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✬

✫

✩

✪

[Scheel - S.]

We study mechanisms for wavenumber selection

in a minimal model for run-and-tumble dynamics.

ut = +ux − r(u, v) + r(v, u),

vt = −vx + r(u, v)− r(v, u).

The nonlinearity r in tumbling rates induces the existence of

a plethora of traveling- and standing-wave patterns,

as well as a subtle selection mechanism

for the wavenumbers of spatio-temporally periodic waves.
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✬

✫

✩

✪

Example: Rippling in populations of myxobacteria.

The ripple crests are oriented approximately perpendicular

to the movement direction of the bacteria.

A cell-surface bound C-signal is transmitted upon end-to-end contact,

of individual bacteria and increases their reversal probability.
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✬

✫

✩

✪

Bacteria move with the same speed to either right or left.

They may change orientation, and move in the opposite direction.

Let the tumbling events be pointwise functions of the two densities,

thus encoding the probabilities of encounters between

left- and right-moving bacteria.
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✬

✫

✩

✪

Inspired by Turing the most accessible scenario

for pattern formation in diffusion-reaction systems

is the instability of an unpatterned, spatially homogeneous state

against perturbations with spatial structure.

The linearly fastest growing mode then allows

for rough predictions of wavenumbers in nonlinear systems.

Notice: absence of diffusion in one species out of two,

does not lead to selection of finite wavenumbers in linear instabilities

But patterns with well-defined wavenumber laws have been

experimentally observed in such situations (Liesegang rings).
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✬

✫

✩

✪

Our caricature example reads

ut = +ux − r(u, v) + r(v, u),

vt = −vx + r(u, v)− r(v, u). (1)

u = u(t, x), v = v(t, x) encode the densities

of left- and right-moving bacteria.

r(u, v) is the rate at which left-moving bacteria reverse direction.

Such systems do arise as special lower dimensional cases

from structured population dynamics models

∂tU(t, x, c) + V (c) · ∂xU(t, x, c) + ∂c [K (U(t, x, c))] = 0. (2)

Here {c} denotes a set of internal (state) variables,

i.e. the direction of motion.

The most distinctive feature of the operator K is,

that it acts on the density U in a local manner.
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✬

✫

✩

✪

Classification of pattern formation in such systems is largely open.

For simplicity we focus in our analysis on

r(u, v) = u · g(v), g(v) = 1 +
v2

1 + γv2
, (3)

for γ ≥ 0.

Here g(v) ≡ 1 encode spontaneous tumbling,

linear dependence g(v) = v encodes binary collisions,

albeit with zero net effect on the dynamics due to the presence

of the reverse tumbling, ug(v)− vg(u) = 0.

We keep the next simplest term g(v) = v2, encoding triple collisions,

and we also allow for a Hill-type saturation of the tumbling rate

for large densities through the denominator 1 + γv2.

The interaction of tumbling and transport

appears to be surprisingly difficult to characterize.
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✬

✫

✩

✪

Systems (1) exhibits spatially constant equilibrium densities when

r(u, v) = r(v, u), which is satisfied for u ≡ v (symmetric states),

but possibly also along curves where u 6≡ v (asymmetric states).

The linearization at symetric states does not predict finite

wavelength patterns as fastest growing modes of the linearization.

At the onset of instability, all spatial wavenumbers become

simultaneously naturally stable, with EVs on the imaginary axis.

Past onset spatially homogeneous perturbations exhibit the fastest

growth rate.

“Turing instabilities”, where the first instability occurs for a

wavenumber 0 < k∗ < ∞, arise only when more complexity is

allowed, e.g. different stages of right and left moving bacteria, uj , vj ,

j ≥ 2, [Primi-S.-Velazquez, S.-Velazquez].
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✬

✫

✩

✪

Our main results here can be informally summarized as follows:

1. linear growth favors wavenumbers klin = 0 or klin = ∞,

that is, linear instabilities do not select finite wavenumbers from

white-noise perturbations;

2. localized perturbations of asymmetric states may generate

traveling waves with a selected non-zero wavenumber kloc,

that is, instabilities do select finite wavenumbers from shot-noise

perturbations;

3. localized perturbations of symmetric states result in the creation

of asymmetric states and subsequent evolution of traveling and

standing waves, with nonzero wavenumber kloc,

that is, localized instabilities eventually do select finite wave-

numbers from shot noise perturbations.
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✬

✫

✩

✪

Localized perturbations result in their spatio-temporal spreading.

The emerging invasion process is oscillatory in nature

with a well-defined spreading speed and finite temporal frequency.

In other words, oscillatory invasion selects spatial wavenumbers.

These selection mechanisms are not induced by diffusion.

Indeed, linear growth from white noise may favor a finite

wavenumber 0 < k(ε) <∞ in the related model with diffusion,

but k(ε) → 0 or k(ε) → ∞ for ε→ 0, for these perturbations.

For shot noise perturbations, diffusion plays a subordinate role,

and the selected wavenumber kloc(ε) is continuous in ε

with nonzero limit at ε = 0.
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✬

✫

✩

✪

Dynamics of pure tumbling kinetics in the phase plane for r as in

(3) with γ = 0.122, 0.115, 0.07, 0.021

Stability changes correspond to horizontal tangencies

of curves of equilibria.
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✬

✫

✩

✪

Wavenumber selection from localized perturbations of symmetric

states.
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✬

✫

✩

✪

Alignment:

∂tf(t, γ) = −
∫

I
T [f ](γ, γ′)f(t, γ)dγ′

+
∫

I
T [f ](γ′, γ)f(t, γ′)dγ′

where T [f ](γ, γ′) =
∫

I
Gσ(γ

′ − γ − V (w − γ))f(t, w)dw,

I = [− 1
2 ,

1
2 ], V is the orientational angle,

an odd function and 1-periodic,

Gσ measures the accuracy of reorientation

and can be chosen as the standard periodic Gaussian.
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✬

✫

✩

✪

Bi-Directional Alignment - Attraction and Repulsion:

If the angle between myxobacteria is small, they attract each other.

If the angle between myxobacteria is larger, they are repulsive,

respectively they are attracted to the ends of their interaction

partners.

Peak Solutions for the Limiting Equation:

Consider Gσ with σ = 0, the Dirac mass δ0,

which describes deterministic turning.

Convergence of solutions of our equation for Gσ to solutions for δ0,

for σ small enough, was proved by E. Geigant.
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✬

✫

✩

✪

[Kang - Perthame - S. - Velázquez]

For continuously varying initial distributions

an exchange of mass and generalized momenta takes place.

Define suitable partial masses m1(t),m2(t) as well as

suitable means of partial first moments ξ1(t), ξ2(t).

By showing that suitable generalized second moments are decreasing

in time it could be proved, that two oriented peaks develop

at two exactly opposite orientations ξ̃1, ξ̃2,

if initially two slightly asymmetric oriented peaks are present.

Their final masses m̃1, m̃2 can be different.

These initial peaks may differ in size but should both be of higher

order of magnitude in size than the rest of the initial distribution.

So we obtained local stability

for alignment into two opposite directions,

but NO selection of mass.
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✬

✫

✩

✪

[Primi - S. - Velázquez]

Have a closer look at the case σ > 0.

If the orientational angle V is very small

the kinetic equation can be approximated by

∂tf = σ2m
2 ∂xxf + ∂x

(

f(x)
∫

I
V (x− y)f(y)dy

)

We are interested in the steady states.

An equivalent formulation for these is

σ2

2 ∂xf(x) + f(x)
∫

I
V (x− y)f(y)dy = 0

∫

I
f(x)dx = 1 and f(x+ 1) = f(x)
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✬

✫

✩

✪

Heuristics for the Selection Mechanism

Let σ = 0, then the equation reduces to

f(x)
∫

I
V (x− y)f(y)dy = 0

Any function of the form f(x) = αδ0(x) + βδ0(x− 1
2 )

is a solution, for arbitrary choice of α, β.

For σ > 0 this is not the case.
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✬

✫

✩

✪

Suppose fσ → αδ0(x) + βδ 1
2
(x) for σ → 0.

For σ << 1, fσ can then be approximated by the solution of

σ2

2 ∂xf(x) + f(x)Vα,β(x) = 0
∫

I
f(x)dx = 1

where Vα,β = αV (x) + βV (x− 1
2 ).

This equation can be solved explicitly

f(x) =
exp(− 2

σ2 [αφ(x)+βφ(x− 1
2 )])

∫

I
exp(− 2

σ2 [αφ(y)+βφ(y− 1
2 )])dy

with φ(x) =
∫ x

0
V (z)dz, so φ(x) = φ(−x).
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✬

✫

✩

✪

Assume φ( 12 ) 6= 0, which is generally the case.

The condition for having two peaks concentrated at x = 0 and x = 1
2

is that αφ(x) + βφ(x− 1
2 ) reaches its minimum at these points.

In particular αφ(0) + βφ(− 1
2 ) = αφ( 12 ) + βφ(0).

This can only happen for α = β = 1
2 .

What are the conditions on V for either one

or two peaks of equal size to occur?

Suppose for σ << 1 exists a peak-like smooth function f ,

mainly concentrated at 0, which solves

σ2

2 ∂xf(x) + f(x)
∫

I
V (x− y)f(y)dy = 0

∫

I
f(x)dx = 1

and converges to δ0 for σ → 0.
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✬

✫

✩

✪

This function may be approximated by the solution of

σ2

2 ∂xf(x) + f(x)V (x) = 0 ,
∫

I
f(x)dx = 1 .

Therefore

f(x) =
exp(− 2

σ2 [
∫

x

0
V (z)dz])

∫

I
exp(− 2

σ2 [
∫

y

0
V (z)dz])dy

For
∫ 1

2

0
V (x)dx > 0 we have a main concentration around 0.

For
∫ 1

2

0
V (x)dx < 0 the peak is located at ± 1

2 ,

which is a contradiction.
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✬

✫

✩

✪

Haptotaxis and Trail Following:

We consider a Keller-Segel model with non-diffusive memory, namely

∂tu = ∆u−∇ · (u∇ log(v)) , ∂tv = uvλ .

Earlier results:

λ = 0 global solutions (Chen Hua et al),

λ = 1 blow-up for specific initial data (Levine and Sleeman).

By setting θ = 1
1−λ and z = 1

1−λv
(1−λ) = θv

1
θ we obtain

∂tu = ∆u− θ∇ · (u∇ log(z)) , ∂tz = u , θ ∈ (0,∞)

Pattern Formation driven by Transport, Drift, and Localized Interactions. 20



✬

✫

✩

✪

[Kang - S.- Velázquez]:

Space Dimension 1:

For θ = 1, i.e. λ = 0 formally every space dependent function

is asymptotically a steady state for t→ ∞.

It could be shown, that the long time dynamics

are strongly dependent on the initial data.

For 1 < θ < 3, i.e. 0 < λ < 2
3 it was rigorously proved

that solutions converge to a Dirac mass for t→ ∞.
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✬

✫

✩

✪

Here we only give the heuristic argument:

Assume I = [−1, 1],
∫

I
udx = m and consider

z̄t =
z̄θ

∫

I
z̄θdx

,

which results from the quasisteady approximation

0 = ∇ · (∇u− θu∇ log(z))

∂tz = u

We assume that this is a good approximation

for the original problem for t→ ∞.
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✬

✫

✩

✪

For z̄(0, 0) > z̄(0, x) we obtain

z̄1−θ(t, x) = z̄1−θ(0, x)− (θ − 1)
∫ t

0
ds

∫

I
z̄θ(s,x)dx

Assume the following expansion:

z̄1−θ(0, x) = z̄1−θ(0, 0) +Bx2 + h.o.t. for x→ 0.

Thus z̄1−θ(t, x) ≈ z̄1−θ(0, 0) + Bx2 − (θ − 1)
∫ t

0
ds

∫

I
z̄θ(s,x)dx

.

So z̄1−θ(t, x) :≈ Bx2 + ψ(t), and

therefore z̄(t, x) ≈ (Bx2 + ψ(t))
1

1−θ .

Explicit calculations show that

1−θ
ψ′(t) ≈

∫

I
dx

(Bx2+ψ(t))
θ

θ−1
, and

ψ′(t) ≈ −Kψ
θ+1

2(θ−1) (t), so ψ(t) ≈ At
2(1−θ)
3−θ .
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✬

✫

✩

✪

With this we can calculate, that

z̄(t, x) ≈ t
2

3−θ

(

Bx2t
2(θ−1)
3−θ +A

)
1

θ−1
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✬

✫

✩

✪

Theorem:

There exist initial data (u0, z0) ∈ C2,α such that the

corresponding solutions (u, z) of our system satisfy

u(t, x) → mδ(x) and

z̄(t, x) ≈
t

2
3−θ

(

Bx2t
2(θ−1)
3−θ + A

)
1

θ−1

for t→ ∞, and where A,B are constants,

which depend on the initial data.
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✬

✫

✩

✪

Consider again

∂tu = ∆u−∇
(

u∇v
v

)

∂tv = uvλ

for x ∈ R
n, t > 0, and suitable initial conditions for u and v.

Depending on the space dimension n, the growth exponent λ

and the regularity properties of the initial conditions,

blow-up in finite time, mass aggregation in infinite time,

or mass spreading can be observed.
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✬

✫

✩

✪

1 Intuitive Understanding of the Model in R
d

The exponent λmeasures the strength of the localized reinforcement,

thus the tendency for aggregation increases with larger values of λ,

respectively larger values of θ.

The dynamics of the cells are described by random motility

and by chemotactic drift towards higher concentrations of v.

The number of times that a brownian particle approaches a given

point in space depends very strongly on the space dimension.

Thus the environment, where the cells move, is modified stronger in

lower dimensions than it is in higher dimensions. So in this model

the tendency to aggregate increases for smaller spatial dimension.

In contrast to this, in the original Keller-Segel model with diffusion

finite time blow-up is more likely in higher dimensions.
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✬

✫

✩

✪

Regular initial data, n = 1:

The reinforced random walk in one dimension suggests λ = 0

as critical parameter.

• For λ > 2
3 we observe blow-up in finite time.

• For 0 < λ < 2
3 we observe blow-up in infinite time.

The rate of growth is a power law.

• For λ = 2
3 also blow-up in infinite time can be observed.

The rate of growth is exponential.

• For λ = 0 the solution is highly sensitive on the initial data.

These play an important role for the diffusive tails of the

solution.

• For λ < 0 self-similar behavior can be observed.

The reinforcement plays a non-trivial role.

The solution behaves non-diffusive.
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✬

✫

✩

✪

In [S. ’95], [Othmer - S., ’97] the following limiting systems were

formally derived from self-reinforced, attractive random walk models:

a) edge reinforcement:

∂tu = ∇ · (∇u− u∇ log v)

∂tv = f(u, v) = uvλ

b) vertex reinforcement:

∂tu = ∇ · (∇u− 2u∇ log v)

∂tv = f(u, v) = uvλ

Pattern Formation driven by Transport, Drift, and Localized Interactions. 29



✬

✫

✩

✪

For θ = 1
1−λ and z = 1

1−λv
(1−λ) = θv

1
θ we have

∂tu = ∇ · (∇u− θ(u∇ log(z))

∂tz = u , θ ∈ (0,∞)

If θ = θe then the formal limit of vertex reinforcement gives

θv =
2

(1−λ) = 2θ.

So 1
2θv = θe shows the same equation/effect.
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✬

✫

✩

✪

Though the asymptotics of the corresponding

integro-differential-equation do not coincide

with the asymptotics of the discrete random walk,

the integro-differential-equation correctly predicts/recovers

the critical θ for which the behavior for the cell/particle switches

from visiting all integers infinitely often to

being trapped in a finite number of integers.
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✬

✫

✩

✪

The approximation recovers and predicts the following:

1-dim edge reinforcement:

θe > 1 : trapping in two points (Davis)

θe = 1 : trapping in a bounded region (Merkl - Rolles)

θe < 1 : spreading dominated by boundary layers (Toth)

1-dim vertex reinforcement:

θv = 1 : trapping in 5 points (Tarres)

θv =
1
2 : critical case

1
2 < θv < 1 : trapping in many points
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✬

✫

✩

✪

Interestingly (compare the PDE relation between θv and θe)

for the discrete θe ∈ (0, 1) and the discrete θv ∈ (0, 12 ),

both below their respective critical value,

the asymptotic behavior of the discrete zv(θ)

‘coincides’ with that of ze(
θ
2 ).

Similar asymptotics are done for the higher dimensional cases,

in order to make educated guesses about the behavior

of the respective self-attracting random walk.
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✬

✫

✩

✪

• The classical Keller-Segel system for chemotaxis behaves

in a different way than the PDE-ODE-system presented.

The later one behaves ‘more hyperbolic’.

The reaction to an attractive but localized signal

creates a different long time behavior

if compared to attractive diffusible signals.

• Edge and vertex reinforcement make a difference

in the one particle setting, but in certain parameter regimes

they behave surprisingly similar.

The PDE-ODE-model astonishingly gave hints for the critical

parameter but does not provide the right asymptotics.

The critical parameter seems to be very robust

w.r.t. approximations.
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