generated in silico.

In conclusion, we present a model that demonstrates the
importance of trade-offs for generating metabolic complexity in
microbial communities1, 5. If a cell is able to evolve its response to
one substrate unconstrained by its response to the other, then
only one evolutionary outcome is possible: a phenotype that
maximally depletes both substrates. Metabolic trade-offs, how-
ever, preclude this single optimal phenotype and together with
dynamic environmental niches2, 8, 18 and a limited distribution of
(possibly large effect) mutations63 generate intricate dynamics of
adaptation and long-term behaviors. Intracellular trade-offs are
expected to be common26, 64, 65, and our results support the idea
that the resulting frustration of optimal responses is a major
factor generating the complexity observed in microbial
communities.

Methods
Modeling the chemostat with two substitutable substrates. The model of the
chemostat is the ecological component of our eco-evolutionary framework.
Assuming rare mutations, we consider the model’s ecology in the absence of
evolutionary change and only later incorporate an evolutionary process. The
environment in the well-mixed chemostat is spatially homogeneous, and the
abundance of the biotic components is modeled over time using ordinary differ-
ential equations21. We include a second substrate that is perfectly substitutable with
regards to the first5, 22: either substrate is sufficient for growth. We name the
substrates u and v.

To include growth, we structure microbial populations into Ns states of growth
that a cell must pass through to replicate. A cell can exist in any one of the possible
growth states and in all of these states can bind either a u or a v substrate, but not
both simultaneously. Let nxðtÞ ¼ n1;xðtÞ; n2;xðtÞ; ¼ ; nNs ;xðtÞ
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be the abundance

of cells with phenotype x in each growth state and nðuÞx ðtÞ and nðvÞx ðtÞ be the
corresponding vectors for when a cell is bound by and is metabolizing u and v. The
system of ordinary differential equations describing the ecological dynamics can
then be written in matrix notation as

_nxðtÞ ¼ $nx ukusx þ vkv 1$ sxð Þ þ D½ '

þmu ΓðuÞ# $T
nðuÞx þmv ΓðvÞ# $T

nðvÞx

_nðuÞx ðtÞ ¼ nxukusx $ nðuÞx mu þ Dð Þ
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where: ku and kv are the maximal rates of import for u and v; mu and mv are the
substrate-specific metabolic rates; u(0) and v(0) are the influx concentrations for the
two substrates; and D is the chemostat’s dilution rate. The metabolic specialization
of phenotype x is parametrized by sx, a value between 0 and 1.

Progression through the growth states is encoded in the Γ(u) and Γ(v) matrices
and depends on the yields of each substrate, γu and γv, which are measured in
increments to the growth state. Transitions from a state p to a state q are
proportional to:

ΓðuÞ
p;q ¼ δpþγu ;q þ δpþγu$Ns ;q þ δp;1θ pþ γu $ Nsð Þ

ΓðvÞ
p;q ¼ δpþγv ;q þ δpþγv$Ns ;q þ δp;1θ pþ γv $ Nsð Þ
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where δp,q is the Kronecker delta and θ(z) is the Heaviside function. In both
equations, the first term describes a cell transitioning directly from state p to state q
through metabolizing a u or a v substrate. The second and third term are non-zero
when a cell metabolizes enough substrate to divide (increment its growth state past
Ns): the second term is the leftover ‘mass’ in the mother cell that determines its new
growth state following replication, and the third term describes the birth of a new
daughter cell (and therefore can only be non-zero for q= 1).

We note that if the size (the number of phenotypic values) of the space of
discrete phenotypes is Np, then the model has Np equations for each of nx, n

ðuÞ
x , and

nðvÞx , following Eq. (1). We have chosen Np= 11 throughout.

Simulating invasion by a mutant phenotype. To resolve the outcome of invasion
and competition between any combination of residents and a mutant, we
numerically integrated the model (Eq. (1)) for all phenotypes to steady-state after
including a small mutant population.

Let N(
x denote the steady-state abundance of the microbial population with

phenotypic value sx, i.e.,

N(
x ¼
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We consider vectors over all Np phenotypic values (over all discrete values of sx),
and at most two elements of these vectors are non-zero at steady-state because at
most two phenotypes can co-exist at steady-state because we have two substrates. If
the steady-state before invasion by a mutant is
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then when a nascent mutant with phenotype, y, emerges, we perturb this steady-
state to include a small population of mutants with abundance ϵ. The magnitude of
ϵ is determined by multiplying the steady-state abundance of the smallest, positive
resident by a constant factor, δ. If the chemostat contains no resident, we set ϵ to δ.

The model, Eq. (1), is numerically integrated to steady-state using the initial
condition
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and this steady-state will be different from the original steady-state if the invasion
is successful. Numerically, we define a steady-state to be when the relative

magnitude of all derivatives is smaller than a threshold: _ni;x
ni;x
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We use the composition of extant phenotypes to distinguish the different
steady-states of the ecological model. In our model, like others66, there is one
unique, globally attracting steady-state67. For simplicity, we represent the
composition of extant phenotypes (indexed by x) in a steady-state k by a binary
vector of length Np, C(k), where CðkÞ

x ¼ 1 if N(
x>ϵ and CðkÞ

x ¼ 0 otherwise. Here ϵ
has the same magnitude as the ϵ used for the initial size of the populations of
mutants. This choice means that neutral mutations, which neither grow or decline
when they first emerge in some resident community, will not be preserved in our
chemostat; therefore, our model of adaptive evolution does not include neutral
evolution.

Eco-evolutionary model in the weak-mutation limit. We calculate solutions to all
possible invasions that can arise in the eco-evolutionary setting using dynamic
programming and the results are stored in an invasion map (Fig. 2a and Supple-
mentary Note 3).

We next construct the discrete-time, embedded Markov chain in the limit
where the ecological and evolutionary timescales are perfectly separated (following
adaptive dynamics11, 12, 32). Assuming that the process has phenotypic vector C(i),
then the probability of a transition to state C(j) from a single mutation and invasion
event in a small unit of evolutionary time, Δt, is

pjjiðΔtÞ ¼
P
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for j≠ i. In Eq. (6), N(x|C(i)) is the abundance of the phenotypes in the population
indexed by x at steady-state i; b(x|C(i)) is the per capita birth rate of population x at
steady-state i, which in the chemostat is always equal to the dilution rate;
μ(x|C(i)) = μ is the mutation probability per birth, which we assume is constant;My|

x is the probability that a mutant offspring of a cell with phenotype sx will instead
have phenotype sy. We call M the phenotype adjacency matrix, which here is
symmetric and uniform and defined by the maximum size of mutation size, ΔSmax

∈ (0, 1]. We first write ~Myjx ¼ 1 if |sx − sy|≤ΔSmax, and ~Myjx ¼ 0 otherwise, and
then row-normalize to include boundary effects so that Myjx ¼ ~Myjx=

PNp
z

~Mzjx .
Finally, I(y|C(j), C(i)) is the probability that a rare sy phenotype invading a resident
of phenotypic composition C(i) will transform the composition to C(j) and is either
0 or 1 because our ecological models are deterministic (Eq. (1)). Nevertheless,
stochastic extinction because of a small initial number of mutants can be
incorporated into this term.

We need only consider transition probabilities at ecological steady-states. When
mutations are rare, the chemostat will be at steady-state when a new invasion and
mutation event occurs and transition probabilities will evaluate to zero in the limit
Δt → 0 otherwise. Adaptation in the weak-mutation limit can be modeled as a
‘jump’ process, where time is interpreted in terms of successful mutation and
invasion events, or jumps.
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For Ns states of growth,

and



To find the network of mutational paths for a given set of parameters, 
we first determine the invasion map 

destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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An illustrative example with 3 phenotypes:



We next determine the conditional probabilities that one phenotype 
can be reached from another by mutation

destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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An example with a small maximum size of mutation:

E.g. phenotype A can only mutate into phenotype B.



destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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Combining the invasion map with the matrix of possible mutations 
gives the network of mutational paths

destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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This network of mutational paths has two recurrent states (squares):



destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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destruction are stronger when mutations in metabolic specializa-
tion are large because mutants can exploit metabolically disparate
niches.

The invasion map can be thought of as providing two
extensions to the pairwise invasibility plots used in adaptive
dynamics theory11, 12, 32. Like adaptive dynamics, our modeling
approach recovers the existence of evolutionary branching points
where an initially monomorphic population branches into two
co-existing populations (Supplementary Fig. 1), but unlike
adaptive dynamics such points require no special treatment. In

addition, we can investigate non-local evolutionary branching
that occurs after a mutation of large effect and analyze mutational
paths that contain this type of diversification (Supplementary
Fig. 2).

Mutations connect community states. To model adaptive evo-
lution as a Markov process, we define a state of the Markov chain
as a viable population in the chemostat, which is either mono-
morphic with all cells having the same phenotype or dimorphic
(i.e., a community) with two distinct phenotypes that co-exist,
and require the probability of a transition from one state to
another through a single mutation and invasion event (Methods
section). The probability of such a transition is proportional to
the abundance of cells in the source state and to the propensity
with which each cell generates the mutation that effects the
transition to the target state. We will only be concerned with the
sequence of transitions between one state to another and not with
the waiting time between such events. As a consequence, our
approach draws no conclusions about the length of time a
microbial community spends in a particular state and hence does
not quantify the evolutionary timescale. It should be noted,
however, that in an experimental setting we may be able to
observe (or reconstruct) transitions between states without
necessarily knowing the precise time at which the transitions
occurred. Under these circumstances, our methods, which work
without a temporal component, retain their descriptive and
predictive utility.

The availability of phenotypes to mutants partly determines
which of the possible states will follow a current state. To
investigate how the supply of mutations affects adaptation we use
a uniform distribution of mutations in phenotype space centered
on a resident phenotype, sx, with a maximum mutation of size
ΔSmax, which is the largest possible difference between the
metabolic specialization of a parent and that of its offspring.
Mathematically, a mutant with phenotype sy can be generated by
a cell with phenotype sx if |sy − sx|≤ΔSmax. For example, consider
the s= 0.75 phenotype, which uses more u substrate than v
substrate. When ΔSmax= 0.25, cells with this phenotype can
generate pure u specialists (s= 1) but not pure v specialists (s= 0)
because a larger phenotypic change is required to achieve the
latter. The probabilities of mutation are chosen so that all of the
discrete sy values that can be generated from sx are equally likely
after correcting for boundary effects (Fig. 2b, c). The distribution
of mutations affects both the mutational paths and the stationary
behavior of the adaptation process, and we parse the invasion
map with different sizes of maximum mutation to investigate this
dependency. For simplicity, we assume that the rate of mutation
does not depend on the phenotype and that it is constant over
time (Methods section).

Finally, to complete the description of mutation-limited
adaptation as a Markov process, we must choose an initial
distribution of ancestral states. Most laboratory evolution
experiments start with a single isogenic population, and in our
model adaptation begins with equal probability from any viable
population comprising a single phenotype (rather than a
community with two phenotypes).

To determine the long-term evolutionary outcome of an
adaptation process, we classify the states of the Markov process as
either transient or recurrent, following the theory of Markov
processes. Transient states represent microbial communities that
may only be visited once on a mutational path. A recurrent state,
however, will always re-emerge once established, and the
endpoints of mutational paths are always recurrent states
(Fig. 2d, e). Recurrence occurs either when a microbial
community cannot be invaded by any mutant that can be
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Fig. 2 Generating a Markov process for mutation-limited adaptation. The
procedure has two stages: first, simulating all possible ecological invasions;
second, calculating the probabilities to transition between steady-states as
a result of these invasions. We demonstrate a simple example that has only
three possible phenotypes (labeled A, B, and C). a The invasion map
contains the outcome of all possible competitions between residents and
mutants and all steady-states. An algorithm based on dynamic
programming constructs the invasion map as a tree: nodes represent
steady-states connected via edges that represent mutations and
competitions. Starting with the empty chemostat (root node), each state is
perturbed with a small population of mutants that have each phenotypic
value in turn. The steady-state after every competition is recorded in a child
node and connected to the parent node. The algorithm dynamically
truncates the tree to avoid any recursion (repetition). b To calculate
transition probabilities between resident states, we parse the invasion map
in a with a mutational process. We assume that mutations are uniformly
distributed in the space of phenotypes, but centered on the resident’s
phenotype and with a maximum size of mutation ΔSmax. The elements of
the matrix show the conditional probability that phenotype sx generates
mutant phenotype sy. c The Markov process in b visualized through a graph
of its directed network. States are classified as either transient (circles) or
recurrent (squares). d, e As in b, c, but with a larger maximum size of
mutation ΔSmax. The recurrent states, as well as the mutational paths of the
process, depend on the distribution of mutations
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The network of mutational paths changes if the maximum size of 
mutation changes

The network of mutational paths has now one recurrent state (square):



generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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Fig. 3 Our model generates multiple evolutionary outcomes and complex networks of mutational paths. Qualitative properties of the dynamics of
adaptation can be visualized and conveyed through graphing the networks of mutational paths. aWe hierarchically classify adaptation processes according
to their evolutionary outcome using the number and type of recurrent states. Labels show each outcome’s frequency obtained by sampling of
environmental parameters. b–e The networks of mutational paths from four sets of environmental parameters demonstrate the scope of the model’s
dynamic and stationary behavior. The maximum size of mutation (ΔSmax) affects the mutational paths and long-term outcomes of adaptation (compare the
recurrent states between the left and right networks). Circles are transient states; squares are recurrent states; colors denote the number, and type of
metabolic phenotypes in each state following a. Red and blue traces are examples of mutational paths, which start from an ancestral initial state (always a
monomorphic state) and end at a recurrent state. We indicate the phenotype values of residents in some vertices to aid interpretation. b The invasibility
relationship between a pair of phenotypes may reverse in the presence of co-residents as a consequence of frequency-dependent modification of the
environment. For example, an s== 0.8 metabolic generalist can invade an s= 1.0 specialist but the converse is not possible in pairwise competition. When
an s= 0.6 generalist is a co-resident, however, the s= 1.0 specialist can invade the dimorphic community of s= 0.8 and s= 0.6 generalists——and drive s
= 0.8 to extinction. c A process with multiple, non-connected recurrent states has more than one evolutionarily stable state, each of which is reached with
some probability. d A process where multiple recurrent states are connected exhibits quasi-periodic evolutionary cycling. e An example of a potentially
bottle-necked process. The network consists of two highly-connected (top and bottom) subgraphs, which are themselves connected via only a few mutation
and invasion transitions
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We characterize networks of mutational paths by their long-term, 
evolutionary outcomes (types of recurrent states)



generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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dynamic and stationary behavior. The maximum size of mutation (ΔSmax) affects the mutational paths and long-term outcomes of adaptation (compare the
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metabolic phenotypes in each state following a. Red and blue traces are examples of mutational paths, which start from an ancestral initial state (always a
monomorphic state) and end at a recurrent state. We indicate the phenotype values of residents in some vertices to aid interpretation. b The invasibility
relationship between a pair of phenotypes may reverse in the presence of co-residents as a consequence of frequency-dependent modification of the
environment. For example, an s== 0.8 metabolic generalist can invade an s= 1.0 specialist but the converse is not possible in pairwise competition. When
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= 0.8 to extinction. c A process with multiple, non-connected recurrent states has more than one evolutionarily stable state, each of which is reached with
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bottle-necked process. The network consists of two highly-connected (top and bottom) subgraphs, which are themselves connected via only a few mutation
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Example: multiple recurrent states are possible

generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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Fig. 3 Our model generates multiple evolutionary outcomes and complex networks of mutational paths. Qualitative properties of the dynamics of
adaptation can be visualized and conveyed through graphing the networks of mutational paths. aWe hierarchically classify adaptation processes according
to their evolutionary outcome using the number and type of recurrent states. Labels show each outcome’s frequency obtained by sampling of
environmental parameters. b–e The networks of mutational paths from four sets of environmental parameters demonstrate the scope of the model’s
dynamic and stationary behavior. The maximum size of mutation (ΔSmax) affects the mutational paths and long-term outcomes of adaptation (compare the
recurrent states between the left and right networks). Circles are transient states; squares are recurrent states; colors denote the number, and type of
metabolic phenotypes in each state following a. Red and blue traces are examples of mutational paths, which start from an ancestral initial state (always a
monomorphic state) and end at a recurrent state. We indicate the phenotype values of residents in some vertices to aid interpretation. b The invasibility
relationship between a pair of phenotypes may reverse in the presence of co-residents as a consequence of frequency-dependent modification of the
environment. For example, an s== 0.8 metabolic generalist can invade an s= 1.0 specialist but the converse is not possible in pairwise competition. When
an s= 0.6 generalist is a co-resident, however, the s= 1.0 specialist can invade the dimorphic community of s= 0.8 and s= 0.6 generalists——and drive s
= 0.8 to extinction. c A process with multiple, non-connected recurrent states has more than one evolutionarily stable state, each of which is reached with
some probability. d A process where multiple recurrent states are connected exhibits quasi-periodic evolutionary cycling. e An example of a potentially
bottle-necked process. The network consists of two highly-connected (top and bottom) subgraphs, which are themselves connected via only a few mutation
and invasion transitions
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generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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Increasing the maximum size of mutations changes the network and 
the recurrent states

Context (the state of the environment) partly determines the successful penotypes.



Multiple recurrent states are possible

generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
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Multiple recurrent states that are connected undergo evolutionary 
cycling

generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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Evolution can be bottle-necked

generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
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Two highly connected subnetworks are themselves connected by only a few 
mutation-invasion events.



As a control, we run stochastic simulations with a continuous 
phenotype
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Supplementary Figure 1. Pairwise invasibility plots (PIPs) are not su�cient to de-
scribe the full repertoire of adaptation dynamics. We illustrate this insu�ciency with an
example that includes a branching event. (a) A sample mutational path in continuous phenotype
space passes through a branching point where the monomorphic population becomes a dimorphic
community. At each time point (representing a mutation), the black dot denotes the current res-
idents’ phenotypes and the red dot denotes the mutant’s phenotype. If a mutant invades, the red
dot becomes a black dot at the following time point. (b) The PIP shows the branching point and
adequately describes monomorphic adaptation dynamics leading there. After branching, however,
ecological dynamics are no longer pairwise (since there are two residents and one mutant) and the
PIP cannot describe the subsequent trajectory seen in A that leads to the establishment of a spe-
cialist and a generalist. (c) The network of mutational paths reproduces the information contained
in the pairwise invasibility plot (monomorphic adaptation dynamics in the network’s tail), but also
describes the fate of all possible transient communities after the branching point. To highlight
the PIPs’ insu�ciency, we note two examples where the fate of a phenotypic mutant cannot be
explained by pairwise interactions. A s = 0.30 mutant can invade a s = 0.25 resident but the con-
verse is not possible. When the community consists of two resident phenotypes, {s

1

= 1, s

2

= 0.3},
however, a s = 0.25 mutant phenotype can invade and drive the s = 0.30 resident to extinction in
disagreement with the competition outcomes predicted by the PIP. A similar reversal of invasibility
occurs between s = 0.80 and s = 0.85, where the former can invade and drive the latter to extinc-
tion in the monomorphic setting, but the resident community {s

1

= X, s

2

= 0.80} (blue highlight)
can by invaded by a s = 0.85 mutant (red highlight) in the presence of certain other co-residents.
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The recurrent states persist 
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Supplementary Figure 3. Comparing stochastic simulations in continuous phenotype
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When the maximum mutation size is small (�S
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< 1/10), the process has a single periodic cycle
of diversification and extinction. (b) For large mutations, the closed communication class in the
Markov process is aperiodic.
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Discrete phenotypes can however preserve some recurrent states

ph
en

ot
yp

e 
va

lu
es

two generalists
converge to one
generalist at 0.115

a

b

recurrent state with two
generalist phenotypes: {0.1, 0.2}

= 3/10

time
(mutation events)

ph
en

ot
yp

e 
va

lu
es dimorphic community

of generalists is maintained

recurrent state with two
generalist phenotypes: {0.2, 0.3}

= 3/10
Supplementary Figure 4. Stochastic simulations can cause dimorphic communities to
converge to a monomorphic population. Two co-existing populations can converge to a sin-
gle monomorphic population if infinitesimally small mutations are permitted; discrete phenotype
spaces, therefore, can in some cases allow dimorphic communities to be maintained. (a) In this
process, the recurrent dimorphic community of generalists is not evolutionarily stable in the contin-
uous case: the two phenotypes converge to a single generalist population. (b) In a di�erent process,
however, the recurrent dimorphic community of generalists is maintained in the continuous case.
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Is the type of recurrent state determined by 
the environment and nutrients?



recurrent state or multiple recurrent states. We further classify
phenotypes as either specialists (when s= 0, a v-specialist,
or s= 1, a u-specialist) or generalists (when 0< s< 1) and
determine whether recurrent communities are either all specia-
lists, all generalists, or a mixture of both. We observed two
qualitatively different behaviors in processes with multiple
recurrent states, which we named ‘multi-stationary’ and ‘cycling’.

Multi-stationary outcomes have more than one exclusive
recurrent states and each recurrent state is reached with some

probability. In these adaptation processes we expect
experimental replicates to eventually show divergent phenotypic
variability8, 10, 33. We found that the number of recurrent
states and their stationary probability can depend on the
maximum size of mutation (Fig. 3b, c). Alternative microbial
community states have been detected in the human gastro-
intestinal tract34, although whether these states are caused by
variations in the host environment or are true alternative states is
unclear.
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outcomes are more likely to be associated with certain parameter values, but without a simple dependence. Using a nearest-neighbors algorithm, we
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Fixing one parameter and varying the others, there is no clear pattern

generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single

{0.7, 0.3}All

0.29

a

c d e

b

0.71

0.12

0.35 0.24 0.06 0.06

0.59

Viable

Recurrent state
classification

Exclusive
recurrent
states

Closed
communication

class

Outcome
frequency

Single
recurrent

Multiple
recurrent

Transient
states

Monomorphic
state

Dimorphic
state

Recurrent
states

Non-viable

{0.7, 0.4}

{0.7, 0.6}

{0.8, 0.6}

{0.8,}

{1.0} {0.9}
{0.7}

{0.8}

0.34

Specialist Specialists Generalists
Generalist Hybrid

0.01 0.06 0.13 0.06

{0.7, 0.6}
{0.0, 0.6}

{0.9, 0.6}

{1.0, 0.6}
Multi-

stationary
Cycling

{1.0, 0.6}

0.8 invades 1.0

1. invades 0.8 & 0.6

{1.0}

{0.3}

{0.1}

∆Smax = 2/10

∆Smax = 2/10 ∆Smax = 1 ∆Smax = 1/10 ∆Smax = 1 ∆Smax = 2/10 ∆Smax =1

∆Smax = 1
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Fixing one parameter and varying the others, there is no clear pattern

recurrent state or multiple recurrent states. We further classify
phenotypes as either specialists (when s= 0, a v-specialist,
or s= 1, a u-specialist) or generalists (when 0< s< 1) and
determine whether recurrent communities are either all specia-
lists, all generalists, or a mixture of both. We observed two
qualitatively different behaviors in processes with multiple
recurrent states, which we named ‘multi-stationary’ and ‘cycling’.

Multi-stationary outcomes have more than one exclusive
recurrent states and each recurrent state is reached with some

probability. In these adaptation processes we expect
experimental replicates to eventually show divergent phenotypic
variability8, 10, 33. We found that the number of recurrent
states and their stationary probability can depend on the
maximum size of mutation (Fig. 3b, c). Alternative microbial
community states have been detected in the human gastro-
intestinal tract34, although whether these states are caused by
variations in the host environment or are true alternative states is
unclear.
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empirically estimated the density of each outcome from sampling parameters. For all combinations of parameters except the dilution rate, we show
densities at absolute values because of the symmetry about zero. Colors for the outcomes follow Fig. 3a. b Evolutionary outcomes form clusters in the
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generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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dynamic and stationary behavior. The maximum size of mutation (ΔSmax) affects the mutational paths and long-term outcomes of adaptation (compare the
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environment. For example, an s== 0.8 metabolic generalist can invade an s= 1.0 specialist but the converse is not possible in pairwise competition. When
an s= 0.6 generalist is a co-resident, however, the s= 1.0 specialist can invade the dimorphic community of s= 0.8 and s= 0.6 generalists——and drive s
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ary outcomes from environmental parameters. The hierarchy of the classification model
follows the hierarchical outcome scheme in Fig. 3a. Edges are labeled to indicate the node classifier
recall (the fraction of relevant samples that were recovered) in a 10-fold cross-validation setting
(reporting mean ± standard deviation). The hierarchical classifier’s overall recall for each of the
eight evolutionary outcomes is the product of the edges in the path from the root of the tree
(‘all’ outcomes) to each of the eight leaves. For example, the recall for dimorphic generalists is
0.95 ◊ 0.92 ◊ 0.93 ◊ 0.92 = 0.75. The average recall over the eight outcomes is 0.78, which suggests
that predicting long-term outcomes from environmental conditions alone is likely to be di�cult.
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Even a hierarchical classification scheme performs poorly

The average recall is 0.78.



recurrent state or multiple recurrent states. We further classify
phenotypes as either specialists (when s= 0, a v-specialist,
or s= 1, a u-specialist) or generalists (when 0< s< 1) and
determine whether recurrent communities are either all specia-
lists, all generalists, or a mixture of both. We observed two
qualitatively different behaviors in processes with multiple
recurrent states, which we named ‘multi-stationary’ and ‘cycling’.

Multi-stationary outcomes have more than one exclusive
recurrent states and each recurrent state is reached with some

probability. In these adaptation processes we expect
experimental replicates to eventually show divergent phenotypic
variability8, 10, 33. We found that the number of recurrent
states and their stationary probability can depend on the
maximum size of mutation (Fig. 3b, c). Alternative microbial
community states have been detected in the human gastro-
intestinal tract34, although whether these states are caused by
variations in the host environment or are true alternative states is
unclear.
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Fig. 4 A complex association exists between the environment and the evolutionary outcomes. Overlapping clusters of evolutionary outcomes in
environmental parameter space make prediction difficult and explain sensitivity of microbial communities to environmental change. a Some evolutionary
outcomes are more likely to be associated with certain parameter values, but without a simple dependence. Using a nearest-neighbors algorithm, we
empirically estimated the density of each outcome from sampling parameters. For all combinations of parameters except the dilution rate, we show
densities at absolute values because of the symmetry about zero. Colors for the outcomes follow Fig. 3a. b Evolutionary outcomes form clusters in the
space of parameters but these clusters are not distinct. We used Euclidean distance in a standardized space of parameters to perform within-outcome
hierarchical clustering and then aligned clusters with samples from other outcomes to assess their overlap. We only plot a representative sample (1%) of
the data set, which preserves the observed frequencies of each outcome. Distinct clusters would appear as bright regions in the diagonal combined with
dark regions in the off-diagonal rows and columns indicating that samples with the same outcome are closer to each other than they are to samples with
different outcomes. Instead, we found that clusters for one outcome are almost always proximal to samples from other outcomes (bright off-diagonal
regions). c Environmental perturbations often cause community collapse and only rarely create diverse communities. We calculated the distance in the
standardized space of parameters from each process to the closest process in all other outcome classes and so formed distributions of shortest distances.
The left column shows per panel the shortest distances from the monomorphic specialists to themselves and to one other outcome. The monomorphic
specialists are generally closer to other monomorphic specialists than they are to other outcomes. The right column shows per panel the shortest distances
from one other outcome to itself and to the monomorphic specialists
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The evolutionary outcomes form clusters, but these clusters are not 
distinct



recurrent state or multiple recurrent states. We further classify
phenotypes as either specialists (when s= 0, a v-specialist,
or s= 1, a u-specialist) or generalists (when 0< s< 1) and
determine whether recurrent communities are either all specia-
lists, all generalists, or a mixture of both. We observed two
qualitatively different behaviors in processes with multiple
recurrent states, which we named ‘multi-stationary’ and ‘cycling’.

Multi-stationary outcomes have more than one exclusive
recurrent states and each recurrent state is reached with some

probability. In these adaptation processes we expect
experimental replicates to eventually show divergent phenotypic
variability8, 10, 33. We found that the number of recurrent
states and their stationary probability can depend on the
maximum size of mutation (Fig. 3b, c). Alternative microbial
community states have been detected in the human gastro-
intestinal tract34, although whether these states are caused by
variations in the host environment or are true alternative states is
unclear.
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Fig. 4 A complex association exists between the environment and the evolutionary outcomes. Overlapping clusters of evolutionary outcomes in
environmental parameter space make prediction difficult and explain sensitivity of microbial communities to environmental change. a Some evolutionary
outcomes are more likely to be associated with certain parameter values, but without a simple dependence. Using a nearest-neighbors algorithm, we
empirically estimated the density of each outcome from sampling parameters. For all combinations of parameters except the dilution rate, we show
densities at absolute values because of the symmetry about zero. Colors for the outcomes follow Fig. 3a. b Evolutionary outcomes form clusters in the
space of parameters but these clusters are not distinct. We used Euclidean distance in a standardized space of parameters to perform within-outcome
hierarchical clustering and then aligned clusters with samples from other outcomes to assess their overlap. We only plot a representative sample (1%) of
the data set, which preserves the observed frequencies of each outcome. Distinct clusters would appear as bright regions in the diagonal combined with
dark regions in the off-diagonal rows and columns indicating that samples with the same outcome are closer to each other than they are to samples with
different outcomes. Instead, we found that clusters for one outcome are almost always proximal to samples from other outcomes (bright off-diagonal
regions). c Environmental perturbations often cause community collapse and only rarely create diverse communities. We calculated the distance in the
standardized space of parameters from each process to the closest process in all other outcome classes and so formed distributions of shortest distances.
The left column shows per panel the shortest distances from the monomorphic specialists to themselves and to one other outcome. The monomorphic
specialists are generally closer to other monomorphic specialists than they are to other outcomes. The right column shows per panel the shortest distances
from one other outcome to itself and to the monomorphic specialists
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Monomorphic specialists 
permeate parameter space 
and are typically close to all 
other outcomes

Environmental perturbations 
therefore are more likely to 
reduce rather than increase 
diversity.
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Is the evolutionary outcome determined by the 
network’s mutational paths?



length of a path as the number of state-to-state transitions in one
realization of the adaptation process (a single run of an evolution
experiment) from an ancestral to a recurrent state.

The degree to which adaptive evolution is repeatable is of long-
standing interest39, 40, but analyses are typically restricted to
models with static fitness landscapes41. To quantify the repeat-
ability of adaptation in our model, where fitness landscapes
change dynamically through construction and destruction of
ecological niches, we mathematically define repeatability as the
entropy of the distribution of mutational paths. If replicate
experiments are likely to follow only a few mutational paths, the
entropy is small and repeatability is high; if each replicate
experiment follows a different mutational path, the entropy is
large and repeatability is low.

In our model, the repeatability of the dynamics of adaptation is
associated with the long-term evolutionary outcome of the
adaptation process and varies with the maximum size of mutation
(Fig. 5b). With one exception, path entropy does not decrease
with the maximum size of mutation as more mutational paths
become possible. We find that processes where monomorphic
specialists are evolutionarily stable have the most repeatable
dynamics, and that this repeatability plateaus early as the

maximum size of mutation increases suggesting that the adapting
system can follow only a few mutational paths even as larger
mutations become available. In contrast, processes with metabo-
lically diverse communities have the least repeatable dynamics.
Notably, dimorphic specialists (and, to a lesser extent, cycling
outcomes) have a path entropy that increases to a maximum at
intermediate maximum sizes of mutation and decreases thereafter
because a few mutational paths with large mutations emerge to
dominate the process (Fig. 5b, blue line). The rate at which path
entropies plateau varies between the different evolutionary
outcomes. A non-increasing path entropy suggests that muta-
tional paths with larger mutations are not realized. Frequency-
dependent fitness effects may limit large mutations, which lead to
phenotypes different from the current resident, because the
corresponding mutants are ill-suited to the current environment
in the chemostat. Smaller mutations, in contrast, are more likely
to gradually alter the environment.

Mutational path properties identify evolutionary outcomes. To
compare the dynamics of adaptation between processes, we
constructed a condensed dynamical profile for each adaptation
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generate the distribution of paths. Paths begin at a monomorphic state (with equal probability) and end at a recurrent state. A path’s probability is inversely
proportional to its length. Most mutational paths are of intermediate length, and only a few are either short or long. b The repeatability of the dynamics of
adaptation depends on the long-term evolutionary outcome and does not typically decrease with larger maximum sizes of mutation. The entropy of the
distribution of paths quantifies repeatability, with high entropy implying low repeatability. Points show the mean path entropy; shaded regions are ±s.d. c
Statistics from the mutational paths vary with both the maximum size of mutation and the evolutionary outcome. We plot the distributions for six
properties of the paths, grouped by the number of recurrent states and the two extremes of the maximum size of mutation. The distributions are multi-
modal, and the peaks correspond to outcomes lower in the classification of Fig. 3a. d Processes with different evolutionary outcomes have characteristic
properties of their mutational paths. Through linear discriminant analysis, we identified combinations of the six statistics in c that separate the adaptation
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We characterize a network by its distribution of mutational paths



length of a path as the number of state-to-state transitions in one
realization of the adaptation process (a single run of an evolution
experiment) from an ancestral to a recurrent state.

The degree to which adaptive evolution is repeatable is of long-
standing interest39, 40, but analyses are typically restricted to
models with static fitness landscapes41. To quantify the repeat-
ability of adaptation in our model, where fitness landscapes
change dynamically through construction and destruction of
ecological niches, we mathematically define repeatability as the
entropy of the distribution of mutational paths. If replicate
experiments are likely to follow only a few mutational paths, the
entropy is small and repeatability is high; if each replicate
experiment follows a different mutational path, the entropy is
large and repeatability is low.

In our model, the repeatability of the dynamics of adaptation is
associated with the long-term evolutionary outcome of the
adaptation process and varies with the maximum size of mutation
(Fig. 5b). With one exception, path entropy does not decrease
with the maximum size of mutation as more mutational paths
become possible. We find that processes where monomorphic
specialists are evolutionarily stable have the most repeatable
dynamics, and that this repeatability plateaus early as the

maximum size of mutation increases suggesting that the adapting
system can follow only a few mutational paths even as larger
mutations become available. In contrast, processes with metabo-
lically diverse communities have the least repeatable dynamics.
Notably, dimorphic specialists (and, to a lesser extent, cycling
outcomes) have a path entropy that increases to a maximum at
intermediate maximum sizes of mutation and decreases thereafter
because a few mutational paths with large mutations emerge to
dominate the process (Fig. 5b, blue line). The rate at which path
entropies plateau varies between the different evolutionary
outcomes. A non-increasing path entropy suggests that muta-
tional paths with larger mutations are not realized. Frequency-
dependent fitness effects may limit large mutations, which lead to
phenotypes different from the current resident, because the
corresponding mutants are ill-suited to the current environment
in the chemostat. Smaller mutations, in contrast, are more likely
to gradually alter the environment.

Mutational path properties identify evolutionary outcomes. To
compare the dynamics of adaptation between processes, we
constructed a condensed dynamical profile for each adaptation
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The repeatability of adaptation (the path entropy) depends on the 
evolutionary outcome



length of a path as the number of state-to-state transitions in one
realization of the adaptation process (a single run of an evolution
experiment) from an ancestral to a recurrent state.

The degree to which adaptive evolution is repeatable is of long-
standing interest39, 40, but analyses are typically restricted to
models with static fitness landscapes41. To quantify the repeat-
ability of adaptation in our model, where fitness landscapes
change dynamically through construction and destruction of
ecological niches, we mathematically define repeatability as the
entropy of the distribution of mutational paths. If replicate
experiments are likely to follow only a few mutational paths, the
entropy is small and repeatability is high; if each replicate
experiment follows a different mutational path, the entropy is
large and repeatability is low.

In our model, the repeatability of the dynamics of adaptation is
associated with the long-term evolutionary outcome of the
adaptation process and varies with the maximum size of mutation
(Fig. 5b). With one exception, path entropy does not decrease
with the maximum size of mutation as more mutational paths
become possible. We find that processes where monomorphic
specialists are evolutionarily stable have the most repeatable
dynamics, and that this repeatability plateaus early as the

maximum size of mutation increases suggesting that the adapting
system can follow only a few mutational paths even as larger
mutations become available. In contrast, processes with metabo-
lically diverse communities have the least repeatable dynamics.
Notably, dimorphic specialists (and, to a lesser extent, cycling
outcomes) have a path entropy that increases to a maximum at
intermediate maximum sizes of mutation and decreases thereafter
because a few mutational paths with large mutations emerge to
dominate the process (Fig. 5b, blue line). The rate at which path
entropies plateau varies between the different evolutionary
outcomes. A non-increasing path entropy suggests that muta-
tional paths with larger mutations are not realized. Frequency-
dependent fitness effects may limit large mutations, which lead to
phenotypes different from the current resident, because the
corresponding mutants are ill-suited to the current environment
in the chemostat. Smaller mutations, in contrast, are more likely
to gradually alter the environment.

Mutational path properties identify evolutionary outcomes. To
compare the dynamics of adaptation between processes, we
constructed a condensed dynamical profile for each adaptation
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We use six properties to characterize the distribution of mutational 
paths

generated from that community (an evolutionarily stable state28)
or if there is a sequence of mutation and invasion events that
returns to the community.

Hierarchy of evolutionary outcomes. To investigate the effect of
environmental and mutational parameters on the adaptation
process, we randomly sampled 10,000 sets of our model’s nine
environmental parameters. For each set of parameters, we cal-
culated the invasion map using 11 discrete phenotypic values

ranging from a pure v-specialist to a pure u-specialist:
s ∈ {0.0, 0.1,…, 0.9, 1.0}. We parsed each invasion map with
distributions of mutations that are uniform but with an increasing
size of maximum mutation, ΔSmax ∈ {0.1, 0.2,…, 0.9, 1.0}, to
generate 10 adaptation processes. We then analyzed the 100,000
resulting adaptation processes to determine their long-term
evolutionary behavior.

We classify the evolutionary outcome of an adaptation process
by the number and type of its recurrent states (Fig. 3a). At a high
level, we differentiate between processes with either a single
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Combining the six properties of the mutational pathways, we can 
distinguish different evolutionary outcomes

length of a path as the number of state-to-state transitions in one
realization of the adaptation process (a single run of an evolution
experiment) from an ancestral to a recurrent state.

The degree to which adaptive evolution is repeatable is of long-
standing interest39, 40, but analyses are typically restricted to
models with static fitness landscapes41. To quantify the repeat-
ability of adaptation in our model, where fitness landscapes
change dynamically through construction and destruction of
ecological niches, we mathematically define repeatability as the
entropy of the distribution of mutational paths. If replicate
experiments are likely to follow only a few mutational paths, the
entropy is small and repeatability is high; if each replicate
experiment follows a different mutational path, the entropy is
large and repeatability is low.

In our model, the repeatability of the dynamics of adaptation is
associated with the long-term evolutionary outcome of the
adaptation process and varies with the maximum size of mutation
(Fig. 5b). With one exception, path entropy does not decrease
with the maximum size of mutation as more mutational paths
become possible. We find that processes where monomorphic
specialists are evolutionarily stable have the most repeatable
dynamics, and that this repeatability plateaus early as the

maximum size of mutation increases suggesting that the adapting
system can follow only a few mutational paths even as larger
mutations become available. In contrast, processes with metabo-
lically diverse communities have the least repeatable dynamics.
Notably, dimorphic specialists (and, to a lesser extent, cycling
outcomes) have a path entropy that increases to a maximum at
intermediate maximum sizes of mutation and decreases thereafter
because a few mutational paths with large mutations emerge to
dominate the process (Fig. 5b, blue line). The rate at which path
entropies plateau varies between the different evolutionary
outcomes. A non-increasing path entropy suggests that muta-
tional paths with larger mutations are not realized. Frequency-
dependent fitness effects may limit large mutations, which lead to
phenotypes different from the current resident, because the
corresponding mutants are ill-suited to the current environment
in the chemostat. Smaller mutations, in contrast, are more likely
to gradually alter the environment.

Mutational path properties identify evolutionary outcomes. To
compare the dynamics of adaptation between processes, we
constructed a condensed dynamical profile for each adaptation
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Fig. 5 Different evolutionary outcomes have characteristic adaptation dynamics. Processes with different evolutionary outcomes have characteristic
dynamics of adaptation, which can be quantified and compared through the properties of their mutational paths. a We enumerate mutational paths to
generate the distribution of paths. Paths begin at a monomorphic state (with equal probability) and end at a recurrent state. A path’s probability is inversely
proportional to its length. Most mutational paths are of intermediate length, and only a few are either short or long. b The repeatability of the dynamics of
adaptation depends on the long-term evolutionary outcome and does not typically decrease with larger maximum sizes of mutation. The entropy of the
distribution of paths quantifies repeatability, with high entropy implying low repeatability. Points show the mean path entropy; shaded regions are ±s.d. c
Statistics from the mutational paths vary with both the maximum size of mutation and the evolutionary outcome. We plot the distributions for six
properties of the paths, grouped by the number of recurrent states and the two extremes of the maximum size of mutation. The distributions are multi-
modal, and the peaks correspond to outcomes lower in the classification of Fig. 3a. d Processes with different evolutionary outcomes have characteristic
properties of their mutational paths. Through linear discriminant analysis, we identified combinations of the six statistics in c that separate the adaptation
processes by their evolutionary outcome. A two-dimensional projection of the result is shown with lines and ellipses drawn manually
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process through calculating six properties of its mutational paths.
These properties were: the number of paths, the mean and var-
iance of the length of the geodesic (shortest) paths, the mean and
variance of the length of all paths, and the mean minimum cut
size (the smallest number of edges that must be removed from the

graph to disconnect an initial state from a recurrent state and a
measure of the extent of bottle-necks in the process).

We analyzed the six properties of the mutational paths for
processes with different evolutionary outcomes and at different
maximum sizes of mutation (Fig. 5c). The effect of increasing the
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Fig. 6 Predicting long-term outcomes from the topology of the network of mutational paths. We calculated six centrality measures, which characterize
different aspects of the networks’ topology, and used these as learning features in a predictive model trained on complete and incomplete networks. a The
state of a network’s completion affects its topology, which is reflected in the statistics of its centralities. As an example, we show a network in various
states of completion and the corresponding progression of four statistics (dark blue shows the mean and light blue shows the s.d. calculated for 100
different networks). b We characterized the statistics of the centralities by how they converge to their value when the network is complete (the feature
error) and by how well they can discriminate between evolutionary outcomes (mutual information). The plots show the mean of the feature error and the
mean of the mutual information between the statistic and the evolutionary outcomes. c Evolutionary outcomes predicted with a classifier trained on the
statistics of the centralities from partial and complete networks. We assessed performance via the unweighted mean of the F1 score taken over the seven
outcomes. The mean test-set performance is reported for 10-fold cross-validation. Top and right line plots show the mean performance, with the s.d.s as
shaded regions, taken over either the state of completion of the network or the maximum size of mutation. The red line is the performance of a naive
classifier, which predicts following the empirical frequencies of the outcomes
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We consider six centralities for each vertex (a measure of its importance)

In-degree: number of edges arriving 

Out-degree: number of edges leaving 

Closeness: reciprocal of the average shortest distance to all other 
vertices (potential of diversification) 

Betweeness: a measure of the number of shortest paths that 
pass through a vertex (potential of bottlenecking) 

HITS hub & authority: hubs can be invaded by multiple mutants; 
authorities are the outcomes of multiple different invasion events 
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Supplementary Figure 8. Illustration of the six network centrality measures. To show
how network vertices rank in terms of each centrality measure, we scaled the size of each vertex
in proportion to its centrality value on a per-network basis. Brief descriptions of the centrality
measures are given in Supplementary Table 1. The reported mean and variance, which we ultimately
use to reduce the dimensionality of feature space for predictive models, is taken over the vertices
in each network.
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process through calculating six properties of its mutational paths.
These properties were: the number of paths, the mean and var-
iance of the length of the geodesic (shortest) paths, the mean and
variance of the length of all paths, and the mean minimum cut
size (the smallest number of edges that must be removed from the

graph to disconnect an initial state from a recurrent state and a
measure of the extent of bottle-necks in the process).

We analyzed the six properties of the mutational paths for
processes with different evolutionary outcomes and at different
maximum sizes of mutation (Fig. 5c). The effect of increasing the
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Fig. 6 Predicting long-term outcomes from the topology of the network of mutational paths. We calculated six centrality measures, which characterize
different aspects of the networks’ topology, and used these as learning features in a predictive model trained on complete and incomplete networks. a The
state of a network’s completion affects its topology, which is reflected in the statistics of its centralities. As an example, we show a network in various
states of completion and the corresponding progression of four statistics (dark blue shows the mean and light blue shows the s.d. calculated for 100
different networks). b We characterized the statistics of the centralities by how they converge to their value when the network is complete (the feature
error) and by how well they can discriminate between evolutionary outcomes (mutual information). The plots show the mean of the feature error and the
mean of the mutual information between the statistic and the evolutionary outcomes. c Evolutionary outcomes predicted with a classifier trained on the
statistics of the centralities from partial and complete networks. We assessed performance via the unweighted mean of the F1 score taken over the seven
outcomes. The mean test-set performance is reported for 10-fold cross-validation. Top and right line plots show the mean performance, with the s.d.s as
shaded regions, taken over either the state of completion of the network or the maximum size of mutation. The red line is the performance of a naive
classifier, which predicts following the empirical frequencies of the outcomes
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process through calculating six properties of its mutational paths.
These properties were: the number of paths, the mean and var-
iance of the length of the geodesic (shortest) paths, the mean and
variance of the length of all paths, and the mean minimum cut
size (the smallest number of edges that must be removed from the

graph to disconnect an initial state from a recurrent state and a
measure of the extent of bottle-necks in the process).

We analyzed the six properties of the mutational paths for
processes with different evolutionary outcomes and at different
maximum sizes of mutation (Fig. 5c). The effect of increasing the
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Fig. 6 Predicting long-term outcomes from the topology of the network of mutational paths. We calculated six centrality measures, which characterize
different aspects of the networks’ topology, and used these as learning features in a predictive model trained on complete and incomplete networks. a The
state of a network’s completion affects its topology, which is reflected in the statistics of its centralities. As an example, we show a network in various
states of completion and the corresponding progression of four statistics (dark blue shows the mean and light blue shows the s.d. calculated for 100
different networks). b We characterized the statistics of the centralities by how they converge to their value when the network is complete (the feature
error) and by how well they can discriminate between evolutionary outcomes (mutual information). The plots show the mean of the feature error and the
mean of the mutual information between the statistic and the evolutionary outcomes. c Evolutionary outcomes predicted with a classifier trained on the
statistics of the centralities from partial and complete networks. We assessed performance via the unweighted mean of the F1 score taken over the seven
outcomes. The mean test-set performance is reported for 10-fold cross-validation. Top and right line plots show the mean performance, with the s.d.s as
shaded regions, taken over either the state of completion of the network or the maximum size of mutation. The red line is the performance of a naive
classifier, which predicts following the empirical frequencies of the outcomes
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process through calculating six properties of its mutational paths.
These properties were: the number of paths, the mean and var-
iance of the length of the geodesic (shortest) paths, the mean and
variance of the length of all paths, and the mean minimum cut
size (the smallest number of edges that must be removed from the

graph to disconnect an initial state from a recurrent state and a
measure of the extent of bottle-necks in the process).

We analyzed the six properties of the mutational paths for
processes with different evolutionary outcomes and at different
maximum sizes of mutation (Fig. 5c). The effect of increasing the
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Fig. 6 Predicting long-term outcomes from the topology of the network of mutational paths. We calculated six centrality measures, which characterize
different aspects of the networks’ topology, and used these as learning features in a predictive model trained on complete and incomplete networks. a The
state of a network’s completion affects its topology, which is reflected in the statistics of its centralities. As an example, we show a network in various
states of completion and the corresponding progression of four statistics (dark blue shows the mean and light blue shows the s.d. calculated for 100
different networks). b We characterized the statistics of the centralities by how they converge to their value when the network is complete (the feature
error) and by how well they can discriminate between evolutionary outcomes (mutual information). The plots show the mean of the feature error and the
mean of the mutual information between the statistic and the evolutionary outcomes. c Evolutionary outcomes predicted with a classifier trained on the
statistics of the centralities from partial and complete networks. We assessed performance via the unweighted mean of the F1 score taken over the seven
outcomes. The mean test-set performance is reported for 10-fold cross-validation. Top and right line plots show the mean performance, with the s.d.s as
shaded regions, taken over either the state of completion of the network or the maximum size of mutation. The red line is the performance of a naive
classifier, which predicts following the empirical frequencies of the outcomes
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Evolutionary outcomes can be predicted from incomplete networks



Summary

• We develop an eco-evolutionary model with a trade-off that 
has surprisingly diverse evolutionary outcomes  

• Working with the networks of mutational paths is insightful 

• Evolutionary outcomes cannot be determined from 
environmental conditions, but can be determined from their 
networks of mutational paths even for incomplete networks  

• The dynamics of adaptation is a key variable for predicting 
long-term evolutionary behaviours branching point
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Supplementary Figure 2. Standard (local) adaptive dynamics theory is not su�cient
for describing adaptation dynamics with large mutations. We illustrate this insu�ciency
with an example that includes large-e�ect mutations that induce population diversification and co-
existence. (a) A sample mutational path in continuous phenotype space undergoes diversification
via a large-e�ect mutation (monomorphic population with s ¥ 0.6 resident becomes dimorphic after
invasion by s ¥ 0.3 mutant) after 4 mutations. The two co-residents then diverge to the evolution-
arily stable community with two metabolic specialists. (b) The PIP shows that the branching point
around s ¥ 0.3 is convergence-stable in the limit of infinitesimally-small mutations: monomorphic
populations where s < 0.3 or s > 0.3 will converge to the branching point. A local invasion anal-
ysis of the branching point will suggest that it is not an ESS because nearby mutants can invade.
However, the fate of the dimorphic community after branching cannot be understood from the PIP
— in fact, subsequent divergence proceeds contrary to the information in the PIP. In addition,
when mutations have large-e�ect, there are many possible mutation and invasion events that lead
to diversification, as indicated by the grey bands, and a local analysis of the branching point is
insu�cient. (c) The network of mutational paths (for intermediate-size mutations) visualizes both
monomorphic and dimorphic adaptation dynamics. We highlight the existence of many diversifica-
tion mutation and invasion events (edges crossing the red curve), most of which involve large-e�ect
mutations. The resulting transient resident-mutant communities cannot be analyzed by standard
adaptive dynamics theory, which assumes a continuum of infinitesimally-small mutations.
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