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An example of quantization problem

Question: what is the “optimal” way to locate N clinics in a region in
order to meet the demand of the population?

Notion of “optimality”

Locations  x i

Masses  mi
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Setup of the problem

Let ρ be a probability density on a domain Ω ⊂ Rd .

Quantization problem: fixed N ∈ N, find the best approximation of ρ by
an atomic measure

∑
i miδx i supported on at most N points in Ω.

Fix N points x1, . . . , xN ∈ Ω, and minimize

inf
{
Wr

(
ρ,
∑
i

miδx i
)r

: m1, . . . ,mN ≥ 0,
∑
i

mi = 1
}
.
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Voronoi diagrams
Given x1, . . . , xN , best choice of mi is via the Voronoi tessellation of
x1, . . . , xN :

mi :=

∫
V (x i )

ρ(y)dy

V (x i ) :=
{
y ∈ Ω : |y − x i | ≤ |y − x j | for all j 6= i

}

Mikaela Iacobelli Very fast diffusion in quantization April 11, 2018 5 / 24



With the optimal choice

mi =

∫
V (x i )

ρ(y)dy

it holds

Wr

(
ρ,
∑
i

miδx i

)r

= FN,r (x1, . . . , xN),

where
FN,r (x1, . . . , xN) :=

∫
Ω

min
1≤i≤N

|x i − y |r ρ(y) dy

Goal: Minimize FN,r to find the optimal configuration for x1, . . . , xN

Optimal location/Quantization problem: Bourne, Bouchitté, Brancolini, Bucklew,
Buttazzo, Fejes Tóth, Graf, Jimenez, Luschgy, Mosconi, Pagès, Peletier, Rajesh,
Santambrogio, Stepanov, Theil, Tilli, Wise...
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A dynamical approach (Caglioti-Golse-I., M3AS 2015, Ann.
IHP 2017)

Given N points x1
0 , . . . , x

N
0 ∈ Rd , consider their evolution under the

gradient flow generated by FN,r{ (
ẋ1(t), . . . , ẋN(t)

)
= −∇FN,r

(
x1(t), . . . , xN(t)

)(
x1(0), . . . , xN(0)

)
= (x1

0 , . . . , x
N
0 )

Idea: embed (Rd)N in L2(Rd), and find a continuous functional F [X ],
X ∈ L2(Rd), whose GF well approximate the above ODE for N � 1.
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L2-GF for F [X ]: the 1d case

Let Ω = [0, 1], X = X (t, θ) with θ ∈ [0, 1].

The L2-GF for F [X ] is the following parabolic equation

∂tX (t, θ) = (r + 1)∂θ
(
ρ(X (t, θ))|∂θX (t, θ)|r−1∂θX (t, θ)

)
− ρ′(X (t, θ))|∂θX (t, θ)|r+1

with Dirichlet boundary condition

X (t, 0) = 0, X (t, 1) = 1.
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From Lagrangian to Eulerian

Define f ≡ f (t, x) by

f (t, x) dx = X (t, ·)#dθ ⇔ f (t,X (t, θ)) =
1

∂θX (t, θ)

Then {
∂t f = −r ∂x

(
f ∂x

( ρ
f r+1

))
, x ∈ R

f (t, x + 1) = f (t, x)

Remark: if ρ ≡ 1 the Eulerian equation becomes

∂t f = − (r + 1) ∂2
x

(
f −r
)

which is an equation of very fast diffusion type.
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Weighted very fast diffusion equations

Given r > 0 and 0 < λ ≤ ρ ≤ 1/λ, we want to study the very fast diffusion
equation

∂t f = −r divx
(
f∇x

( ρ

f r+1

))
on the d-dimensional torus Td , with f ≥ 0.

Goals:
1) Existence;
2) Uniqueness;
3) Asymptotic behavior.

Fast/Very fast diffusion : Bonforte, Carlen, Carrillo, Daskalopulous, Del Pino, Denzler,
Dolbeault, Esteban, Grillo, Loss, McCann, Muratori, Nazaret, Rodriguez, Slepčev,
Vázquez...
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The smooth case

We assume:
(1) 0 < λ ≤ ρ ≤ 1/λ;
(2) ρ is smooth enough (say ρ ∈ C 2,α(Td));
(3) 0 < a0 ≤ f (0) ≤ A0.

In this case, local in time existence and uniqueness of smooth solutions is
guaranteed by parabolic regularity theory.

Main questions:
(1) preservation of non-degeneracy;
(2) convergence to equilibrium.
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Comparison principle
Remark: Let m := ρ1/(r+1). Then c m(x) is a solution for all c ≥ 0.

Lemma (Caglioti - Golse - I., M3AS 2015)

Let 0 < λ ≤ ρ ≤ 1/λ, ρ ∈ C 2,α(Td).
If c > 0, then

d

dt

∫
Td

(
f (t, x)− c m(x)

)
+
dx ≤ 0,

d

dt

∫
Td

(
f (t, x)− c m(x)

)
− dx ≤ 0.

By the lemma,

0 < c0m(x) ≤ f (0, x) ≤ C0m(x) ⇒ 0 < c0m(x) ≤ f (t, x) ≤ C0m(x).

Therefore, if 0 < λ ≤ ρ ≤ 1/λ and 0 < a0 ≤ f (0, x) ≤ A0,

0 < b0 ≤ f (t, x) ≤ B0 ∀ t ≥ 0.
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Exponential convergence

Theorem (I., DCDS 2017)

Let ρ ∈ C 2,α(Td), 0 < λ ≤ ρ ≤ 1/λ, 0 < a0 ≤ f (0) ≤ A0,
∫
Td f (0) = 1.

Define
γ :=

1∫ 1
0 ρ(y)1/(r+1) dy

.

Then
‖f (t)− γ ρ1/(r+1)‖L2(Td ) ≤ C0e

−c0t ,

where c0,C0 depend on λ, a0,A0 only.
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Idea of the proof (1).
Recall that 0 < b0 ≤ f (t) ≤ B0 for all t > 0 (comparison principle).
Let

F [f ] :=

∫
Td

ρ

f r
.

Then our PDE is the gradient flow with respect to W2 of F .
Set

F (x , s) :=
ρ(x)

sr
,

and

G (x , s) := F (x , s)− F
(
x , γ ρ(x)1/(r+1)

)
− F ′

(
x , γ ρ(x)1/(r+1)

)
(s − γ ρ(x)1/(r+1)).
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Idea of the proof (2).
Then

G[f ] :=

∫
Td

G (x , f ) = F [f ]− 1
γr

∫
Td

ρ1/(r+1).

Thus our PDE is also the GF of G.

We prove a Gronwall inequality on G:

d

dt
G[f ] ≤ −c0G[f ] ⇒ G[f (t)] ≤ e−c0tG[f (0)]

Also, using 0 < b0 ≤ f (t) ≤ B0, we show that

G[f (t)] ≈ ‖f (t)− γ ρ1/(r+1)‖L2(Td ) ∀ t ≥ 0.
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The general case

We now want to study the PDE (existence, uniqueness, convergence) under
weaker regularity assumptions on f (0) and ρ.

For this, we want to use the GF interpretation of our equation.

Remark: all the following discussion extends also to convex smooth
bounded domains with Neumann boundary conditions.
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Existence via JKO scheme

Given f (0) and τ > 0, we define

f τ0 := f (0)

and

f τk+1 := argmin
{
g 7→

W2(g , f τk )2

2τ
+ F [g ]

}
.

Remark: we can rewrite the functional as

F [f ] =

∫
Td

U
( f

m

)
m,

where
U(s) = s−r , m(x) = ρ(x)1/(r+1).
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Discrete maximum principle
Proposition (I. - Patacchini - Santambrogio, in progress)
Assume c0m ≤ f τk ≤ C0m. Then c0m ≤ f τk+1 ≤ C0m.

Idea of the proof (1).
Step 1: find the Euler-Lagrange equations

U ′
( f τk+1

m

)
+
ϕ

τ
= const,

where T (x) := x −∇ϕ(x) is the optimal transport map from f τk+1 to f τk .

Step 2: let x̄ be a maximum point of f τk+1/m.

Since U ′ is monotone increasing, x̄ is a maximum point of U ′
( f τk+1

m

)
.

Thus, by Step 1, it is a minimum point of ϕ/τ , therefore

∇ϕ(x̄) = 0, D2ϕ(x̄) ≥ 0.
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Idea of the proof (2).
Step 3: By the transport condition T#f τk+1 = f τk we have

det(∇T ) =
f τk+1

f τk ◦ T
.

Since T (x) = x −∇ϕ(x), Step 2 and Brenier’s Theorem give

T (x̄) = x̄ −∇ϕ(x̄) = x̄ , 0 ≤ ∇T (x̄) = Id− D2ϕ(x̄) ≤ Id,

thus

1 = det(Id) ≥ det(∇T )(x̄) =
f τk+1(x̄)

f τk (x̄)
.

Since by assumption f τk (x̄) ≤ C0m(x̄), we get

max
Td

f τk+1

m
=

f τk+1(x̄)

m(x̄)
≤ C0

f τk+1(x̄)

f τk (x̄)
≤ C0,

as desired.
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By the discrete maximum principle, if c0m ≤ f (0) ≤ C0m then
c0m ≤ f τk ≤ C0m for all k . This means that our functional is not
degenerate on these solutions, and we can let τ → 0 to obtain a continuous
gradient flow.
By approximation, under suitable regularity assumptions on m, we obtain
existence of solutions also for more general initial data. More precisely, we
can prove:

Theorem (I. - Patacchini - Santambrogio, in progress)

Assume 0 < λ ≤ ρ ≤ 1/λ and D2 logm ≤ ΛId. Then, for any f (0) ∈ Lr+3

with F [f (0)] <∞ there exists a distributional solution of the PDE
obtained as the limit of the JKO scheme.
Also, this solution satisfies

f

m
∈ L2([0,∞),H1(Td)),

( f

m

)−r
∈ L2([0,∞),H1(Td)).
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Uniqueness and L1 contractivity

The uniqueness of solutions is nontrivial due to the degeneracy of the
equation when f is close to 0. To prove uniqueness, we need a “good”
notion of solution.

Definition
Given f (0) ∈ Lr+3(T) with F [f (0)] <∞, we say that f is a weak solution
of the PDE if f solves the PDE in the sense of distribution and

f

m
∈ L2([0,∞),H1(Td)),

( f

m

)−r
∈ L2([0,∞),H1(Td)).

As shown before, weak solutions exist as limit of the JKO scheme.
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We can prove the following uniqueness/stability result.

Theorem (I. - Patacchini - Santambrogio, in progress)
Assume 0 < λ ≤ ρ ≤ 1/λ. Let f1, f2 be weak solutions to the PDE starting
from f1(0), f2(0) ∈ Lr+3(Td) and F [f1(0)],F [f2(0)] <∞. Then both

t 7→
∫
Td

(f1(t, x)− f2(t, x))+ dx

and
t 7→

∫
Td

(f1(t, x)− f2(t, x))− dx

are decreasing in time.
In particular, weak solutions are unique and they are obtained as limit of
the JKO scheme.
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Regularization and convergence

By Moser’s iteration techniques, we can prove that weak solutions become
immediately bounded and positive if f (0) ∈ Lq with q > (r + 1)d/2.

Theorem (I. - Patacchini - Santambrogio, in progress)
Assume 0 < λ ≤ ρ ≤ 1/λ, let f be a weak solutions to the PDE with
f (0) ∈ Lr+3(T) and F [f (0)] <∞. Assume in addition that f (0) ∈ Lq(Td)
for some q > (r + 1)d/2. Then, for any t0 > 0,

0 < c(t0) ≤ f (t) ≤ C (t0) ∀ t ≥ t0.

In particular, after waiting a positive time t0 > 0, we can apply the
argument from I.-DCDS’17 to obtain exponential convergence to
equilibrium.
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Thanks for your attention
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