Gradient Flows in Abstract Metric Spaces: Evolution Variational Inequalities and Stability

MATTEO MURATORI

JOINT WORK WITH G. SAVARÉ

BIRS Workshop on "Entropies, the Geometry of Nonlinear Flows, and their Applications"

8TH - 13TH APRIL 2018

BANFF INTERNATIONAL RESEARCH STATION

Matteo Muratori (Polimi)

Gradient Flows in Metric Spaces

Let (X, d) be a complete metric space.

We consider a lower semicontinuous (l.s.c.) functional $\phi : X \to (-\infty, +\infty]$ with nonempty domain (i.e. ϕ is *proper* – taken for granted from now on)

$$\operatorname{Dom}(\phi) := \left\{ x \in X : \phi(x) < +\infty \right\}.$$

Given $\lambda \in \mathbb{R}$, we say that ϕ is (geodesically) λ -convex if for every $x_0, x_1 \in \text{Dom}(\phi)$ there exists a (minimal, constant speed) geodesic $x_{\vartheta} : [0, 1] \to X$ such that

$$\phi(\mathsf{x}_artheta) \leq (1 - artheta)\phi(\mathsf{x}_0) + artheta\phi(\mathsf{x}_1) - rac{\lambda}{2}artheta(1 - artheta)\mathsf{d}^2(\mathsf{x}_1,\mathsf{x}_0) \qquad orall artheta \in [0,1],$$

In particular, in this case $Dom(\phi)$ is a geodesic space.

If ϕ is λ -convex, one can show that the functional $x \mapsto \phi(x) - \frac{\lambda}{2}d^2(x, o)$ is linearly bounded from below for all $o \in X$:

$$\phi(x) \geq rac{\lambda}{2} \mathsf{d}^2(x,o) - \ell_o \mathsf{d}(x,o) - c_o \qquad orall x \in X\,, \quad ext{for some } \ell_o, c_o \geq 0\,.$$

The metric slope $|\partial \phi|$ is defined for all $x \in \text{Dom}(\phi)$ by

$$|\partial \phi|(x) := \limsup_{y \to x} \frac{(\phi(x) - \phi(y))_+}{\mathsf{d}(x, y)}$$

with $|\partial \phi|(x) := +\infty$ if $x \in X \setminus \text{Dom}(\phi)$ and $|\partial \phi|(x) := 0$ if $x \in \text{Dom}(\phi)$ is isolated.

If ϕ is λ -convex then $|\partial \phi|$ coincides with the (l.s.c.) global λ -slope:

$$\mathfrak{L}_{\lambda}[\phi](x) := \sup_{y \neq x} \frac{\left(\phi(x) - \phi(y) + \frac{\lambda}{2} \mathsf{d}^{2}(x, y)\right)_{+}}{\mathsf{d}(x, y)}$$

EVI and Gradient Flows

First we want to give a meaning to $\dot{u} = -\partial \phi(u)$ in our metric framework.

Evolution Variational Inequalities (EVI) [Ambrosio-Gigli-Savaré '05]

A continuous curve $u: t \in (0, +\infty) \mapsto u_t \in \text{Dom}(\phi)$ is a solution to $\text{EVI}_{\lambda}(X, \mathsf{d}, \phi)$ if

$$\frac{1}{2}\frac{\mathrm{d}^+}{\mathrm{d}t}\mathrm{d}^2(u_t,v)+\frac{\lambda}{2}\mathrm{d}^2(u_t,v)\leq \phi(v)-\phi(u_t)\qquad\forall t>0\,,\;\forall v\in\mathrm{Dom}(\phi)\,.$$

Here

$$\frac{\mathrm{d}^+}{\mathrm{d}t}\zeta(t) := \limsup_{h\downarrow 0} \frac{\zeta(t+h) - \zeta(t)}{h} \qquad (\text{upper right Dini derivative})\,.$$

Gradient Flows (GF)

A λ -Gradient Flow of ϕ is a family of continuous maps $S_t : \overline{\text{Dom}(\phi)} \to \overline{\text{Dom}(\phi)}, t \ge 0$, such that for every $u_0 \in \overline{\text{Dom}(\phi)}$ there hold

$$S_{t+h}(u_0) = S_h(S_t(u_0)) \quad \forall t, h \ge 0, \qquad \lim_{t \to 0} S_t(u_0) = S_0(u_0) = u_0,$$

the curve $t \mapsto S_t(u_0)$ is a solution of $EVI_{\lambda}(X, d, \phi)$.

Matteo Muratori (Polimi)

Gradient Flows in Metric Spaces

A classical example: Hilbert spaces

Let $(X, \langle \cdot \rangle)$ be a Hilbert space, with $d(x, y) := |x - y| = \sqrt{\langle x - y, x - y \rangle}$. Let $\phi : X \to (-\infty, +\infty]$ be a l.s.c. λ -convex functional. In other words, $x \mapsto \phi(x) - \frac{\lambda}{2}|x|^2$ is a convex functional *in the usual sense*.

Then [Brézis '73] a continuous curve $u: t \in (0, +\infty) \mapsto u_t \in \text{Dom}(\phi)$ is a solution to $\text{EVI}_{\lambda}(X, d, \phi)$ if and only if u is locally Lipschitz and

 $\dot{u}_t \in -\partial \phi(u_t)$ for a.e. t > 0

(for *every* t > 0 if we use right derivatives), where

$$w\in\partial\phi(u)$$
 \Leftrightarrow $\langle w,v-u
angle+rac{\lambda}{2}\left|v-u
ight|^{2}\leq\phi(v)-\phi(u)$ $orall v\in X\,,$

i.e. $\partial \phi$ is the subgradient of ϕ . In this case,

$$|\partial \phi|(u) := \min\{|w|: w \in \partial \phi(u)\}.$$

A more elaborate example: drift diffusion with nonlocal interaction

Let $\mathcal{X} := \mathscr{P}_2(\mathbb{R}^d)$ be the space of Borel probability measures, with finite quadratic moment, endowed with the Wasserstein distance W_2 .

We consider the following functional on \mathcal{X} :

$$\begin{split} \phi(\mu) &:= \int_{\mathbb{R}^d} \varrho \log \varrho \, \mathrm{d} x + \int_{\mathbb{R}^d} V \, \mathrm{d} \mu + \frac{1}{2} \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \mathcal{W}(x - y) \, \mathrm{d} \mu(y) \right) \mathrm{d} \mu(x) \qquad \text{if } \mu \equiv \varrho \mathscr{L}^d \,, \\ \phi(\mu) &:= + \infty \qquad \text{if } \mu \not\ll \mathscr{L}^d \,, \end{split}$$

i.e. the sum of internal, potential and interaction energy. Here $V : \mathbb{R}^d \to \mathbb{R}$ is a l.s.c. convex function and $\mathcal{W} : \mathbb{R}^d \to \mathbb{R}^+$ is a $C^1(\mathbb{R}^d)$, even and convex function satisfying a suitable "doubling" condition.

Then [Carrillo-McCann-Villani '03, Ambrosio-Gigli-Savaré '05] the functional ϕ admits a GF in \mathcal{X} , which is given by solutions to the drift-diffusion (with interaction) equation

$$\partial_t \varrho_t = \Delta \varrho_t + \operatorname{div} \left[\varrho_t \left(\nabla V + \nabla \mathcal{W} * \varrho_t \right) \right] \quad \text{in } \mathbb{R}^d, \qquad \lim_{t \to 0} \varrho_t \mathscr{L}^d = \mu_0 \quad \text{in } \mathscr{P}_2(\mathbb{R}^d).$$

Main properties of solutions to EVI

Theorem

Let $\phi : X \to (-\infty, +\infty]$ be a l.s.c. functional and $\lambda \in \mathbb{R}$. Let $u, u^1, u^2 \in C^0([0, +\infty); X)$ be solutions to $EVI_\lambda(X, d, \phi)$. The following properties hold:

• λ -contraction and uniqueness:

 $\mathsf{d}(u_t^1, u_t^2) \leq \mathrm{e}^{-\lambda(t-s)} \mathsf{d}(u_s^1, u_s^2) \qquad \forall \, 0 \leq s < t < +\infty \,.$

In particular, for each $u_0 \in \overline{\text{Dom}}(\phi)$ there is at most one solution s.t. $\lim_{t\downarrow 0} u_t = u_0$.

- Regularizing effects:
 - *u* is locally Lipschitz in $(0, +\infty)$ and $u_t \in \text{Dom}(|\partial \phi|) \subset \text{Dom}(\phi)$ for all t > 0;
 - the map $t \in [0, +\infty) \mapsto \phi(u_t)$ is nonincreasing and (locally) semi-convex;
 - the map $t \in [0, +\infty) \mapsto e^{\lambda t} |\partial \phi|(u_t)$ is nonincreasing and right continuous.

• A priori estimates: for every $v \in Dom(\phi)$ and t > 0

$$\frac{\mathrm{e}^{\lambda t}}{2} \mathrm{d}^2(u_t,v) + \mathsf{E}_{\lambda}(t) \left(\phi(u_t) - \phi(v)\right) + \frac{\left(\mathsf{E}_{\lambda}(t)\right)^2}{2} |\partial \phi|^2(u_t) \leq \frac{1}{2} \mathrm{d}^2(u_0,v) \,,$$

where $\mathsf{E}_{\lambda}(t) := \int_{0}^{t} e^{\lambda s} \, \mathrm{d}s.$

Theorem (continued)

• *Right, left limits and energy identity: for every t >* 0 *the right limits*

$$|\dot{u}_{t+}| := \lim_{h\downarrow 0} rac{\mathsf{d}(u_{t+h}, u_t)}{h}\,, \qquad rac{\mathrm{d}}{\mathrm{d}t}\phi(u_{t+}) := \lim_{h\downarrow 0} rac{\phi(u_{t+h}) - \phi(u_t)}{h}$$

exist finite, satisfy

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi(u_{t+}) = - |\dot{u}_{t+}|^2 = -|\partial\phi|^2(u_t) = -\mathfrak{L}^2_\lambda[\phi](u_t) \qquad \forall t > 0$$

and define a right-continuous map. In particular, the functional $x \mapsto \phi(x) - \frac{\lambda}{2}d^2(x, o)$ is linearly bounded from below for all $o \in X$.

Minimizing Movements (MM)

Given $\tau > 0$, we consider the *quadratically-perturbed* functional

$$\Phi(au, U, V) := rac{1}{2 au} \mathsf{d}^2(U, V) + \phi(V) \qquad orall U, V \in X \,.$$

We say that $\{U_{\tau}^n\}_{n\in\mathbb{N}}$ is a discrete minimizing sequence if

$$U_{\tau}^{n} \in \operatorname*{Argmin}_{V \in X} \Phi(\tau, U_{\tau}^{n-1}, V) \qquad \forall n \in \mathbb{N} \setminus \{\mathbf{0}\},$$

i.e. U_{τ}^{n} satisfies

$$rac{1}{2 au}\mathsf{d}^2(U^{n-1}_ au,U^n_ au)+\phi(U^n_ au)\leq rac{1}{2 au}\mathsf{d}^2(U^{n-1}_ au,V)+\phi(V)\qquad orall V\in X\,.$$

The corresponding discrete minimizing movement is the piecewise-constant interpolant

$$\overline{U}_{\tau}(t) := U_{\tau}^{n} \quad \text{if } t \in \left((n-1)\tau, n\tau\right], \quad \overline{U}_{\tau}(0) = U_{\tau}^{0} \approx u_{0}.$$

Following [De Giorgi '93, Almgren-Taylor-Wang '93, Jordan-Kinderlehrer-Otto '98], the MM method can be used to *construct* the gradient flow of ϕ . However, without coercivity assumptions on ϕ , one cannot hope to have *exact* minimizers.

Ekeland's variational principle and relaxed MM

Ekeland's variational principle

Let $\Phi : X \to (-\infty, +\infty]$ be a l.s.c. functional bounded from below. Then for every $U \in \text{Dom}(\Phi)$ and every $\eta > 0$ there exists $U_{\eta} \in \text{Dom}(\Phi)$ s.t.

$$egin{aligned} \Phi(U_\eta) &\leq \Phi(U) - \eta \, \mathsf{d}(U_\eta, U) \ \Phi(U_\eta) &< \Phi(V) + \eta \, \mathsf{d}(U_\eta, V) \end{aligned} ext{ for every } V \in X \setminus \{U_\eta\} \end{aligned}$$

In particular,

$$|\partial \Phi|(U_\eta) \leq \mathfrak{L}_0[\Phi](U_\eta) \leq \eta$$
 .

Our idea is to apply Ekeland's variational principle to the functional

$$V\mapsto \Phi(au,U^{n-1}_{ au,\eta},V)=rac{1}{2 au}\mathsf{d}^2(U^{n-1}_{ au,\eta},V)+\phi(V)\,.$$

By letting $U \equiv U_{\tau,\eta}^{n-1}$ and choosing the above η carefully, we can find $U_{\tau,\eta}^{n}$ satisfying

$$\frac{1}{2\tau} d^{2}(U_{\tau,\eta}^{n-1}, U_{\tau,\eta}^{n}) + \phi(U_{\tau,\eta}^{n}) \leq \frac{1}{2\tau} d^{2}(U_{\tau,\eta}^{n-1}, V) + \phi(V) + \frac{\eta}{2} d(U_{\tau,\eta}^{n-1}, U_{\tau,\eta}^{n}) d(U_{\tau,\eta}^{n}, V)$$

for every $V \in X$ and

$$\frac{1}{2\tau}\mathsf{d}^2(U^{n-1}_{\tau,\eta},U^n_\tau)+\phi(U^n_{\tau,\eta})\leq \phi(U^{n-1}_{\tau,\eta})\,.$$

Matteo Muratori (Polimi)

Two key inequalities satisfied by η -Ekeland movements

We denote by $\overline{U}_{\tau,\eta}$ the piecewise-constant interpolant of the η -Ekeland sequence $\{U_{\tau,\eta}^n\}_{n\in\mathbb{N}}$, which we call a discrete η -Ekeland movement.

In order to generate such a movement, we only need ϕ to be a l.s.c. functional quadratically bounded from below (τ small enough).

Let $\phi : X \to (-\infty, +\infty]$ be a l.s.c. λ -convex functional ($\lambda \leq 0$). Then, for any η -Ekeland sequence $\{U_{\tau,\eta}^n\}$ there hold

$$au\left(1-rac{\eta}{2} au
ight)^2|\partial\phi|^2(\mathcal{U}^n_{ au,\eta})\leq rac{\mathsf{d}^2(\mathcal{U}^{n-1}_{ au,\eta},\mathcal{U}^n_{ au,\eta})}{ au}$$

and

$$\left(1-rac{\eta-\lambda}{2} au
ight)rac{\mathsf{d}^2(U^{n-1}_{ au,\eta},U^n_{ au,\eta})}{ au}\leq \phi(U^{n-1}_{ au,\eta})-\phi(U^n_{ au,\eta})\,.$$

Such inequalities are closely related to the energy identity satisfied by solutions to EVI.

Uniform discrete-approximation error estimates

By exploiting the above inequalities plus the EVI properties, we can prove the following.

Theorem

Let $\phi : X \to (-\infty, +\infty]$ be a l.s.c. λ -convex functional ($\lambda \leq 0$), which admits a λ -Gradient Flow. Fix a time interval [0, T] and $\tau \in (0, T)$. Then, if $U^0_{\tau,\eta} = u_0 \in \text{Dom}(|\partial \phi|)$, there exists a constant $C = C(T, \lambda, \eta) > 0$ such that

$$\mathsf{d}(u_t,\overline{U}_{\tau,\eta}(t)) \leq C \, |\partial\phi|(u_0) \, \sqrt{\tau} \qquad \forall t \in [0,T] \, ,$$

whence $\overline{U}_{\tau,\eta}(t) \to u_t$ as $\tau \downarrow 0$ with rate $\sqrt{\tau}$ (at least).

Thus, the minimizing movement (limit of $\overline{U}_{\tau,\eta}(t)$ as $\tau \downarrow 0$) exists and coincides with u_t .

We consider the delicate problem of stability w.r.t. ϕ .

That is, let $\phi^h : X \to (-\infty, +\infty]$, $h \in \mathbb{N}$, be a family of l.s.c. functionals "converging" in a suitable sense as $h \to \infty$ to a l.s.c. functional $\phi : X \to (-\infty, +\infty]$.

We suppose that each ϕ^h admits a λ -Gradient Flow S^h (except ϕ).

The crucial questions

(Under which assumptions) Can we deduce that

```
also \phi admits a \lambda-Gradient Flow S
```

and that

 $\mathsf{S}^h_t(u^h_0)$ converges to $\mathsf{S}_t(u_0)$ as $h \to \infty$, if $u^h_0 \to u_0$?

Γ and Mosco convergence

Having in mind the Hilbert case, natural assumptions involve Γ -convergence [Dal Maso '93]. We recall the definitions of Γ - lim inf and Γ - lim sup of a sequence $\{\phi^h\}_{h\in\mathbb{N}}$:

$$\Gamma\operatorname{-\liminf}_{h\to\infty}\phi^h(x):=\inf\left\{\liminf_{h\to\infty}\phi^h(x^h):\,x^h\to x\right\}=\liminf_{r\downarrow 0}\,\liminf_{h\to\infty}\,\inf_{B_r(x)}\phi^h\,,$$

$$\Gamma\operatorname{-}\limsup_{h\to\infty}\phi^h(x):=\inf\left\{\limsup_{h\to\infty}\phi^h(x^h):\,x^h\to x\right\}=\lim_{r\downarrow 0}\,\limsup_{h\to\infty}\,\inf_{B_r(x)}\phi^h\,,$$

for all $x \in X$. If the Γ -lim inf and the Γ -lim sup coincide, we set

$$\phi = \mathop{\mathrm{\Gamma-lim}}_{h\to\infty} \phi^h = \mathop{\mathrm{\Gamma-lim\,sup}}_{h\to\infty} \phi^h = \mathop{\mathrm{\Gamma-lim\,sup}}_{h\to\infty} \phi^h\,,$$

in which case we say that $\{\phi^h\}$ **F**-converges to ϕ . This is equivalent to

$$\begin{aligned} \forall x \in X, \ x^h \to x \quad \Rightarrow \quad \liminf_{h \to \infty} \phi^h(x^h) \ge \phi(x) \qquad (*) \\ \forall x \in X \quad \exists \{x^h\} : \qquad x^h \to x, \quad \phi^h(x^h) \to \phi(x). \end{aligned}$$

If X is Hilbert one also has weak topology. We say that $\{\phi^h\}$ Mosco-converges to ϕ if it Γ -converges w.r.t. both the strong and the weak topology, i.e. (*) holds for all $x^h \rightarrow x$.

The stability result in the Hilbert case

Theorem (Crandall, Liggett, Bénilan, Pazy, Attouch – mostly during the 70's)

Let X be a Hilbert space and $\{\phi^h\}_{h\in\mathbb{N}} \cup \{\phi\}$ be a sequence of l.s.c. and convex functionals. Let $A^h := \partial \phi^h$ and $A := \partial \phi$. Then the following properties are equivalent:

• Convergence of the flows: if $u_0^h \to u_0 \in \text{Dom}(\phi)$, with $u_0^h \in \text{Dom}(\phi^h)$,

$$\lim_{n\to\infty} \mathbf{S}_t^h(u_0^h) = \mathbf{S}_t(u_0) \qquad \forall t \ge 0.$$

• Convergence of the resolvents: for every $u \in X$ and $\tau > 0$

$$\lim_{h\to\infty} (I+\tau A^h)^{-1} u = (I+\tau A)^{-1} u.$$

• Convergence of the Moreau-Yosida regularizations: for every $u \in X$ and $\tau > 0$

$$\lim_{h\to\infty}\inf_{v\in X}\phi^h(v)+\frac{1}{2\tau}\mathsf{d}^2(v,u)=\inf_{v\in X}\phi(v)+\frac{1}{2\tau}\mathsf{d}^2(v,u)\,.$$

- *Mosco-convergence of the functionals:* $\{\phi^h\}$ *Mosco-converges to* ϕ .
- *G*-convergence of the subgradients: for every $v \in A(u)$ there exist $\{u^h\}, \{v^h\}$ s.t.

$$\mathbf{v}^h \in \mathbf{A}^h \mathbf{u}^h$$
, $\mathbf{u}^h \to \mathbf{u}$, $\mathbf{v}^h \to \mathbf{v}$.

Some related remarks

- Mosco-limits of convex functionals are convex: in particular, S exists thanks e.g. to the Crandall-Liggett Theorem (without assuming *a priori* the convexity of φ).
- For every $v \in A(u)$ one can construct a recovery sequence $v^h \in A^h(u^h)$ s.t.

$$u^h
ightarrow u$$
, $v^h
ightarrow v$, $\phi^h(u^h)
ightarrow \phi(u)$.

- If {φ^h} is strongly coercive (bdd sequences {x^h} s.t. φ^h(x^h) ≤ C are rel. compact), then Mosco convergence ⇔ Γ-convergence. Otherwise, limits of φ^h(x^h) along weakly convergent sequences are involved, whence the weak Γ-lim inf.
- The resolvent operator is strictly related to MM:

$$U_{\tau}^{n,h} = (1 + \tau A^h)^{-1} U_{\tau}^{n-1,h}.$$

 In order to prove convergence of the flows, it is therefore convenient to exploit convergence of the minimizing movements along with uniform error estimates:

$$\mathsf{d}(u^h_t,u_t) \leq \mathsf{d}(u^h_t,\overline{U}^{\,h}_\tau(t)) + \mathsf{d}(\overline{U}^{\,h}_\tau(t),\overline{U}_\tau(t)) + \mathsf{d}(\overline{U}_\tau(t),u_t)\,,$$

where $u_t^h := S_t^h(u_0^h)$ and $u_t := S_t(u_0)$.

Additional difficulties due to the abstract metric setting

- We do not know a priori whether the limit λ -Gradient Flow S exists.
- Resolvents are not well defined: one should use η -Ekeland movements instead.
- A natural weak topology is missing.
- We would like to study stability without strong-coercivity assumptions.
- On the other hand, if we lack coercivity, minimizing movements (a fortiori η-Ekeland movements) are not stable under Γ-convergence.

We point out that, at least in the strongly coercive case, it is possible to pass to the limit in the integral version of the EVI:

$$\frac{\mathrm{e}^{\lambda(t-s)}}{2}\,\mathsf{d}^2(u^h_t,\boldsymbol{v}^h)-\frac{1}{2}\mathsf{d}^2(u^h_s,\boldsymbol{v}^h)\leq\mathsf{E}_\lambda(t-s)\left(\phi^h(\boldsymbol{v}^h)-\phi(u^h_t)\right),$$

for every $0 \le s \le t$ and $v^h \in \text{Dom}(\phi^h)$, which yields existence of S "for free".

The main stability result

Theorem

Let $\{\phi^h\}_{h\in\mathbb{N}} \cup \{\phi\}$ be a sequence of l.s.c. functionals. Let each ϕ^h admit a λ -Gradient Flow S^h and let ϕ be λ -convex. The following claims are equivalent:

Convergence of the flows: also S *exists and if* $u_0^h \to u_0 \in \overline{\text{Dom}(\phi^{\infty})}$, $u_0^h \in \overline{\text{Dom}(\phi^h)}$,

$$\lim_{n\to\infty}\mathsf{S}^h_t(u^h_0)=\mathsf{S}_t(u_0)\qquad\forall t\geq 0\,.$$

Recovery sequence: for every $u \in \text{Dom}(|\partial \phi|)$ *there exists* $u^h \in \text{Dom}(|\partial \phi^h|)$ *s.t.*

$$u^h o u \,, \quad \phi^h(u^h) o \phi(u) \,, \quad \limsup_{h o \infty} |\partial \phi^h|(u^h) \le |\partial \phi|(u) \,.$$

 $\Gamma\text{-convergence of } \phi^h \text{ and } |\partial \phi^h| : \phi = \Gamma\text{-lim } \phi^h \text{ and } |\partial \phi| = \Gamma\text{-lim } |\partial \phi^h| \text{ in } \overline{\text{Dom}(\phi)}.$

Qualified Γ -convergence: Γ -lim sup $\phi^h \leq \phi$ in $\text{Dom}(|\partial \phi|)$ and for every $u \in \text{Dom}(|\partial \phi|)$, $\varepsilon > 0$ and $\overline{\tau} > 0$, there exists $\tau \in (0, \overline{\tau})$ s.t.

 $\liminf_{h\to\infty}\inf_{B_{\tau}(u)}\phi^h\geq\inf_{B_{\tau}(u)}\phi-\varepsilon\tau\,.$

Local Moreau-Yosida regularizations: Γ -lim sup $\phi^h \leq \phi$ in Dom($|\partial \phi|$) and for every $u \in \text{Dom}(|\partial \phi|), \varepsilon > 0$ and $\overline{\tau} > 0$, there exists $\tau \in (0, \overline{\tau})$ s.t.

$$\liminf_{h\to\infty}\inf_{v\in X}\phi^h(v)+\frac{1}{2\tau}\mathsf{d}^2(v,u)\geq\inf_{v\in X}\phi(v)+\frac{1}{2\tau}\mathsf{d}^2(v,u)-\varepsilon\tau.$$

Matteo Muratori (Polimi)

Strategy of proof of the existence of the limit flow

• We generate a η -Ekeland sequence $\{U_{\tau,\eta}^n\}$ for ϕ , which satisfies

$$\tau \left(1 - \frac{\eta}{2}\tau\right)^2 \left|\partial\phi\right|^2 (U_{\tau,\eta}^n) \le \frac{\mathsf{d}^2(U_{\tau,\eta}^{n-1}, U_{\tau,\eta}^n)}{\tau} \le \frac{\phi(U_{\tau,\eta}^{n-1}) - \phi(U_{\tau,\eta}^n)}{1 - \frac{\eta - \lambda}{2}\tau} \,. \tag{*}$$

We exploit Γ-convergence of φ^h and |∂φ^h| to approximate Uⁿ_{τ,η} by sequences U^{n,h}_{τ,η} satisfying, for large h, the ε-version of (*):

$$\lim_{h\to\infty} \sup_{t\in[0,T]} \mathsf{d}(\overline{U}_{\tau,\eta}(t),\overline{U}^h_{\tau,\eta}(t)) = 0\,.$$

• We use the discrete-approximation error estimate, which yields

$$\mathsf{d}(u^h_t,\overline{U}^h_{\tau,\eta}(t)) \leq C\left(|\partial\phi^h|(u^h_0)\sqrt{\tau} + \sqrt{\varepsilon/\tau}\right) \qquad \forall t \in [0,T]\,.$$

• By combining the two estimates and choosing $U^{0,h}_{\tau,\eta}$ appropriately, we deduce that

$$\limsup_{h,k\to\infty} \sup_{t\in[0,T]} \mathsf{d}(u^h_t,u^k_t) \leq C'\left(\sqrt{\tau} + \sqrt{\varepsilon/\tau}\right),$$

which shows that $\{u_h^t\}_h$ is Cauchy, since $\tau > 0$ and $\varepsilon > 0$ are arbitrary.

An application to RCD spaces

Let (X, d, m) be an RCD (λ, ∞) metric measure space and let $\psi : X \to (-\infty, +\infty]$ be a continuous and geodesically λ -convex functional.

Theorem (Sturm '14)

If (X, d) is locally compact then ψ admits a λ -Gradient Flow.

Corollary of our results

The local-compactness assumption can be removed.

Indeed, Sturm's proof relies on the construction of the λ -GF for the functional

$$\phi(\mu) := \int_X \psi \, \mathrm{d} \mu$$
 in $(\mathscr{P}_2(X), W_2)$

by means of the approximations $\phi^h(\mu) := \phi(\mu) + \frac{1}{h} \operatorname{Ent}(\mu|\mathbf{m})$. At least when $\mathbf{m} \in \mathscr{P}(X)$, one can check that the assumptions of our main stability result are met.

Some extensions concerning the stability result

- Completeness of X can be dropped: we only need ϕ to have complete sublevels.
- Convexity of φ can, to some extent, be relaxed: if Dom(φ) is geodesic, then it is just a consequence of the existence of the flows for φ^h.
- Alternatively, it is enough to ask that φ is approximately λ-convex, namely that for every x₀, x₁ ∈ Dom(φ) and every ϑ, ε ∈ (0, 1) there exists x_{ϑ,ε} ∈ Dom(φ) s.t.

$$\phi(\mathsf{x}_{\vartheta,\varepsilon}) \leq (1-\vartheta)\phi(\mathsf{x}_0) + \vartheta\phi(\mathsf{x}_1) - \frac{\lambda - \varepsilon}{2}\vartheta(1-\vartheta)\mathsf{d}^2(\mathsf{x}_1,\mathsf{x}_0)$$

and

$$\mathsf{d}(\mathsf{x}_{artheta,arepsilon},\mathsf{x}_0) \leq artheta \mathsf{d}(\mathsf{x}_1,\mathsf{x}_0) + arepsilon\,, \qquad \mathsf{d}(\mathsf{x}_artheta,\mathsf{x}_1) \leq (\mathsf{1} - artheta)\mathsf{d}(\mathsf{x}_1,\mathsf{x}_0) + arepsilon\,.$$

Some extensions concerning the stability result

- Completeness of X can be dropped: we only need ϕ to have complete sublevels.
- Convexity of φ can, to some extent, be relaxed: if Dom(φ) is geodesic, then it is just a consequence of the existence of the flows for φ^h.
- Alternatively, it is enough to ask that φ is approximately λ-convex, namely that for every x₀, x₁ ∈ Dom(φ) and every ϑ, ε ∈ (0, 1) there exists x_{ϑ,ε} ∈ Dom(φ) s.t.

$$\phi(\mathsf{x}_{\vartheta,\varepsilon}) \leq (1-\vartheta)\phi(\mathsf{x}_0) + \vartheta\phi(\mathsf{x}_1) - \frac{\lambda - \varepsilon}{2}\vartheta(1-\vartheta)\mathsf{d}^2(\mathsf{x}_1,\mathsf{x}_0)$$

and

$$\mathsf{d}(\mathsf{x}_{\vartheta,\varepsilon},\mathsf{x}_0) \leq \vartheta \mathsf{d}(\mathsf{x}_1,\mathsf{x}_0) + \varepsilon\,, \qquad \mathsf{d}(\mathsf{x}_\vartheta,\mathsf{x}_1) \leq (1-\vartheta)\mathsf{d}(\mathsf{x}_1,\mathsf{x}_0) + \varepsilon\,.$$

THANK YOU FOR YOUR ATTENTION!