

Recent results on nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics

> Bruno Volzone Università degli studi di Napoli "Parthenope"

Workshop on Entropies, the Geometry of Nonlinear Flows, and their

Applications

8th-13th April 2018, BIRS

In \mathbb{R}^N with $N \ge 2$, the model with degenerate diffusion is

$$\rho_t = \Delta \rho^m - \nabla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

with m > 1, being \mathcal{N} the Newtonian kernel in \mathbb{R}^{N} .

- The nonlinear degenerate diffusion term for the 2D Keller-Segel equation avoids the blow-up phenomenon (anti-overcrowding effect). (Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06).
- The behaviour of solutions depends on *m* and on the so called critical exponent $m_c = 2 \frac{2}{N}$:
 - for m > m_c, for any p₀ ∈ L¹ ∩ L[∞] (ℝ^N), the solution exists globally in time and there is a uniform estimate in time of the L[∞] norm. (Sugiyama '06)
 - for $m < m_c$, there is a blow-up in finite time for an initial data with arbitrarily small mass. (Sugiyama '06)
 - for $m = m_c$ (fair competition) the behaviour of solution depends on the mass, and there is the presence of a critical mass M_c . (Blanchet-Carrillo-Laurençot '09)

From now on, we will focus on the "subcrictical case" $m > 2 - \frac{2}{N}$, in which solutions exist globally in time.

Question

What about the asymptotic behaviour of solutions?

There is the existence of a free-energy functional \mathcal{F} associated to the model:

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m dx - \frac{1}{2} \int_{\mathbb{R}^N} \rho(\mathcal{N} * \rho) dx;$$

we can write the KS equation as

$$\rho_t = \nabla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho \right) \right) =: \nabla \cdot \left(\rho \nabla \left(\frac{\delta \mathcal{F}}{\delta \rho} \right) \right)$$

where $\frac{\delta \mathcal{F}}{\delta \rho} = \frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho$. If ρ is a solution of the KS-equation, then $\mathcal{F}[\rho]$ decreases in time, hence it is a Lyapunov functional.

The following properties are known for the global minimizers of \mathcal{F} , among densities with fixed mass M:

- Existence: (Lions '84) for $N \ge 3$ and (Carrillo, Castorina, V. 2014) for N = 2;
- Radial symmetry (rearrangement techniques);
- Uniqueness + compact support (Lieb-Yau '87), (Kim-Yao 2012) for $N \ge 3$, (Carrillo, Castorina, V. 2014) for N = 2

Let ρ_M be a minimizer of \mathcal{F} with mass M. Then ρ_M must be a stationary solution.

Question

If $\rho_0 = \rho(0, \cdot)$ has mass *M*, is it always true that $\rho(\cdot, t)$ converges to (a translation of) ρ_M when $t \to \infty$?

The answer is affirmative if we have a positive answer to the following questions:

Question

Is ρ_M the unique stationary state of mass *M* (up to translations)?

We know the uniqueness of stationary solutions with **radial symmetry**, with fixed mass (Lieb-Yau '87), , (Kim-Yao 2014) hence the question above reduces to

Question

Is it true that every steady state is radially symmetric (up to translations)?

Stationary solutions of the Keller-Segel equation

Rewriting the KS-equation in the divergence form

$$\rho_t - \nabla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho \right) \right) = 0,$$

then any stationary solution ρ_s satisfies

$$\frac{m}{m-1}\rho_s^{m-1}-\mathcal{N}*\rho_s=C_i$$

in each connected component of $\{\rho_s > 0\}$ (C_i may be get different values in each connected component).

Stationary solutions

Stationary solutions for the degenerate aggregation-diffusion equation

Now we consider the equation with a general attractive kernel \mathcal{K} :

$$ho_t =
abla \cdot \left(
ho
abla (rac{m}{m-1}
ho^{m-1} + \mathcal{K} *
ho)
ight),$$

where \mathcal{K} is radial and strictly increasing in |x|. Similarly, each steady state ρ_s verifies $\frac{m}{m-1}\rho_s^{m-1} + \mathcal{K} * \rho_s = C_i$

in each connected component of $\{\rho_s > 0\}$.

Theorem (Carrillo-Hittmeir-Yao, V., 2016)

Let $\rho_s \in L^1_+(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ a steady state. Then ρ_s must be radially decreasing, up to translastions.

Steiner symmetrization

An element playing a decisive role in the proof of such result is the concept of **Steiner symmetrization**. If, for instance $E \subset \mathbb{R}^2$, the Steiner symmetrization of *E* w.r. to a line *r* as:

We have that |E| = |S(E)|, while the perimeter decreases.

Steiner symmetrization

We can define easily the Steiner symmetrization (or rearrangement) $S\rho$ of a function $\rho \in L^1(\mathbb{R}^N_+)$. We define the distribution function of ρ w.r. to $x_1 \in \mathbb{R}$ as

$$\mu_{\rho}(h, x') = |\{x_1 \in \mathbb{R} : \rho(x_1, x') > h\}|, \quad \forall h > 0, \ x' \in \mathbb{R}^{N-1};$$

the Steiner symmetrization of ρ w.r. to x_1 is a particular function which is symmetric w.r. to the hyperplane $x_1 = 0$:

$$(S
ho)(x_1,x') = \sup\left\{h > 0: \mu_
ho(h,x') > 2|x_1|
ight\}.$$

- For all h > 0, {(x₁, x') : (Sρ)(x₁, x') > h} coincides with the Steiner symmetrization of {(x₁, x') : ρ(x₁, x') > h} w.r. to the hyperplane x₁ = 0;
- In particular, ρ e Sρ are equimeasurable: the L^ρ norms are invariant w.r. to the Steiner symmetrization;

Main ingredients: Steiner and continuous Steiner symmetrization

Steiner symmetrization

Continuous Steiner symmetrization of sets

If $U \subset \mathbb{R}$ open, we define its **continuous Steiner symmetrization** $M^t(U)$ for all $t \ge 0$ as:

(1) If U = (c - r, c + r), then

$$M^t(U) := egin{cases} (c-t\operatorname{sgn} c-r,c-t\operatorname{sgn} c+r) & \operatorname{per} 0 \leq t < |c|, \ (-r,r) & \operatorname{for} t \geq |c|. \end{cases}$$

- (2) If $U = \bigcup_{i=1}^{N} (c_i r_i, c_i + r_i)$ disjoint, then $M^t(U) := \bigcup_{i=1}^{N} M^t((c_i r_i, c_i + r_i))$ for $0 \le t < t_1$, where t_1 is the first time where the two intervals $M^t((c_i r_i, c_i + r_i))$ have a common endpoint. Once it happens, we merge them into one open interval, and repeat this process starting from $t = t_1$.
- (3) If $U = \bigcup_{i=1}^{\infty} (c_i r_i, c_i + r_i)$ (with disjoint $(c_i r_i, c_i + r_i)$), let $U_N = \bigcup_{i=1}^{N} (c_i r_i, c_i + r_i)$ for all N > 0, and define $M^t(U) := \bigcup_{N=1}^{\infty} M^t(U_N)$.

Main ingredients: Steiner and continuous Steiner symmetrization

Continuous Steiner symmetrization of sets

We could generalize this definition for any measurable set of \mathbb{R} . Some fundamental properties:

•
$$|M^t(U)| = |U|$$
 for all $t \ge 0$;

•
$$M^0(U) = U e M^{\infty}(U) = S(U);$$

Continuous Steiner symmetrization of a function

Let us fix a function $\rho \in L^1(\mathbb{R}^d_+)$, define the continuous Steiner symmetrization of ρ in the direction $e_1 = (1, 0, ..., 0)$, through

For all h > 0, | { (x₁, x') : (S^tρ)(x₁, x') > h } |_N = | { (x₁, x') : ρ(x₁, x') > h } |_N;
S⁰ρ = ρ ∈ S[∞]ρ = Sρ

Symmetry of steady states: sketch of the proof

The proof relies on a contradiction argument. Let us assume that there is a steady state ρ_s that is NOT radial and decreasing after ANY translation.

 The key point yielding a contradiction is to prove that there is is a constant *c* > 0 dependant on *ρ_s* and *K*, for which the c. Steiner symmetrization S^t*ρ_s* is such that, for small values of *t*,

$$\mathcal{F}[S^{t}\rho_{s}] - \mathcal{F}[\rho_{s}] < -ct,$$

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^{N}} \rho^{m} dx + \frac{1}{2} \int_{\mathbb{R}^{N}} \rho(\mathcal{K} * \rho) dx;$$

We observe that by the properties of continuous Steiner symmetrization we have

$$\|\mathcal{S}^t \rho_s\|_m = \|\rho_s\|_m;$$

moreover since \mathcal{K} is increasing in |x| one can show that

$$\int S^t
ho_{\mathcal{S}}((S^t
ho_{\mathcal{S}}) * \mathcal{K}) dx < \int
ho_{\mathcal{S}}(
ho_{\mathcal{S}} * \mathcal{K}) dx.$$

In principle, nothing can be said on the uniqueness of the stationary states for a **general kernel** \mathcal{K} : if $\mathcal{K} = -\mathcal{N}$, there is a unique stationary state with mass M and zero center of mass (Kim-Yao 2012).

Existence of global minimizers

It is possible to show the existence of a radially decreasing global minimizer of the energy functional

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m dx + \frac{1}{2} \int_{\mathbb{R}^N} \rho(\mathcal{K} * \rho) dx,$$

in the class of admissible densities

$$\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^N) \cap L^m(\mathbb{R}^N) : \|\rho\|_1 = M, \omega(1+|x|) \, \rho(x) \in L^1(\mathbb{R}^N) \right\},$$

where we assume $\int_{\mathbb{R}^N} x\rho(x)\,dx=0$, con $\mathcal{K}(x)=\omega(|x|).$ More precise assumptions on $\mathcal K$ are

(K1) $\omega'(r) > 0$ for all r > 0 with $\omega(1) = 0$.

- (K2) \mathcal{K} is not more singular than the Newtonian kernel in \mathbb{R}^N close to the origin, i.e., there exists $C_W > 0$ such that $\omega'(r) \leq C_W r^{1-N}$ per $r \leq 1$.
- (K3) There is some $C_W > 0$ such that $\omega'(r) \leq C_W$ for all r > 1.
- (K4) Condition at infinity: $\lim_{r \to +\infty} \omega_+(r) = +\infty$.

Regularity of minimizers

If ρ_0 is a global minimizer, one has

ρ₀ satisfies

$$\frac{m}{m-1}\rho_0^{m-1} + \mathcal{K}*\rho_0 = C \quad \text{q.o. in } \{\rho_0 > 0\}$$

hence it is a stationary state;

- From this equation and from the asymptotic bahavior of $\mathcal{K} * \rho_0$ one can show that ρ_0 is of compact support; moreover $\rho_0 \in L^{\infty}(\mathbb{R}^N)$;
- Using the locally Lipschitz regularity $W_{loc}^{1,\infty}$ of $\mathcal{K} * \rho_0$ one shows that $\rho \in C^{0,\alpha}(\mathbb{R}^N)$.

Remark: uniqueness

In general, nothing can be said on uniqueness of minimizers for general potentials, unless when $\mathcal{K} = -\mathcal{N}$.

Asymptotic behaviour

Asymptotic behaviour in 2D

Let us consider the Keller-Segel model in 2D:

$$\rho_t =
abla \cdot \left(
ho
abla (rac{m}{m-1}
ho^{m-1} + \mathcal{K} *
ho) \right) =:
abla \cdot (
ho
abla (h[
ho]))$$

where $\mathcal{K}(x) = \frac{1}{2\pi} \log |x|$, N = 2, $h = \frac{\delta \mathcal{F}}{\delta \rho} = \frac{m}{m-1} \rho^{m-1} + \mathcal{K} * \rho$.

- Let us assume that $ho_0 \in L^\infty(\mathbb{R}^2) \cap L^1((1+|x|^2)dx).$
- Then \mathcal{F} decreases along the solution $\rho(t, x)$:

$$\frac{d}{dt}\mathcal{F}[\rho](t) = -\mathcal{D}[\rho](t)$$

then

$$\mathcal{F}[
ho](t) + \int_0^t \mathcal{D}[
ho] d au \leq \mathcal{F}[
ho_0]$$

with the entropy dissipation defined as

$$\mathcal{D}[
ho] = \int_{\mathbb{R}^2}
ho |
abla h[
ho]|^2 dx.$$

Asymptotic behaviour

Asymptotic behaviour in 2D

Theorem (Carrillo-Hittmeir-Yao-V., 2016)

For all $\rho_0 \in L^{\infty}(\mathbb{R}^2) \cap L^1((1 + |x|^2)dx)$, for $t \to \infty$, $\rho(\cdot, t)$ converges to the unique stationary state with the same mass *M* and center of mass of the initial datum ρ_0 i.e., converges to

$$\rho_M^c := \rho_M(x - x_c) \quad \text{where } x_c = \frac{1}{M} \int_{\mathbb{R}^2} x \rho_0(x) \, dx.$$

More precisely, we have

$$\lim_{t\to\infty} \|\rho(t,\cdot)-\rho^c_M\|_{L^q(\mathbb{R}^2)}=0 \qquad \text{for all } 1\leq q<\infty\,.$$

Remark: since this is obtained through a compactness argument, we do no get any rate of convergence.

Asymptotic behaviour

What happens for $N \ge 3$?

- For N ≥ 3, if ρ₀ is radially symmetric and of compact support, the convergence to the unique steady state is known (Kim-Yao '12), and the rate of convergence is exponential.
- For nonradial data, the asymptotic behaviour is an open problem: there are no a priori estimates avoiding that the mass escapes to infinity (no mass confinement)!

What happens when \mathcal{K} is more singular?

$$\partial_t
ho = \Delta
ho^m +
abla \cdot (
ho \,
abla \, W_k st
ho) \quad ext{in } (0, \, T) imes \mathbb{R}^N,$$

The interaction is given by the the Riesz kernel $W_k(x) := \frac{1}{k} |x|^k$, -N < k < 0.

Free energy:

$$\mathcal{F}[
ho] = \mathcal{H}_m[
ho] + \mathcal{W}_k[
ho]$$

$$\mathcal{H}_m[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m(x) \, dx \,, \qquad \mathcal{W}_k[\rho] = \frac{1}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|x-y|^{\kappa}}{k} \rho(x) \rho(y) \, dx dy \,.$$

Diffusion dominated regime

 \mathcal{H}_m and \mathcal{W}_k are homogeneous by taking dilations $\rho^{\lambda}(x) = \lambda^N \rho(\lambda x)$

$$\mathcal{F}[
ho^{\lambda}] = \lambda^{N(m-1)} \mathcal{H}_m[
ho] + \lambda^{-k} \chi \mathcal{W}_k[
ho]$$

Critical exponent $m_c := 1 - k/N$

- $m = m_c$: fair competition regime (critical mass)
- *m* > *m*_c: diffusion dominated regime

 \leftarrow we focus on this case

• *m* < *m*_c: attraction dominated regime

Our results have many analogous in fair competition regime [Blanchet, Carrillo, Laurencot 2009], [Calvez, Carrillo, Hoffmann 2016, 2017] and in case of Newtonian potential interaction [Kim, Yao 2012], [Carrillo, Castorina, Volzone 2015], [Carrillo, Hittmeir, Volzone, Yao 2016]

Stationary states

Let $\bar{\rho} \in L^1_+(\mathbb{R}^N)$, $\|\bar{\rho}\|_1 = M$, be a stationary state for the evolution equation.

• If $-N < k \le 1 - N$, we further require $\bar{\rho} \in C^{0,\alpha}(\mathbb{R}^N)$ for some $\alpha \in (1 - k - N, 1)$, implying that $\nabla W_k * \bar{\rho}$ is well defined (and bounded) as a Cauchy principal value

$$abla W_k * ar{
ho}(x) := \int_{\mathbb{R}^N}
abla W_k(x-y) \left(ar{
ho}(y) - ar{
ho}(x)
ight) dy$$

Basic facts: if $\bar{\rho}$ is a stationary state then

- $\bar{\rho}^{m-1} \in W^{1,\infty}(\mathbb{R}^N).$
- $\bar{\rho}(x)^{m-1} = \frac{m-1}{m} (C[\bar{\rho}](x) W_k * \bar{\rho}(x))_+, \quad x \in \mathbb{R}^N$ where $C[\bar{\rho}](x)$ is constant on each connected component of supp $(\bar{\rho})$.

Radial symmetry of stationary states

Theorem (Carrillo-Hoffmann-Mainini-V., 2017)

Stationary states are radially symmetric compactly supported.

Existence of global minimizers

Theorem

Let $k \in (-N, 0)$ and $m > m_c$. There exist a minimizer of \mathcal{F} on $\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^N) \cap L^m(\mathbb{R}^N), ||\rho||_1 = M, \int_{\mathbb{R}^N} x \rho(x) \, dx = 0 \right\}.$

• By Lions concentration-compactness, as for instance in [Kim, Yao 2012]

A CONTRACTOR OF CONTRACTOR OF

Recent results

Properties of minimizers

Theorem

Let $k \in (-N, 0)$ and $m > m_c$. If ρ is a global minimizer of the free energy functional \mathcal{F} in \mathcal{Y} , then ρ is radially symmetric and non-increasing, bounded, compactly supported, and

$$ho^{m-1}(x) = \left(rac{m-1}{m}
ight) \left(D[
ho] - W_k *
ho(x)
ight)_+ \quad a.e. \ in \ \mathbb{R}^N$$

where

$$D[\rho] := 2\mathcal{F}[\rho] + \left(rac{m-2}{m-1}
ight) ||
ho||_m^m, \qquad
ho \in \mathcal{Y}_M.$$

Regularity of minimizers

Theorem

Let $k \in (-N, 0)$ and ρ a minimizer of \mathcal{F} on \mathcal{Y}_M .

• If $m_c < m < m^* := \frac{2-k-N}{1-k-N}$, then $\rho^{m-1} \in W^{1,\infty}(\mathbb{R}^N)$, thus $\rho \in C^{0,\alpha}(\mathbb{R}^N)$ with $\alpha = \min\{1, \frac{1}{m-1}\}$.

• If
$$m \ge m^*$$
, then $\rho^{m-1} \in C^{\alpha}(\mathbb{R}^N)$ for any $\alpha < \frac{(k+N)(m-1)}{m-2} \le 1$.

• If $m \ge m_c$ and B is the interior of supp ρ , then $\rho \in C^{\infty}(B)$.

Schauder estimates for the fractional Laplacian [Ros-Oton, Serra 2016]

$$\|W_k * \rho\|_{C^{0,\alpha+2s}(B_{1/2}(0))} \le c \left(\|W_k * \rho\|_{L^{\infty}(\mathbb{R}^N)} + \|\rho\|_{C^{0,\alpha}(B_1(0))} \right), \quad 2s = k + N$$

Since ρ is radially symmetric decreasing, in the interior of the support the regularity of ρ is that of ρ^{m-1} . Therefore, by bootstrap we reach smoothness of ρ .

Recent results on Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics

Open problems

- Uniqueness of minimizers. Up to now we have a proof only for N = 1.
- Long time asymptotics for the evolution equation
- Characterization of self-similar profiles

Thank you for your attention!