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Motivation

Water droplet nucleation from H2O vapor by a molecular dynamics simulations.
[K. K. Tanaka, A. Kawano & H.Tanaka, J. Chem. Phys. 2014]
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1. Question and Goal
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The McKean–Vlasov equation – Setup

Nonlocal parabolic PDE

∂%

∂t
= β−1∆%+ κ∇ · (%∇W ? %) in TdL × (0, T ]

with periodic boundary conditions, %(·, 0) = %0 ∈ P(TdL), TdL=̂
(
−L

2
, L

2

)d
� %(·, t) ∈ P(TdL) probability density of particles

� W coordinate-wise even interaction potential

� β > 0 inverse temperature (fixed)

� κ > 0 interaction strength (parameter)
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The McKean–Vlasov equation – Derivation

Overdamped Langevin equation defined on TdL

dXi
t = − κ

N

N∑
j=1,j 6=i

∇W (Xi −Xj)dt+
√

2β−1dW i
t

� Take law(X0) = %⊗N0 and set %(N)(dx, t) = 1
N

N∑
i=1

δXit (dx)

� The mean-field limit governs a weak solution of the McKean–Vlasov equation

E(%(N)(·, t))→ %(·, t), as N →∞.

Some applications: Finite N or mean-field limit

� Molecules of a gas

� Opinions of individuals

� Collective motion of agents

� Particles in a granular medium

� Nonlinear synchronizing oscillators

� Liquid crystals
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Example: The noisy Kuramoto model

The Kuramoto model: W (x) = −
√

2
L

cos
(
2πk x

L

)
, k ∈ Z

κ < κc, no phase locking κ > κc, phase locking

Goals and Motivation:

� Classification for continuous and discontinuous transitions

� Better understanding of the free energy landscape

� Study dynamical properties related to nucleation/coarsening of clustered states
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2. H-stability and
basic longtime convergence
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H-stability

Notation: Fourier representation f̃(k) = 〈f, wk〉L2(TL) with k ∈ Zd

wk(x) = L−d/2Θ(k)
d∏
i=1

wki(xi)

Θ(k) = 2#{i:ki=0}/2

with wki(xi) =


cos
(

2πki
L
xi
)

ki > 0,

1 ki = 0,

sin
(

2πki
L
xi
)

ki < 0,

Definition (H-stability)

A function W ∈ L2(TdL) is H-stable, W ∈ Hs, if

W̃ (k) = 〈W,wk〉 ≥ 0, ∀k ∈ Zd ,

Decomposition of potential W into H-stable and H-unstable part

Ws(x) =
∑
k∈Nd

(〈W,wk〉)+wk(x) and Wu(x) = W (x)−Ws(x) .

E(%, %) =

∫∫
Td
L
×Td

L

W (x− y)%(x)%(y) dxdy = Ld/2
∑
k∈Nd

W̃ (k)

Θ(k)

∑
σ∈Sym({−1,1}d)

|%̃(σ(k))|2

André Schlichting • McKean-Vlasov on the torus • April 13, 2018 • Page 8



Functionals for stationary states

� Free energy functional Fκ: Driving the W2-gradient flow

Fκ(%) = β−1

∫
Td
L

% log % dx+
κ

2

∫∫
Td
L
×Td

L

W (x− y)%(x)%(y) dx dy .

� Disipation: Fκ is Lyapunov-function

Jκ(%) = − d

dt
Fκ(%) =

∫
Td
L

∣∣∣∇ log
%

e−βκW?%

∣∣∣2% dx ,

� Kirkwood-Monroe fixed point mapping

Fκ(%) = %−T % = %− 1

Z(%, κ)
e−βκW?% , with Z(%, κ) =

∫
Td
L

e−βκW?% dx .

Characterization of stationary states: The following are equivalent

� % is a stationary state: β−1∆%+ κ∇ · (%∇W ? %) = 0

� % is a zero of Fκ(%)

� % is a global minimizer of Jκ(%).

� % is a critical point of Fκ(%).

⇒ %∞ ≡ L−d is a stationary state for all κ > 0.
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Exponential stability/convergence in relative entropy

Consider free energy gap wrt. unifrom state

Fκ(%)−Fκ(%∞) = β−1H(%|%∞) +
κ

2
E(%− %∞, %− %∞) .

Theorem

Any solution % of the McKean-Vlasov is exponentially stable in relative entropy

H(%(·, t)|%∞) ≤ exp

[(
− 4π2

βL2
+ 2κ‖∆Wu‖∞

)
t

]
H(%0|%∞).

Especially

� if W ∈ Hs, then for any β, κ > 0

� if W /∈ Hs, then for βκ < 2π2

L2‖∆Wu‖∞
it holds exponential convergence to the uniform state.

Proof
� Use log-Sobolev on TdL, constant L2

4π2

� H-stability and Fourier representation of interaction energy
� Young convolution inequality and Pinsker inequality to compare with H(%|%∞)
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3. Bifurcations and local stability
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Nontrivial solutions to the stationary McKean–Vlasov equation?

� W /∈ Hs needs to be a necessary condition

� Numerical experiments indicate one, multiple, or possibly infinite solutions

� What determines the number of nontrivial solutions?

� Birfurcation analysis of % 7→ Fκ(%)

Example: Kuramoto model: W (x) = −
√

2
L

cos(2πx/L)
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⇒ 1-cluster solution and uniform state %∞.
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Local bifurcation result

Fκ(%) = %− T % = %− 1

Z(%, κ)
e−βκW?% , with Z(%, κ) =

∫
Td
L

e−βκW?% dx .

Theorem

Consider F̂ : L2
s(T

d
L)×R>0 → L2

s(T
d
L) with F̂ (u, κ) = Fκ(u+ %∞) and

W ∈ L2
s(T

d
L) with L2

s(T
d
L) the subspace of coordinate-wise even functions.

Assume there exists k∗ ∈ Nd, such that:

1. card{k ∈ Nd : W̃ (k) = W̃ (k∗)} = 1

2. W̃ (k∗) < 0

Then, (0, κ∗) is a bifurcation point of F̂ (u, κ) = 0, where,

κ∗ = −L
d
2 Θ(k∗)

βW̃ (k∗)
.

The branch of solutions has the following form

%∗s = %∞ + swk∗ + o(s) .
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Examples of birfucations results

� Kuramoto-type of models: W (x) = −wk(x) in d = 1

W̃ (k) = −1,

satisfying both conditions. Thus we have that κ∗ =
√

2L
β

� For W (x) = x2

2
holds

W̃ (k) =
L5/2 cos(πk)

2
√

2πk2

satisfying both conditions for odd values of k. Hence, every odd k is birfucation
point κ∗ = 4k2

βL2 .

� W s(x) = −
∞∑
k=1

1
k2s+2wk(x)

For s ≥ 1 : W s(x) ∈ Hs(TdL)

∀k > 0 : conditions (1) and (2) ok
Infinitely many bifurcation points
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4. Thermodynamics and
critical transition
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Transition points: Qualitative change of minimizers

Definition (Transition point [Chayes & Panferov ’10])

A parameter value κc > 0 is said to be a transition point of Fκ if it satisfies the
following conditions,

1. For 0 < κ < κc: %∞ is the unique minimiser of Fκ(%)

2. For κ = κc: %∞ is a minimiser of Fκ(%)

3. For κ > κc: ∃%κ 6= %∞, such that %κ is a minimiser of Fκ(%)

Definition (Continuous and discontinuous transition point)

A transition point κc > 0 is a continuous transition point of Fκ if

1. For κ = κc: %∞ is the unique minimiser of Fκ(%)

2. For any family of minimizers {%κ 6= %∞}κ>κc it holds

lim sup
κ↓κc

‖%κ − %∞‖1 = 0

A transition point κc > 0 which is not continuous is discontinuous.
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Basic properties of transition points

Summary of critical points:

� κc transition point

� κ∗ bifurcation point

� κ] point of linear stability, i.e., κ] = − L
d
2

βmink W̃ (k)/Θ(k)
with k] = arg min W̃ (k).

If there is exactly one k], then κ] = κ∗ is a bifurcation point.

Results from [Gates & Penrose 1970] and [Chayes & Panferov ’10]

� Fκ has a transition point κc iff W 6∈ Hs

� min Fκ is non-increasing as a function of κ

� If for some κ′ : %∞ is no longer the unique minimiser,
then ∀κ > κ′ : %∞ is no longer a minimizer

� If κc is continuous, then κc = κ]

Conclusion:

� To proof a discontinous transition: Show %∞ at κ] is no longer global minimizer

� To proof a continuous transition:
If κ∗ = κ], sufficient to show that %∞ at κ] is the only global minimizer and
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Conditions for continuous and discontinous phase transition

Theorem

Let W (x) ∈ Hcs.

� If there exist (near)-resonating dominant modes: That is for δ small enough

ka, kb, kc ∈

{
k′ ∈ Nd :

W̃ (k′)

Θ(k′)
≤ min
k∈Nd

W̃ (k)

Θ(k)
+ δ

}
satisfy ka + kb = kc ,

then there exists a discontinous transition point κc ≤ κ].
� If there is only one dominant unstable mode k∗: For α > 0 small enough holds

αW̃ (k]) ≤ W̃ (k) for all k 6= k] : W̃ (k) < 0 ,

then the transition point κc = κ] = κ∗ is continuous.

Proof: Need estimates on free energy difference Fκ](%)−Fκ](%∞)!
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Argument for resonating dominant modes (δ = 0)

Let ε > 0 and set

% = %∞

(
1 + ε

∑
k∈Kδ

wk

)
∈ P+

ac(U).

Then, it holds

β−1S(%) = β−1

S(%∞) +
|Kδ|

2
%∞ε

2 − %∞
3

∫
Td
L

ε3

( ∑
k∈Kδ

wk

)3

dx+O(ε4)


κ]
2
E(%, %) =

κ]
2
E(%∞, %∞) +

κ]ε
2|Kδ|%2

∞

2
min
k∈Nd

W̃ (k)

Θ(k)
Ld/2

Combining both estimates, recalling κ] = − L
d
2

βmink W̃ (k)/Θ(k)
, yields

Fκ](%)−Fκ](%∞) ≤ −ε
3%∞
3β

∫
Td
L

( ∑
k∈Kδ

wk

)3

dx+O(ε4).

The resonance condition ka + kb = kc ensures that∫
Td
L

( ∑
k∈Kδ∗

wk

)3

dx > 0 .
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Argument for dominant unstable mode

By using κ] = − L
d
2

βmink W̃ (k)/Θ(k)
, we obtain the lower bound

F (%)−F (%∞) = β−1H(%|%∞) +
κ]
2
E(%− %∞, %− %∞)

= β−1H(%|%∞) +
κ]
2
Ld/2

W̃ (k])

Θ(k])

∑
σ∈Sym(Λ)

|%̃(σ(k]))|2

+
κ]
2
Ld/2

∑
k∈Nd,k 6=k]

W̃ (k)

Θ(k)

∑
σ∈Sym(Λ)

|%̃(σ(k))|2

≥ β−1

(
H(%|%∞)− Ld

2
|%̃(k])|2︸ ︷︷ ︸

>0???

−αL
d

2
‖%‖22

)
.

By dual formulation of relative entropy follows for any b ∈ R

H(%|%∞) ≥ b|%̃(k])|2 − log

∫
Td
L

exp
(
b%̃(k])wk](x)

)
%∞ dx.

Optimization over b provides desired positive lower bound.
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Conclusions and future work

� Improve conditions on continuous and discontinous transitions

� Symmetries of critical points

� Extend results to Rd and a class of confining potentials V (x)

⇒ use appropriate orthonormal system

� Global/local stability results for nontrivial solutions beyond criticality

� The structure of global bifurcations

� Dynamical metastability and coarsening for discontinous transitions
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Thank you for your attention!
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Sketch of the bifurcation result

Proof: Relies on the Crandall–Rabinowitz theorem. Need to show that conditions
imply D%F̂ has a 1D kernel. We have,

D%(F̂ (0, κ))[w1] = w1 + βκ%∞(W ? w1)− βκ%2
∞

∫
U

(W ? w1)(x) dx

We can diagonalise D%F̂ (0, κ) using the orthonormal basis, wk(x) to obtain,

D%F̂ (0, κ)[wk(x)] =


(

1 + βκ W̃k
(2L)d/2

)
wk(x) ki > 0, for some i = 1 . . . d

wk(x) ki = 0, ∀i = 1 . . . d

Then condition (1) tells us when the dim kerD%F̂ (0, κ) = 1 and condition (2)
ensures that the corresponding κ∗ is positive. The results about the structure of the
branch are obtained by looking at higher order Frechét derivatives.
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Discontinuous transitions in the birfucation diagram

(M1) (M2) (M1)+(M2)

Ways in which a discontinuous transition can occur.
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