Existence of ground states for aggregation-diffusion equations

Francesco Patacchini
Department of Mathematical Sciences, Carnegie Mellon University
Joint work with J. A. Carrillo and M. G. Delgadino (Imperial College London)

Entropies, the Geometry of Nonlinear Flows, and their Applications, BIRS
April 12, 2018

Contents

Motivation

Main results

Outlook

Contents

Motivation

Main results

Outlook

Motivation

Given an interaction potential $W: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$, an entropy function $U:[0, \infty) \rightarrow$ \mathbb{R}, and a temperature $\varepsilon \geqslant 0$, we consider the continuity equation

$$
\begin{equation*}
\partial_{t} \rho=\nabla \cdot((\nabla W * \rho) \rho)+\varepsilon \nabla \cdot\left(\nabla U^{\prime}(\rho) \rho\right), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right), \quad t>0 \tag{1}
\end{equation*}
$$

Motivation

Given an interaction potential $W: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$, an entropy function $U:[0, \infty) \rightarrow$ \mathbb{R}, and a temperature $\varepsilon \geqslant 0$, we consider the continuity equation

$$
\begin{equation*}
\partial_{t} \rho=\nabla \cdot((\nabla W * \rho) \rho)+\varepsilon \nabla \cdot\left(\nabla U^{\prime}(\rho) \rho\right), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right), \quad t>0 \tag{1}
\end{equation*}
$$

We want to derive conditions on the relationship between W and U, ε for the existence/nonexistence of stationary states of (1).

Motivation

Given an interaction potential $W: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$, an entropy function $U:[0, \infty) \rightarrow$ \mathbb{R}, and a temperature $\varepsilon \geqslant 0$, we consider the continuity equation

$$
\begin{equation*}
\partial_{t} \rho=\nabla \cdot((\nabla W * \rho) \rho)+\varepsilon \nabla \cdot\left(\nabla U^{\prime}(\rho) \rho\right), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right), \quad t>0 \tag{1}
\end{equation*}
$$

We want to derive conditions on the relationship between W and U, ε for the existence/nonexistence of stationary states of (1).

We study the minimizers of the associated 2-Wasserstein energy to (1),

$$
E_{\varepsilon}(\rho)=\mathcal{W}(\rho)+\varepsilon \mathcal{E}_{U}(\rho), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)
$$

where

$$
\mathcal{W}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} W(x-y) \mathrm{d} \rho(x) \mathrm{d} \rho(y)
$$

and

$$
\mathcal{E}_{U}(\rho)= \begin{cases}\int_{\mathbb{R}^{d}} U(\rho(x)) \mathrm{d} x & \text { if } \rho \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right), \\ +\infty & \text { if } \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right) \backslash \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)\end{cases}
$$

Motivation

Given an interaction potential $W: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$, an entropy function $U:[0, \infty) \rightarrow$ \mathbb{R}, and a temperature $\varepsilon \geqslant 0$, we consider the continuity equation

$$
\begin{equation*}
\partial_{t} \rho=\nabla \cdot((\nabla W * \rho) \rho)+\varepsilon \nabla \cdot\left(\nabla U^{\prime}(\rho) \rho\right), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right), \quad t>0 \tag{1}
\end{equation*}
$$

We want to derive conditions on the relationship between W and U, ε for the existence/nonexistence of stationary states of (1).

We study the minimizers of the associated 2-Wasserstein energy to (1),

$$
E_{\varepsilon}(\rho)=\mathcal{W}(\rho)+\varepsilon \mathcal{E}_{U}(\rho), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)
$$

where

$$
\mathcal{W}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} W(x-y) \mathrm{d} \rho(x) \mathrm{d} \rho(y)
$$

and

$$
\mathcal{E}_{U}(\rho)= \begin{cases}\int_{\mathbb{R}^{d}} U(\rho(x)) \mathrm{d} x & \text { if } \rho \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right), \\ +\infty & \text { if } \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right) \backslash \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)\end{cases}
$$

- When $\varepsilon=0$ we know minimizers exist for a wide class of interaction potentials [Carrillo-Cañizo-P. (2015), Simione-Slepčev-Topaloglu (2015), Choksi-Fetecau-Topaloglu (2014)].

Motivation

Given an interaction potential $W: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$, an entropy function $U:[0, \infty) \rightarrow$ \mathbb{R}, and a temperature $\varepsilon \geqslant 0$, we consider the continuity equation

$$
\begin{equation*}
\partial_{t} \rho=\nabla \cdot((\nabla W * \rho) \rho)+\varepsilon \nabla \cdot\left(\nabla U^{\prime}(\rho) \rho\right), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right), \quad t>0 \tag{1}
\end{equation*}
$$

We want to derive conditions on the relationship between W and U, ε for the existence/nonexistence of stationary states of (1).

We study the minimizers of the associated 2-Wasserstein energy to (1),

$$
E_{\varepsilon}(\rho)=\mathcal{W}(\rho)+\varepsilon \mathcal{E}_{U}(\rho), \quad \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)
$$

where

$$
\mathcal{W}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} W(x-y) \mathrm{d} \rho(x) \mathrm{d} \rho(y)
$$

and

$$
\mathcal{E}_{U}(\rho)= \begin{cases}\int_{\mathbb{R}^{d}} U(\rho(x)) \mathrm{d} x & \text { if } \rho \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right), \\ +\infty & \text { if } \rho \in \mathcal{P}\left(\mathbb{R}^{d}\right) \backslash \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)\end{cases}
$$

- When $\varepsilon=0$ we know minimizers exist for a wide class of interaction potentials [Carrillo-Cañizo-P. (2015), Simione-Slepčev-Topaloglu (2015), Choksi-Fetecau-Topaloglu (2014)]. When $\varepsilon>0$ is small enough and $1<m \leqslant 2$, minimizers exist for bounded, fully attractive interaction potentials [Kaib (2017)].

Motivation

Typical interaction potentials. For a given $\beta>-d$ the power-law interaction potential is defined by

$$
W_{\beta}(x)=\left\{\begin{array}{ll}
\frac{|x|^{\beta}}{\beta} & \text { if } \beta \neq 0, \\
\log |x| & \text { if } \beta=0,
\end{array} \quad \text { for all } x \in \mathbb{R}^{d}\right.
$$

Motivation

Typical interaction potentials. For a given $\beta>-d$ the power-law interaction potential is defined by

$$
W_{\beta}(x)=\left\{\begin{array}{ll}
\frac{|x|^{\beta}}{\beta} & \text { if } \beta \neq 0, \\
\log |x| & \text { if } \beta=0,
\end{array} \quad \text { for all } x \in \mathbb{R}^{d}\right.
$$

Typical entropy functions. The power diffusion is given by

$$
U_{m}(r)=\frac{r^{m}}{m-1}, \quad m \neq 1, \quad m>0, \quad \text { for all } r \in[0, \infty)
$$

and the linear diffusion ($m=1$) is given by

$$
U_{1}(r)=r \log r \quad \text { for all } r \in[0, \infty)
$$

Motivation

Typical interaction potentials. For a given $\beta>-d$ the power-law interaction potential is defined by

$$
W_{\beta}(x)=\left\{\begin{array}{ll}
\frac{|x|^{\beta}}{\beta} & \text { if } \beta \neq 0, \\
\log |x| & \text { if } \beta=0,
\end{array} \quad \text { for all } x \in \mathbb{R}^{d}\right.
$$

Typical entropy functions. The power diffusion is given by

$$
U_{m}(r)=\frac{r^{m}}{m-1}, \quad m \neq 1, \quad m>0, \quad \text { for all } r \in[0, \infty)
$$

and the linear diffusion ($m=1$) is given by

$$
U_{1}(r)=r \log r \quad \text { for all } r \in[0, \infty)
$$

General hypotheses.

- $W: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ is locally integrable lower semicontinuous and even.
- $U:[0, \infty) \rightarrow \mathbb{R}$ is continuous, of class C^{2} on $(0, \infty)$ and convex, and $U(0)=0$.

Motivation

Questions.

- How stable are the (local) minimizers with zero diffusion $\varepsilon=0$ when small noise ε is switched on? Can we relate this to metastability? [Evers-Kolokolnikov (2016)]

Motivation

Questions.

- How stable are the (local) minimizers with zero diffusion $\varepsilon=0$ when small noise ε is switched on? Can we relate this to metastability? [Evers-Kolokolnikov (2016)]
- Is there a sharp general condition between W and U, ε separating the existence from the nonexistence of global minimizers? [Calvez-Carrillo-Hoffmann (2017)]

Motivation

Questions.

- How stable are the (local) minimizers with zero diffusion $\varepsilon=0$ when small noise ε is switched on? Can we relate this to metastability? [Evers-Kolokolnikov (2016)]
- Is there a sharp general condition between W and U, ε separating the existence from the nonexistence of global minimizers? [Calvez-Carrillo-Hoffmann (2017)]

Answers.

- We show for bounded-at-infinity, attraction-repulsion interaction potentials and $m \leqslant 1$ that no minimizers (local or global) of the energy exist as soon as $\varepsilon>0$, no matter how small ε.

Motivation

Questions.

- How stable are the (local) minimizers with zero diffusion $\varepsilon=0$ when small noise ε is switched on? Can we relate this to metastability? [Evers-Kolokolnikov (2016)]
- Is there a sharp general condition between W and U, ε separating the existence from the nonexistence of global minimizers? [Calvez-Carrillo-Hoffmann (2017)]

Answers.

- We show for bounded-at-infinity, attraction-repulsion interaction potentials and $m \leqslant 1$ that no minimizers (local or global) of the energy exist as soon as $\varepsilon>0$, no matter how small ε.
- We get a sufficient condition on general interaction potentials and diffusion for the unboundeness from below of the energy. The result is sharp for $U(r)=\frac{r^{m}}{m-1}$, with $m \geqslant 1$. The result is not sharp for $U(r)=r^{m}$, with $m<1$ [Calvez-CarrilloHoffmann (2017)].

Contents

Motivation

Main results

Outlook

Main results

Theorem 1. Let $U(r)=r \log (r)$, and let W be positive and such that $W \in$ $L^{\infty}\left(\mathbb{R}^{d} \backslash B_{\delta}\right)$ for any $\delta>0$. Then E_{ε} does not admit any W_{p}-local minimizer for any $p \in[1, \infty]$ in $\mathcal{P}\left(\mathbb{R}^{d}\right)$. Moreover, if W is Lipschitz continuous, then there are no critical points of E_{ε} in $\mathcal{P}_{\text {ac }}\left(\mathbb{R}^{d}\right)$.

Main results

Theorem 1. Let $U(r)=r \log (r)$, and let W be positive and such that $W \in$ $L^{\infty}\left(\mathbb{R}^{d} \backslash B_{\delta}\right)$ for any $\delta>0$. Then E_{ε} does not admit any W_{p}-local minimizer for any $p \in[1, \infty]$ in $\mathcal{P}\left(\mathbb{R}^{d}\right)$. Moreover, if W is Lipschitz continuous, then there are no critical points of E_{ε} in $\mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$.

- This asserts that no stationary state of the continuity equation exists for $\varepsilon>0$ in the whole space \mathbb{R}^{d}.

Main results

Theorem 1. Let $U(r)=r \log (r)$, and let W be positive and such that $W \in$ $L^{\infty}\left(\mathbb{R}^{d} \backslash B_{\delta}\right)$ for any $\delta>0$. Then E_{ε} does not admit any W_{p}-local minimizer for any $p \in[1, \infty]$ in $\mathcal{P}\left(\mathbb{R}^{d}\right)$. Moreover, if W is Lipschitz continuous, then there are no critical points of E_{ε} in $\mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$.

- This asserts that no stationary state of the continuity equation exists for $\varepsilon>0$ in the whole space \mathbb{R}^{d}. However, on a bounded domain Ω with no-flux boundary conditions, a ground state ρ always exists and satisfies

$$
\|\rho\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq|\Omega|^{-1} e^{\frac{\|W\|_{L^{\infty}}-\inf _{\Omega} W}{\varepsilon}}
$$

So the larger the domain, the smaller the L^{∞}-norm of any steady state.

Main results

Theorem 1. Let $U(r)=r \log (r)$, and let W be positive and such that $W \in$ $L^{\infty}\left(\mathbb{R}^{d} \backslash B_{\delta}\right)$ for any $\delta>0$. Then E_{ε} does not admit any W_{p}-local minimizer for any $p \in[1, \infty]$ in $\mathcal{P}\left(\mathbb{R}^{d}\right)$. Moreover, if W is Lipschitz continuous, then there are no critical points of E_{ε} in $\mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$.

- This asserts that no stationary state of the continuity equation exists for $\varepsilon>0$ in the whole space \mathbb{R}^{d}. However, on a bounded domain Ω with no-flux boundary conditions, a ground state ρ always exists and satisfies

$$
\|\rho\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq|\Omega|^{-1} e^{\frac{\|W\|_{L} \infty-\inf _{\Omega} W}{\varepsilon}}
$$

So the larger the domain, the smaller the L^{∞}-norm of any steady state.

- We can extend the theorem to any U which is convex with u (the McCann's scaling function $u(r)=r^{d} U\left(r^{-d}\right)$) nonincreasing and $\lim _{r \rightarrow 0} U^{\prime}(r)=-\infty$.

Main results

Proof of Theorem 1. For simplicity, let us assume that $W \in L^{\infty}\left(\mathbb{R}^{d}\right)$. We proceed by contradiction.

Main results

Proof of Theorem 1. For simplicity, let us assume that $W \in L^{\infty}\left(\mathbb{R}^{d}\right)$. We proceed by contradiction. First assume $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is \underline{W}_{p}-local minimizer.

Main results

Proof of Theorem 1. For simplicity, let us assume that $W \in L^{\infty}\left(\mathbb{R}^{d}\right)$. We proceed by contradiction. First assume $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is \underline{W}_{p}-local minimizer.

- The Euler-Lagrange conditions for ρ give

$$
\left\{\begin{array}{l}
\varepsilon \log (\rho)+W * \rho=C_{i} \quad \text { on } A_{i} \\
\varepsilon \log (\rho)+W * \rho \geqslant C_{i} \quad \text { on } \mathbb{R}^{d}
\end{array}\right.
$$

where A_{i} is any closed, connected component of $\operatorname{supp}(\rho)$, for some $C_{i} \in \mathbb{R}$.

Main results

Proof of Theorem 1. For simplicity, let us assume that $W \in L^{\infty}\left(\mathbb{R}^{d}\right)$. We proceed by contradiction. First assume $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is \underline{W}_{p}-local minimizer.

- The Euler-Lagrange conditions for ρ give

$$
\begin{cases}\varepsilon \log (\rho)+W * \rho=C_{i} & \text { on } A_{i} \\ \varepsilon \log (\rho)+W * \rho \geqslant C_{i} & \text { on } \mathbb{R}^{d}\end{cases}
$$

where A_{i} is any closed, connected component of $\operatorname{supp}(\rho)$, for some $C_{i} \in \mathbb{R}$.

- Since $\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}<\infty$, the Euler-Lagrange inequality implies that ρ cannot vanish on \mathbb{R}^{d}, otherwise we would have a point $x \in \mathbb{R}^{d}$ such that

$$
-\infty=\varepsilon \log (0)=\varepsilon \log (\rho(x)) \geqslant C_{1}-\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}>-\infty
$$

So $\operatorname{supp}(\rho)=\mathbb{R}^{d}$.

Main results

Proof of Theorem 1. For simplicity, let us assume that $W \in L^{\infty}\left(\mathbb{R}^{d}\right)$. We proceed by contradiction. First assume $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is \underline{W}_{p}-local minimizer.

- The Euler-Lagrange conditions for ρ give

$$
\begin{cases}\varepsilon \log (\rho)+W * \rho=C_{i} & \text { on } A_{i} \\ \varepsilon \log (\rho)+W * \rho \geqslant C_{i} & \text { on } \mathbb{R}^{d}\end{cases}
$$

where A_{i} is any closed, connected component of $\operatorname{supp}(\rho)$, for some $C_{i} \in \mathbb{R}$.

- Since $\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}<\infty$, the Euler-Lagrange inequality implies that ρ cannot vanish on \mathbb{R}^{d}, otherwise we would have a point $x \in \mathbb{R}^{d}$ such that

$$
-\infty=\varepsilon \log (0)=\varepsilon \log (\rho(x)) \geqslant C_{1}-\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}>-\infty
$$

So $\operatorname{supp}(\rho)=\mathbb{R}^{d}$.

- Then, for all $x \in \mathbb{R}^{d}$, the Euler-Lagrange equation gives

$$
\rho(x)=\exp \left(\frac{C_{1}-W * \rho(x)}{\varepsilon}\right) \geqslant \exp \left(\frac{C_{1}-\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}}{\varepsilon}\right)
$$

which contradicts $\rho \notin \mathcal{P}\left(\mathbb{R}^{d}\right)$.

Main results

Proof of Theorem 1. For simplicity, let us assume that $W \in L^{\infty}\left(\mathbb{R}^{d}\right)$. We proceed by contradiction. First assume $\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is \underline{W}_{p}-local minimizer.

- The Euler-Lagrange conditions for ρ give

$$
\left\{\begin{array}{l}
\varepsilon \log (\rho)+W * \rho=C_{i} \quad \text { on } A_{i} \\
\varepsilon \log (\rho)+W * \rho \geqslant C_{i} \quad \text { on } \mathbb{R}^{d}
\end{array}\right.
$$

where A_{i} is any closed, connected component of $\operatorname{supp}(\rho)$, for some $C_{i} \in \mathbb{R}$.

- Since $\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}<\infty$, the Euler-Lagrange inequality implies that ρ cannot vanish on \mathbb{R}^{d}, otherwise we would have a point $x \in \mathbb{R}^{d}$ such that

$$
-\infty=\varepsilon \log (0)=\varepsilon \log (\rho(x)) \geqslant C_{1}-\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}>-\infty
$$

So $\operatorname{supp}(\rho)=\mathbb{R}^{d}$.

- Then, for all $x \in \mathbb{R}^{d}$, the Euler-Lagrange equation gives

$$
\rho(x)=\exp \left(\frac{C_{1}-W * \rho(x)}{\varepsilon}\right) \geqslant \exp \left(\frac{C_{1}-\|W\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}}{\varepsilon}\right)
$$

which contradicts $\rho \notin \mathcal{P}\left(\mathbb{R}^{d}\right)$.
If now we assume ρ is a critical point, then we can show, using a bootstrap argument, $\rho \in C^{\alpha}\left(\mathbb{R}^{d}\right), \alpha>1$ [Carrillo-Hittmeir-Volzone-Yao (2016)].

Main results

Theorem 2. Suppose that the interaction potential W is differentiable away from the origin, and suppose that U is such that u is nonincreasing. If

$$
\limsup _{r \rightarrow \infty}\left(\frac{1}{2} \sup _{z \in B_{2 r}}(\nabla W(z) \cdot z)-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)<0
$$

or

$$
\liminf _{r \rightarrow 0}\left(\frac{1}{2} \inf _{z \in B_{2 r}}(\nabla W(z) \cdot z)-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)>0
$$

where $v(r)=-r u^{\prime}(r)$, then E_{ε} is not bounded below.

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

We can show that this result is

- sharp if $m>1$, meaning: $(1-m) d<\beta<0 \Longrightarrow$ minimizers exist;

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

We can show that this result is

- sharp if $m>1$, meaning: $(1-m) d<\beta<0 \Longrightarrow$ minimizers exist;
- not sharp if $m<1$;
[Calvez-Carrillo-Hoffmann (2016, 2017), Carrillo-Hittmeir-Volzone-Yao (2016), Carrillo-Hoffmann-Mainini-Volzone (2017)]

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

We can show that this result is

- sharp if $m>1$, meaning: $(1-m) d<\beta<0 \Longrightarrow$ minimizers exist;
- not sharp if $m<1$;
[Calvez-Carrillo-Hoffmann (2016, 2017), Carrillo-Hittmeir-Volzone-Yao (2016), Carrillo-Hoffmann-Mainini-Volzone (2017)]
- sharp if $m=1$, meaning: $\beta>0 \Longrightarrow$ minimizers exist.

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

We can show that this result is

- sharp if $m>1$, meaning: $(1-m) d<\beta<0 \Longrightarrow$ minimizers exist;
- not sharp if $m<1$;
[Calvez-Carrillo-Hoffmann (2016, 2017), Carrillo-Hittmeir-Volzone-Yao (2016), Carrillo-Hoffmann-Mainini-Volzone (2017)]
- sharp if $m=1$, meaning: $\beta>0 \Longrightarrow$ minimizers exist.

For the critical case $\beta=(1-m) d$, it depends on the size of ε.

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

We can show that this result is

- sharp if $m>1$, meaning: $(1-m) d<\beta<0 \Longrightarrow$ minimizers exist;
- not sharp if $m<1$;
[Calvez-Carrillo-Hoffmann (2016, 2017), Carrillo-Hittmeir-Volzone-Yao (2016), Carrillo-Hoffmann-Mainini-Volzone (2017)]
- sharp if $m=1$, meaning: $\beta>0 \Longrightarrow$ minimizers exist.

For the critical case $\beta=(1-m) d$, it depends on the size of ε. The energy is not bounded below in the cases

- $m>1$ and $\varepsilon d<2^{\beta-1} \omega_{d}^{m-1}$;

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0,
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

We can show that this result is

- sharp if $m>1$, meaning: $(1-m) d<\beta<0 \Longrightarrow$ minimizers exist;
- not sharp if $m<1$;
[Calvez-Carrillo-Hoffmann (2016, 2017), Carrillo-Hittmeir-Volzone-Yao (2016), Carrillo-Hoffmann-Mainini-Volzone (2017)]
- sharp if $m=1$, meaning: $\beta>0 \Longrightarrow$ minimizers exist.

For the critical case $\beta=(1-m) d$, it depends on the size of ε. The energy is not bounded below in the cases

- $m>1$ and $\varepsilon d<2^{\beta-1} \omega_{d}^{m-1}$;
- $m<1$ and $\varepsilon d>2^{\beta-1} \omega_{d}^{m-1}$;
[Calvez-Carrillo-Hoffmann (2016, 2017)]

Main results

When we consider the power cases for U and W, the theorem's conditions become

$$
\lim _{r \rightarrow \infty}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)<0 \quad \text { if } \beta \geqslant 0,
$$

and

$$
\lim _{r \rightarrow 0}\left(2^{\beta-1} r^{\beta}-\varepsilon d \omega_{d}^{1-m} r^{(1-m) d}\right)>0 \quad \text { if } \beta \leqslant 0
$$

Therefore, the theorem shows that the energy is not bounded below whenever

$$
\beta<(1-m) d
$$

We can show that this result is

- sharp if $m>1$, meaning: $(1-m) d<\beta<0 \Longrightarrow$ minimizers exist;
- not sharp if $m<1$;
[Calvez-Carrillo-Hoffmann (2016, 2017), Carrillo-Hittmeir-Volzone-Yao (2016), Carrillo-Hoffmann-Mainini-Volzone (2017)]
- sharp if $m=1$, meaning: $\beta>0 \Longrightarrow$ minimizers exist.

For the critical case $\beta=(1-m) d$, it depends on the size of ε. The energy is not bounded below in the cases

- $m>1$ and $\varepsilon d<2^{\beta-1} \omega_{d}^{m-1}$;
- $m<1$ and $\varepsilon d>2^{\beta-1} \omega_{d}^{m-1}$;
[Calvez-Carrillo-Hoffmann (2016, 2017)]
- $m=1$ and $2 \varepsilon d \neq 1$.

Main results

Proof of Theorem 2. Considering $\rho_{r}=r^{-d} \omega_{d}^{-1} \chi_{B_{r}}$, we claim that if either condition in the theorem holds, then $\lim _{r \rightarrow \infty} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$ or $\lim _{r \rightarrow 0} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$.

Main results

Proof of Theorem 2. Considering $\rho_{r}=r^{-d} \omega_{d}^{-1} \chi_{B_{r}}$, we claim that if either condition in the theorem holds, then $\lim _{r \rightarrow \infty} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$ or $\lim _{r \rightarrow 0} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$.

- Changing variables,

$$
E_{\varepsilon}\left(\rho_{r}\right)=\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} W(r(x-y)) \mathrm{d} x \mathrm{~d} y+\varepsilon r^{d} \omega^{d} U\left(r^{-d} \omega_{d}^{-1}\right) .
$$

Main results

Proof of Theorem 2. Considering $\rho_{r}=r^{-d} \omega_{d}^{-1} \chi_{B_{r}}$, we claim that if either condition in the theorem holds, then $\lim _{r \rightarrow \infty} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$ or $\lim _{r \rightarrow 0} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$.

- Changing variables,

$$
E_{\varepsilon}\left(\rho_{r}\right)=\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} W(r(x-y)) \mathrm{d} x \mathrm{~d} y+\varepsilon r^{d} \omega^{d} U\left(r^{-d} \omega_{d}^{-1}\right) .
$$

- Differentiating in r,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r}=\frac{1}{r}\left(\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} \nabla W(r(x-y)) \cdot r(x-y) \mathrm{d} x \mathrm{~d} y-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right) .
$$

Main results

Proof of Theorem 2. Considering $\rho_{r}=r^{-d} \omega_{d}^{-1} \chi_{B_{r}}$, we claim that if either condition in the theorem holds, then $\lim _{r \rightarrow \infty} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$ or $\lim _{r \rightarrow 0} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$.

- Changing variables,

$$
E_{\varepsilon}\left(\rho_{r}\right)=\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} W(r(x-y)) \mathrm{d} x \mathrm{~d} y+\varepsilon r^{d} \omega^{d} U\left(r^{-d} \omega_{d}^{-1}\right) .
$$

- Differentiating in r,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r}=\frac{1}{r}\left(\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} \nabla W(r(x-y)) \cdot r(x-y) \mathrm{d} x \mathrm{~d} y-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

- Estimating the integral,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r} \leq \frac{1}{r}\left(\frac{1}{2} \sup _{z \in B_{2 r}} \nabla W(z) \cdot z-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

Main results

Proof of Theorem 2. Considering $\rho_{r}=r^{-d} \omega_{d}^{-1} \chi_{B_{r}}$, we claim that if either condition in the theorem holds, then $\lim _{r \rightarrow \infty} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$ or $\lim _{r \rightarrow 0} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$.

- Changing variables,

$$
E_{\varepsilon}\left(\rho_{r}\right)=\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} W(r(x-y)) \mathrm{d} x \mathrm{~d} y+\varepsilon r^{d} \omega^{d} U\left(r^{-d} \omega_{d}^{-1}\right) .
$$

- Differentiating in r,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r}=\frac{1}{r}\left(\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} \nabla W(r(x-y)) \cdot r(x-y) \mathrm{d} x \mathrm{~d} y-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

- Estimating the integral,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r} \leq \frac{1}{r}\left(\frac{1}{2} \sup _{z \in B_{2 r}} \nabla W(z) \cdot z-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

- When the first theorem's condition holds, there exists $r_{0}>0$ and $\delta>0$ with

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r} \leqslant-\frac{\delta}{r} \quad \text { for any } r>r_{0}
$$

Main results

Proof of Theorem 2. Considering $\rho_{r}=r^{-d} \omega_{d}^{-1} \chi_{B_{r}}$, we claim that if either condition in the theorem holds, then $\lim _{r \rightarrow \infty} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$ or $\lim _{r \rightarrow 0} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$.

- Changing variables,

$$
E_{\varepsilon}\left(\rho_{r}\right)=\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} W(r(x-y)) \mathrm{d} x \mathrm{~d} y+\varepsilon r^{d} \omega^{d} U\left(r^{-d} \omega_{d}^{-1}\right) .
$$

- Differentiating in r,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r}=\frac{1}{r}\left(\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} \nabla W(r(x-y)) \cdot r(x-y) \mathrm{d} x \mathrm{~d} y-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

- Estimating the integral,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r} \leq \frac{1}{r}\left(\frac{1}{2} \sup _{z \in B_{2 r}} \nabla W(z) \cdot z-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

- When the first theorem's condition holds, there exists $r_{0}>0$ and $\delta>0$ with

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r} \leqslant-\frac{\delta}{r} \quad \text { for any } r>r_{0}
$$

- Integrating for any $r>r_{0}$

$$
E_{\varepsilon}\left(\rho_{r}\right) \leq \delta \log \left(r_{0} / r\right)+E_{\varepsilon}\left(\rho_{r_{0}}\right) \xrightarrow[r \rightarrow \infty]{ }-\infty
$$

Main results

Proof of Theorem 2. Considering $\rho_{r}=r^{-d} \omega_{d}^{-1} \chi_{B_{r}}$, we claim that if either condition in the theorem holds, then $\lim _{r \rightarrow \infty} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$ or $\lim _{r \rightarrow 0} E_{\varepsilon}\left(\rho_{r}\right)=-\infty$.

- Changing variables,

$$
E_{\varepsilon}\left(\rho_{r}\right)=\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} W(r(x-y)) \mathrm{d} x \mathrm{~d} y+\varepsilon r^{d} \omega^{d} U\left(r^{-d} \omega_{d}^{-1}\right) .
$$

- Differentiating in r,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r}=\frac{1}{r}\left(\frac{1}{2 \omega_{d}^{2}} \int_{B_{1}} \int_{B_{1}} \nabla W(r(x-y)) \cdot r(x-y) \mathrm{d} x \mathrm{~d} y-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

- Estimating the integral,

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r} \leq \frac{1}{r}\left(\frac{1}{2} \sup _{z \in B_{2 r}} \nabla W(z) \cdot z-\varepsilon v\left(r \omega_{d}^{1 / d}\right)\right)
$$

- When the first theorem's condition holds, there exists $r_{0}>0$ and $\delta>0$ with

$$
\frac{d E_{\varepsilon}\left(\rho_{r}\right)}{d r} \leqslant-\frac{\delta}{r} \quad \text { for any } r>r_{0}
$$

- Integrating for any $r>r_{0}$

$$
E_{\varepsilon}\left(\rho_{r}\right) \leq \delta \log \left(r_{0} / r\right)+E_{\varepsilon}\left(\rho_{r_{0}}\right) \xrightarrow[r \rightarrow \infty]{ }-\infty
$$

- We proceed analogously for the second condition.

Main results

Theorem 3 (sharpness for $m=1$). Suppose that the entropy function is given by $U(r)=r \log r$ and that W is positive. If

$$
\limsup _{|x| \rightarrow \infty} \nabla W(x) \cdot x<2 d \varepsilon,
$$

then E_{ε} is not bounded below. Alternatively, if

$$
\liminf _{|x| \rightarrow \infty} \nabla W(x) \cdot x>2 d \varepsilon,
$$

then E_{ε} is bounded below; more precisely, there exists $\rho_{\infty} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ such that

$$
E_{\varepsilon}\left(\rho_{\infty}\right)=\inf E_{\varepsilon}>-\infty
$$

Main results

Consider the energy functional

$$
\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \log |x-y| \mathrm{d} \rho(x) \mathrm{d} \rho(y)+\varepsilon \int_{\mathbb{R}^{d}} \rho(x) \log \rho(x) \mathrm{d} x,
$$

corresponding to the Keller-Segel model.

Main results

Consider the energy functional

$$
\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \log |x-y| \mathrm{d} \rho(x) \mathrm{d} \rho(y)+\varepsilon \int_{\mathbb{R}^{d}} \rho(x) \log \rho(x) \mathrm{d} x,
$$

corresponding to the Keller-Segel model. It is known that there is a critical value of the noise, $\varepsilon_{\mathrm{c}}=1 /(2 d)$, such that the energy functional is bounded from below if and only if $\varepsilon=\varepsilon_{c}$ [Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006), Blanchet-CarrilloLaurençot (2009). Blanchet-Carlen-Carrillo (2012)].

Main results

Consider the energy functional

$$
\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \log |x-y| \mathrm{d} \rho(x) \mathrm{d} \rho(y)+\varepsilon \int_{\mathbb{R}^{d}} \rho(x) \log \rho(x) \mathrm{d} x
$$

corresponding to the Keller-Segel model. It is known that there is a critical value of the noise, $\varepsilon_{\mathrm{c}}=1 /(2 d)$, such that the energy functional is bounded from below if and only if $\varepsilon=\varepsilon_{\mathrm{c}}$ [Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006), Blanchet-CarrilloLaurençot (2009). Blanchet-Carlen-Carrillo (2012)].

Similarly, our theorem shows that if W is bounded from below and

$$
\lim _{|x| \rightarrow \infty} \nabla W(x) \cdot x=L>0
$$

then there also exists a critical diffusion $\varepsilon_{\mathrm{c}}=L /(2 d)$ separating the boundedness from the unboundeness from below of the energy.

Contents

Motivation

Main results

Outlook

Outlook

Open questions.

- When there are no local minimizers, how do the metastable states behave in infinite time? Do they flatten as $t \rightarrow \infty$?

Outlook

Open questions.

- When there are no local minimizers, how do the metastable states behave in infinite time? Do they flatten as $t \rightarrow \infty$?
- When $m=1$, what happens if $\varepsilon=\varepsilon_{\mathrm{c}}$? Do we have minimizers? If yes, how many?

Outlook

Open questions.

- When there are no local minimizers, how do the metastable states behave in infinite time? Do they flatten as $t \rightarrow \infty$?
- When $m=1$, what happens if $\varepsilon=\varepsilon_{\mathrm{c}}$? Do we have minimizers? If yes, how many?

THANK YOU!

