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In R™ with N > 2, the model with degenerate diffusion is
pt=Dp" =V - (pV(N *p)),

with m > 1, being A the Newtonian kernel in R".

@ The nonlinear degenerate diffusion term for the 2D Keller-Segel equation avoids
the blow-up phenomenon (anti-overcrowding effect).
(Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06).

@ The behaviour of solutions depends on m and on the so called critical exponent
me=2-2:
o for m > mg, for any po € L'nLe (RN), the solution exists globally in time and there is
a uniform estimate in time of the L norm. (Sugiyama ’'06)
o for m < mg, there is a blow-up in finite time for an initial data with arbitrarily small mass.
(Sugiyama '06)
° for m = me (fair competmon) the behawour of solutlon depends on the mass, and there
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solutions exist globally in time.

Question
What about the asymptotic behaviour of solutions?

There is the existence of a free-energy functional F associated to the model:

1 m 1 )
Flol = /RN” dx—EANp(N*p)dx,

we can write the KS equation as

pt=V" (pv(%pm_1 —N*P)) =V (pV (%))
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SOUSTY

@‘ The Keller-Segel model with degenerate diffusion
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The following properties are known for the global minimizers of F, among
densities with fixed mass M:

@ Existence: (Lions '84) for N > 3 and (Carrillo, Castorina, V. 2014) for N = 2;
o Radial symmetry (rearrangement techniques);
@ Uniqueness + compact support (Lieb-Yau '87), (Kim-Yao 2012) for N > 3,
(Carrillo, Castorina, V. 2014) for N = 2
Let pm be a minimizer of F with mass M. Then py must be a stationary
solution.
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Question

If po = p(0,-) has mass M, is it always true that p(-, t) converges to (a
translation of) py when t — c0?

The answer is affirmative if we have a positive answer to the following
questions:

Question
Is pm the unique stationary state of mass M (up to translations)?

We know the uniqueness of stationary solutions with radial symmetry, with
fixed mass (Lieb-Yau '87), , (Kim-Yao 2014) hence the question above
reduces to

Question

Is it true that every steady state is radially symmetric (up to translations)?
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; Stationary solutions of the Keller-Segel equation

Rewriting the KS-equation in the divergence form
pt—V- <PV( 1p —N*p))=
then any stationary solution ps satisfies
m
m/’s — N *ps = Ci

in each connected component of {ps > 0} (C; may be get different values in
each connected component).
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Stationary solutions

Stationary solutions for the degenerate
aggregation-diffusion equation

Now we consider the equation with a general attractive kernel K:

m —
pt=V- (pv(mpm ! +K*p)>,
where K is radial and strictly increasing in |x|. Similarly, each steady state ps

verifies m _
T+ Kxps=Ci

in each connected componen_t of {ps > 0}.

Theorem (Carrillo-Hittmeir-Yao, V., 2016)

Let ps € L1 (RN) n L*°(RN) a steady state. Then ps must be radially de-
creasing, up to translastions.
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Steiner symmetrization. If, for instance E C R?, the Steiner symmetrization
of E w.r. to a line r as:
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We can define easily the Steiner symmetrization (or rearrangement) Sp of a
function p € L'(R"). We define the distribution function of p w.r. to x; € R as

po(hx') =1 {x €R:p(x1,x') > h}|, Vh>0,x' eR";

the Steiner symmetrization of p w.r. to x is a particular function which is
symmetric w.r. to the hyperplane x; = 0:

(Sp)(x1,x") =sup{h>0:pup(hx")>2/x:|}.

@ Forall h > 0, {(x1,x") : (Sp)(x1,x") > h} coincides with the Steiner
symmetrization of {(x1, x") : p(x1,x") > h} w.r. to the hyperplane x; = 0;

o In particular, p e Sp are equimeasurable: the LP norms are invariant w.r. to the
Steiner symmetrization;
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If U C R open, we define its continuous Steiner symmetrization M'(U) for
all't>0as:

(1) fU=(c—r,c+r),then

M(U) — {(c— tsgnc—r,c—tsgnc+r) per0<t<|c,
(=r,r) fort > |c|.

@) 1fU=UN (¢ —r,c+ r)disjoint, then M{(U) := UN_ M!((c; — r;, ¢; + r;)) for
0 < t < ty, where t; is the first time where the two intervals M!((¢; — r;, ¢; + 7))
have a common endpoint. Once it happens, we merge them into one open
interval, and repeat this process starting from ¢t = ¢;.

(8) If U= ux (ci — r,ci+ r;) (with disjoint (¢; — rj, ¢ + r;) ), let
Uy = U,L(c,- — rj, ¢ + r;) for all N > 0, and define M!(U) := URD 4 Mi(Up).
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We could generalize this definition for any measurable set of R. Some
fundamental properties:

o |Mi(U)| = |U| forall t > 0;
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symmetrization of p in the direction e; = (1,0,...,0), through

(S'p) (1, x') = / Xy (x:)lh
O X'

A
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steady state ps that is NOT radial and decreaising after ANY translation.

@ The key point yielding a contradiction is to prove that there is is a constant ¢ > 0
dependant on ps and K, for which the c. Steiner symmetrization S!ps is such that,
for small values of t,

F[S'ps] = Fles] < —ct,

1 1
Flol = —— Max + — K * p)ax;
(o] m—1/RNP X+2/RNP( * p)dx

We observe that by the properties of continuous Steiner symmetrization we have

HSIPSHm = lpslim;

moreover since K is increasing in |x| one can show that

S'ps((S'ps) ¥ K)dx < [ ps(ps * KC)dXx.
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In principle, nothing can be said on the uniqueness of the stationary states
for a general kernel K: if K = —N/, there is a unique stationary state with
mass M and zero center of mass (Kim-Yao 2012).
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of the energy functional

A no 1
Flol = 3 /RNP dx+2/RNp(’C*p)dx,

in the class of admissible densities

Y= {p € LL®") N L"(RY) : [lolli = M,w(1 + [x]) p(x) € L' (&Y},

where we assume f v Xp(x)dx =0, con K(x) = w(|x|). More precise
assumptions on K are
(K1) w'(r) > 0forall r > 0 withw(1) =0.

(K2) K is not more singular than the Newtonian kernel in RN close to the origin,i.e.,
there exists Cy > 0 such that w/(r) < Cwr!'=N perr < 1.

(K3) There is some Cw > 0 such that w/(r) < Cy forall r > 1.
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Existence of global minimizers
Regularity of minimizers

If po is a global minimizer, one has
@ po satisfies
m _ .
Fpg’ TS Kxpy=C qo.in {pg > 0}
hence it is a stationary state;
@ From this equation and from the asymptotic bahavior of K % pg one can show that
oo is of compact support; moreover pg € L (RN);
@ Using the locally Lipschitz regularity W,L’c°° of K % pg one shows that
p € CO(RN).

Remark: uniqueness

In general, nothing can be said on uniqueness of minimizers for general
potentials, unless when K = —N.
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pt="V" (PV(%P'"_1 + K« P)) =V (pV(hp]))

1 _ _8F _ _j
where KC(x) = 5 log|x|, N=2,h= 5] = ;50" + K*p.
@ Let us assume that pg € L (R?) N L'((1 + |x|?)dx).

@ Then F decreases along the solution p(t, x):

& Flpl(0) = DAl

then .
F[p](f)+/ DlpldT < Flpo]
0

with the entropy dissipation defined as
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Theorem (Carrillo-Hittmeir-Yao-V., 2016)

For all po € L(R?) N L'((1 + |x|?)dx), for t = oo, p(-, t) converges to the
unique stationary state with the same mass M and center of mass of the
initial datum po i.e., converges to

piw = pm(X — Xc)  where x; = 1 xpo(x) dx.
M Jge

More precisely, we have
lim {|p(t,-) — Pfﬂ“Lq(R?) =0 forall1 < g<oo.
t— o0

Remark: since this is obtained through a compactness argument, we do
no get any rate of convergence.
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@ For N > 3, if pg is radially symmetric and of compact support, the convergence to
the unique steady state is known (Kim-Yao ’12), and the rate of convergence is
exponential.

@ For nonradial data, the asymptotic behaviour is an open problem: there are no a
priori estimates avoiding that the mass escapes to infinity (no mass confinement)!
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Bip=NAp"+V-(pVWi*p) in(0,T) x RN,

The interaction is given by the the Riesz kernel
Wi(x) == 1 x|*, —N<k<O.

Free energy:
Flol = Hmlp] + Wklp]

ol = s [ rax, wia =4 ] B ot0nty) avoy.

m—1
RNXRN
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Critical exponent my := 1 — k/N
@ m = mc: fair competition regime (critical mass)
@ m > me: diffusion dominated regime + we focus on this case

@ m < mg: attraction dominated regime

Our results have many analogous in fair competition regime
[Blanchet, Carrillo, Laurencot 2009], [Calvez, Carrillo, Hoffmann 2016, 2017]

and in case of Newtonian potential interaction
[Kim, Yao 2012], [Carrillo, Castorina, Volzone 2015], [Carrillo, Hittmeir,
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o If =N < k < 1— N, we further require 5 € C%* (RN) for some
a € (1= k= N,1), implying that V Wj * g is well defined (and bounded) as a
Cauchy principal value

VWi * p(x) := / VWi(x —y) (aly) — B(x)) dy
RN

Basic facts: if g is a stationary state then
o p—m—1 c W1,oo (RN)

o A()™ " = =L (ClpI(x) - W (X)), , x € RV
where C[p](x) is constant on each connected component of supp()-
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Theorem (Carrillo-Hoffmann-Mainini-V.,2017)

Stationary states are radially symmetric compactly supported.
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Theorem

Let k € (=N,0) and m > mc. There exist a minimizer of F on Yu =
{p € LLRM)NL(RY), |lpll1 = M, [ xo(x) dx = 0} .

@ By Lions concentration-compactness, as for instance in [Kim,Yao 2012]
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Theorem
Let k € (—=N,0) and m > me. If p is a global minimizer of the free en-
ergy functional F in Y, then p is radially symmetric and non-increasing,

bounded, compactly supported, and

P (x) = (’"T”) (Dlp] — Wi * p(x)), a.e. inR"

where 5
m_
Dlp) := 2Flol + (== ) llellf P € Y,
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Regularity of minimizers

Theorem
Letk € (—N,0) and p a minimizer of F on Yu.
o Ifme < m< m* = 2=5=N then pm—1 € W:(RN), thus p € C%*(RN)
with o = min{1, -1

o Ifm> m*, then ™' € C*(RN) forany o < YHMT=1) 4,
@ Ifm > mc and B is the interior of suppp, then p € C*°(B).

Schauder estimates for the fractional Laplacian [Ros-Oton, Serra 2016]
|Wi * pllgo.a+2s(8, ,5(0)) < € (|| Wi * pl| oo mvy + ||P||C°-°(B1(0))) , 2s=k+N

Since p is radially symmetric decreasing, in the interior of the support the
g ~F m—1
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porous
medium
regime

fast
diffusion
regime
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@ Uniqueness of minimizers. Up to now we have a proof only for N = 1.

@ Long time asymptotics for the evolution equation

o Characterization of self-similar profiles
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Thank you for your attention!

Recent results on Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics




	The Keller-Segel model with degenerate diffusion
	Stationary solutions
	Main ingredients: Steiner and continuous Steiner symmetrization
	Continuous Steiner symmetrization

	Existence of global minimizers
	Asymptotic behaviour
	Recent results

