A Theory of Transfers

Nassif Ghoussoub, UBC
based on joint work with Malcolm Bowles

BIRS, April 2018

Notation

X and Y are compact spaces. $\mathcal{T}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper convex and weak* lower semi-continuous on $\mathcal{M}(X) \times \mathcal{M}(Y)$. $D(\mathcal{T})$ will denote its effective domain. Its "partial domains" are then

$$
D_{1}(\mathcal{T})=\{\mu \in \mathcal{P}(X) ; \exists \nu \in \mathcal{P}(Y),(\mu, \nu) \in D(\mathcal{T})\}
$$

and

$$
D_{2}(\mathcal{T})=\{\nu \in \mathcal{P}(Y) ; \exists \mu \in \mathcal{P}(X),(\mu, \nu) \in D(\mathcal{T})\}
$$

- For $\mu \in \mathcal{P}(X)$, consider the partial maps $\mathcal{T}_{\mu}: \nu \rightarrow \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(Y)$,
- For $\nu \in \mathcal{P}(Y)$), consider the partial map $\mathcal{T}_{\nu}: \mu \rightarrow \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(X)$,
- $+\infty$ outside the probability measures.

They are clearly convex and weak*-lower semi-continuous on $\mathcal{M}(Y)$ (resp., $\mathcal{M}(X)$).

Linear Transfers

Let $\mathcal{T}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper convex and weak* lower semi-continuous on $\mathcal{M}(X) \times \mathcal{M}(Y)$. Say that

1. \mathcal{T} is a backward linear Transfer, if there exists a convex operator $T^{-}: C(Y) \rightarrow L S C(X)$ such that for each $\mu \in D_{1}(\mathcal{T})$, the Legendre transform of \mathcal{T}_{μ} on $\mathcal{M}(Y)$ satisfies:

$$
\begin{equation*}
\mathcal{T}_{\mu}^{*}(g)=\int_{X} T^{-} g(x) d \mu(x) \quad \text { for any } g \in C(Y) \tag{1}
\end{equation*}
$$

2. \mathcal{T} is a forward linear transfer, if there exists a concave operator $T^{+}: C(X) \rightarrow U S C(Y)$ such that for each $\nu \in D_{2}(\mathcal{T})$, the Legendre transform of \mathcal{T}_{ν} on $\mathcal{M}(X)$ satisfies:

$$
\begin{equation*}
\mathcal{T}_{\nu}^{*}(f)=-\int_{Y} T^{+}(-f)(y) d \nu(y) \quad \text { for any } f \in C(X) \tag{2}
\end{equation*}
$$

We shall call T^{+}(resp., T^{-}) the forward (resp., backward) Kantorovich operator associated to \mathcal{T}.

Familiar formulae

So, if \mathcal{T} is a forward linear transfer on $X \times Y$, then for any $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$, we have

$$
\mathcal{T}(\mu, \nu)=\sup \left\{\int_{Y} T^{+} f(y) d \nu(y)-\int_{X} f(x) d \mu(x) ; f \in C(X)\right\}
$$

while if \mathcal{T} is a backward linear transfer on $X \times Y$, then

$$
\mathcal{T}(\mu, \nu)=\sup \left\{\int_{Y} g(y) d \nu(y)-\int_{X} T^{-} g(x) d \mu(x) ; g \in C(Y)\right\} .
$$

A a transfer \mathcal{T} is symmetric if

$$
\mathcal{T}(\nu, \mu):=\mathcal{T}(\nu, \mu) \text { for all } \mu \in \mathcal{P}(X) \text { and } \nu \in \mathcal{P}(X)
$$

If \mathcal{T} is a backward linear transfer with Kantorovich operator T^{-}, then $\tilde{\mathcal{T}}(\mu, \nu):=\mathcal{T}(\nu, \mu)$ is a forward linear transfer with operator $\tilde{T}^{+} f=-T^{-}(-f)$.
This means that if \mathcal{T} is symmetric, then $T^{+} f=-T^{-}(-f)$.

First examples of linear mass transfers

1. The identity transfer \mathcal{I} on $\mathcal{P}(X) \times \mathcal{P}(X)$ is the map

$$
\mathcal{I}(\mu, \nu)= \begin{cases}0 & \text { if } \mu=\nu \tag{3}\\ +\infty & \text { otherwise }\end{cases}
$$

This corresponds to when the Kantorovich operators are the identity.

First examples of linear mass transfers

1. The identity transfer \mathcal{I} on $\mathcal{P}(X) \times \mathcal{P}(X)$ is the map

$$
\mathcal{I}(\mu, \nu)= \begin{cases}0 & \text { if } \mu=\nu \tag{3}\\ +\infty & \text { otherwise }\end{cases}
$$

This corresponds to when the Kantorovich operators are the identity.
2. The trivial transfer: Any pair of functions $c_{1} \in C(X), c_{2} \in C(Y)$ define trivially a linear transfer via

$$
\mathcal{T}(\mu, \nu)=\int_{Y} c_{2} d \nu-\int_{X} c_{1} d \mu
$$

The Kantorovich operators are then

$$
T^{+} f=c_{2}+\inf \left(f-c_{1}\right) \text { and } T^{-} g=c_{1}+\sup \left(g-c_{2}\right) .
$$

First examples of linear mass transfers

1. The identity transfer \mathcal{I} on $\mathcal{P}(X) \times \mathcal{P}(X)$ is the map

$$
\mathcal{I}(\mu, \nu)= \begin{cases}0 & \text { if } \mu=\nu \tag{3}\\ +\infty & \text { otherwise }\end{cases}
$$

This corresponds to when the Kantorovich operators are the identity.
2. The trivial transfer: Any pair of functions $c_{1} \in C(X), c_{2} \in C(Y)$ define trivially a linear transfer via

$$
\mathcal{T}(\mu, \nu)=\int_{Y} c_{2} d \nu-\int_{X} c_{1} d \mu .
$$

The Kantorovich operators are then

$$
T^{+} f=c_{2}+\inf \left(f-c_{1}\right) \text { and } T^{-} g=c_{1}+\sup \left(g-c_{2}\right) .
$$

3. Monge-Kantorovich transfer: Any function $c \in C(X \times Y)$ determines a linear transfer. Optimal transport theory.

Monge-Kantorovich theory

$$
\left.\mathcal{T}_{c}(\mu, \nu):=\inf \left\{\int_{X \times Y} c(x, y)\right) d \pi ; \pi \in \mathcal{K}(\mu, \nu)\right\},
$$

where $\mathcal{K}(\mu, \nu)$ is the set of probability measures π on $X \times Y$ whose marginal on X (resp. on Y) is μ (resp., ν).
Monge-Kantorovich theory readily yields that \mathcal{T}_{c} is both a forward and backward linear transfer. The Kantorovich operators are:

$$
T_{c}^{+} f(y)=\inf _{x \in X} c(x, y)+f(x) \quad \text { and } \quad T_{c}^{-} g(x)=\sup _{y \in Y} g(y)-c(x, y)
$$

for any $f \in C(X)$ (resp., $g \in C(Y)$), and

$$
\begin{aligned}
\mathcal{T}_{c}(\mu, \nu) & =\sup \left\{\int_{Y} T_{c}^{+} f(y) d \nu(y)-\int_{X} f(x) d \mu(x) ; f \in C(X)\right\} \\
& =\sup \left\{\int_{Y} g(y) d \nu(y)-\int_{X} T_{c}^{-} g(x) d \mu(x) ; g \in C(Y)\right\}
\end{aligned}
$$

Backward and forward Hamilton-Jacobi Equations

On a given compact manifold M, consider the cost:

$$
c^{L}(y, x):=\inf \left\{\int_{0}^{1} L(t, \gamma(t), \dot{\gamma}(t)) d t ; \gamma \in C^{1}([0, T), M) ; \gamma(0)=y, \gamma(T)=x\right\}
$$

where $L: T M \rightarrow \mathbb{R} \cup\{+\infty\}$ is a given Tonelli Lagrangian.

$$
\mathcal{T}_{c^{\iota}}(\mu, \nu):=\inf \left\{\int_{M \times M} c^{L}(y, x) d \pi ; \pi \in \mathcal{K}(\mu, \nu)\right\}
$$

is a forward linear transfer with Kantorovich operator given by $T_{1}^{+} f(x)=V_{f}(1, x)$, where $V_{f}(t, x)$ is -at least formally- a solution for the Hamilton-Jacobi equation

$$
\left\{\begin{aligned}
\partial_{t} V+H\left(t, x, \nabla_{x} V\right) & =0 \text { on }[0,1] \times M, \\
V(0, x) & =f(x) .
\end{aligned}\right.
$$

Similarly, it has a backward Kantorovich potential is given by $T_{1}^{-} g(y)=W_{g}(0, y), W_{g}(t, y)$ being is a solution for the backward Hamilton-Jacobi equation

$$
\left\{\begin{aligned}
\partial_{t} W+H\left(t, x, \nabla_{x} W\right) & =0 \text { on }[0,1] \times M, \\
W(1, y) & =g(y) .
\end{aligned}\right.
$$

One-sided linear transfers: constrained mass transports

1. Martingale transports:

$\mathcal{T}_{M}(\mu, \nu)= \begin{cases}\inf \left\{\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c(x, y) d \pi(x, y) ; \pi \in M T(\mu, \nu)\right\} & \text { if } \mu \prec c \nu \\ +\infty & \text { if not. }\end{cases}$
where $M T(\mu, \nu)$ is the set of martingale transport plans, i.e., probabilities π on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ with marginals μ and ν, such that for μ-almost $x \in \mathbb{R}^{d}$, the component π_{x} of its disintegration $\left(\pi_{x}\right)_{x}$ with respect to μ, i.e. $d \pi(x, y)=d \pi_{x}(y) d \mu(x)$, and π_{x} has its barycenter at x.
It is a backward linear transfer with Kantorovich operator:

$$
T^{-} f(x)=f_{c, x}(x) \text { the concave envelope of } y \rightarrow f(y)+c(x, y)
$$

2. Dynamic mass transports with free-end time

Ghoussoub-Young Heon Kim-Aaron Palmer (Tomorrow).

Non cost-minimizing transfers-Stochastic transports

Given a Lagrangian $L:[0, T] \times M \times M^{*} \rightarrow \mathbb{R}$, define the following stochastic counterpart of the optimal transportation problem.

$$
\mathcal{T}_{L}(\mu, \nu):=\inf \left\{\mathbb{E}\left[\int_{0}^{1} L\left(t, X(t), \beta_{X}(t, X)\right) d t\right] \mid X(0) \sim \mu, X(1) \sim \nu, X \in \mathcal{A}\right\}
$$

\mathcal{A} is the set of \mathbb{R}^{d}-valued continuous semimartingales $X(\cdot)$ verifying

$$
d X=\beta_{X}(t) d t+d W
$$

for some measurable drift $\beta_{X}:[0, T] \times C([0,1]) \rightarrow M^{*}$.
This does not fit in the standard optimal mass transport theory. However,

$$
\mathcal{T}_{L}(\mu, \nu)=\sup \left\{\int_{M} f(x) d \nu-\int_{M} V_{f}(0, x) d \mu ; f \in \mathcal{C}_{b}^{\infty}\right\}
$$

where V_{f} solves the Hamilton-Jacobi-Bellman equation

$$
\begin{equation*}
\frac{\partial V}{\partial t}+\frac{1}{2} \Delta V(t, x)+H(t, x, \nabla V)=0, \quad V(1, x)=f(x) \tag{HJB}
\end{equation*}
$$

\mathcal{T}_{L} is a backward linear transfer with operator $T_{L}^{-} f_{\mathrm{a}}=V_{f}(0, \cdot)$.

Weak optimal transports

Story started with Marton who defined transports of the following type:

$$
\mathcal{T}_{\gamma, d}(\mu, \nu)=\inf \left\{\int_{X} \gamma\left(\int_{Y} d(x, y) d \pi_{x}(y)\right) d \mu(x) ; \pi \in \mathcal{K}(\mu, \nu)\right\}
$$

where γ is convex on \mathbb{R}^{+}and $d: X \times Y \rightarrow \mathbb{R}$ is lower semi-continuous. Marton's weak transfer correspond to $\gamma(t)=t^{2}$ and $d(x, y)=|x-y|$. This is a backward linear transfer with Kantorovich potential

$$
T^{-} f(x)=\sup \left\{\int_{Y} f(y) d \sigma(y)-\gamma\left(\int_{Y} d(x, y) d \sigma(y)\right) ; \sigma \in \mathcal{P}(Y)\right\} .
$$

Gozlan et al. defined Weak Transport associated to $c: X \times \mathcal{P}(X) \rightarrow \mathbb{R}$ as

$$
\mathcal{T}(\mu, \nu)=\inf _{\pi}\left\{\int_{X} c\left(x, \pi_{x}\right) d \mu(x) ; \pi \in \mathcal{K}(\mu, \nu)\right\} .
$$

A representation of linear transfers as generalized optimal mass transports

Proposition

Let $\mathcal{T}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathbb{R} \cup\{+\infty\}$ be such that $\left\{\delta_{x} ; x \in X\right\} \subset D_{1}(\mathcal{T})$. Then, \mathcal{T} is a backward linear transfer if and only if there exists a lower semi-continuous function $c: X \times \mathcal{P}(Y) \rightarrow \mathbb{R} \cup\{+\infty\}$ with $\sigma \rightarrow c(x, \sigma)$ convex on $\mathcal{P}(Y)$ for each $x \in X$ such that for every $\mu \in \mathcal{P}(X)$, and $\nu \in \mathcal{P}(Y)$, we have

$$
\left.\mathcal{T}(\mu, \nu)=\inf _{\pi} \int_{X} c\left(x, \pi_{x}\right) d \mu(x) ; \pi \in \mathcal{K}(\mu, \nu)\right\} .
$$

The corresponding backward Kantorovich operator is given for every $g \in C(Y)$ by

$$
T^{-} g(x)=\sup \left\{\int_{Y} g(y) d \sigma(y)-\mathcal{T}(x, \sigma) ; \sigma \in \mathcal{P}(Y)\right\}
$$

Operations on linear mass transfers

The class of backward linear transfers on $X \times Y$ is a convex cone of weak*-lower semi-continuous convex functions on $\mathcal{P}(X) \times \mathcal{P}(Y)$.

1. (Inf-convolution) If \mathcal{T}_{1} (resp., \mathcal{T}_{2}) is a backward linear transfer on $X_{1} \times X_{2}$ (resp., on $X_{2} \times X_{3}$) with Kantorovich operator T_{1}^{-}(resp., T_{2}^{-}), then

$$
\mathcal{T}_{1} \star \mathcal{T}_{2}(\mu, \nu):=\inf \left\{\mathcal{T}_{1}(\mu, \sigma)+\mathcal{T}_{2}(\sigma, \nu) ; \sigma \in \mathcal{P}\left(X_{2}\right)\right\} .
$$

is also a backward linear transfer on $X_{1} \times X_{3}$ with Kantorovich operator equal to $T_{1}^{-} \circ T_{2}^{-}$.
2. (Tensorization) If \mathcal{T}_{1} (resp., \mathcal{T}_{2}) is a backward linear transfer on $X_{1} \times Y_{1}$ (resp., $X_{2} \times Y_{2}$) with $X_{1} \subset D\left(\mathcal{T}_{1}\right)$ and $X_{2} \subset D\left(\mathcal{T}_{2}\right)$, then $\mathcal{T}_{1} \otimes \mathcal{T}_{2}(\mu, \nu)=\inf \left\{\int_{X_{1} \times X_{2}}\left(\mathcal{T}_{1}\left(x_{1}, \pi_{x_{1}, x_{2}}\right)+\mathcal{T}_{2}\left(x_{2}, \pi_{x_{1}, x_{2}}\right)\right) d \mu\left(x_{1}, x_{2}\right) ; \pi \in \mathcal{K}(\mu, \nu)\right\}$.
is a backward linear transfer on $\left(X_{1} \times X_{2}\right) \times\left(Y_{1} \times Y_{2}\right)$, with Kantorovich operator

$$
T^{-} g\left(x_{1}, x_{2}\right)=\sup \left\{\int_{Y_{1} \times Y_{2}} f\left(y_{1}, y_{2}\right) d \sigma\left(y_{1}, y_{2}\right)-\mathcal{T}_{1}\left(x_{1}, \sigma_{1}\right)-\mathcal{T}_{2}\left(x_{2}, \sigma_{2}\right) ; \sigma \in \mathcal{K}\left(\sigma_{1}, \sigma_{2}\right)\right\}
$$

Convex Transfers

$\mathcal{T}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathbb{R} \cup\{+\infty\}$ is said to be a backward convex transfer (resp., forward convex transfer), if there exists a family of backward linear transfers (resp., forward linear transfers) $\left(\mathcal{T}_{i}\right)_{i \in I}$ such that

$$
\mathcal{T}(\mu, \nu)=\sup _{i \in I} \mathcal{T}_{i}(\mu, \nu) \quad \text { for all } \mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y)
$$

1. \mathcal{T} is a backward convex transfer, if there exists a family of convex operators $\left(T_{i}^{-}\right)_{i \in I}$ from $C(Y) \rightarrow L S C(X)$ such that for each $\mu \in D_{1}(\mathcal{T})$, the Legendre transform of \mathcal{T}_{μ} on $\mathcal{M}(Y)$ satisfies:

$$
\mathcal{T}_{\mu}^{*}(g)=\inf _{i \in I} \int_{X} T_{i}^{-} g(x) d \mu(x) \quad \text { for any } g \in C(Y)
$$

2. \mathcal{T} is a forward convex transfer, if there exists a family of concave operators $\left(T_{i}^{+}\right)_{s}$ from $C(X) \rightarrow \operatorname{USC}(Y)$ such that for each $\nu \in D_{2}(\mathcal{T})$, the Legendre transform of \mathcal{T}_{ν} on $\mathcal{M}(X)$ satisfies:

$$
\mathcal{T}_{\nu}^{*}(f)=-\sup _{i \in I} \int_{Y} T_{i}^{+}(-f)(y) d \nu(y) \quad \text { for any } f \in C(X) .
$$

Examples of convex transfers

1. If \mathcal{T} is a linear backward (resp., forward) transfer and $\alpha: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is convex increasing, then $\alpha(\mathcal{T})$ is a backward (resp., forward) convex transfer.
2. In particular, for any $p \geq 1, \mathcal{T}^{p}$ is a convex transfer.
3. If α is a strictly convex and superlinear, then

$$
\mathcal{T}(\mu, \nu)=\int_{X} \alpha\left(\frac{d \nu}{d \mu}\right) d \mu, \quad \text { if } \mu \ll \nu \text { and }+\infty \text { otherwise. }
$$

is a backward convex transfer.
4. The Donsker-Varadhan entropy, which is defined as

$$
\mathcal{I}(\mu, \nu):= \begin{cases}\mathcal{E}(\sqrt{f}, \sqrt{f}), & \text { if } \mu=f \nu, \sqrt{f} \in \mathbb{D}(\mathcal{E}) \\ +\infty, & \text { otherwise }\end{cases}
$$

where \mathcal{E} is a Dirichlet form with domain $\mathbb{D}(\mathcal{E})$ on $L^{2}(\nu)$, is a backward convex transfer.

Entropic Transfers: An important class of convex transfers

Let α (resp., β) be a convex increasing (resp., concave increasing) real function on \mathbb{R}, and let $\mathcal{E}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathbb{R} \cup\{+\infty\}$. Say that
$-\mathcal{E}$ is a β-backward transfer, if there exists a convex operator $E^{-}: C(Y) \rightarrow L S C(X)$ such that for each $\mu \in D_{1}(\mathcal{T})$, the Legendre transform of \mathcal{E}_{μ} on $\mathcal{M}(Y)$ is:

$$
\mathcal{E}_{\mu}^{*}(g)=\beta\left(\int_{X} E^{-} g(x) d \mu(x)\right) \quad \text { for any } g \in C(Y)
$$

- \mathcal{E} is a α-forward transfer, if there exists a concave operator $E^{+}: C(X) \rightarrow U S C(Y)$ such that for each $\nu \in D_{2}(\mathcal{T})$,

$$
\mathcal{E}_{\nu}^{*}(f)=-\alpha\left(\int_{Y} E^{+}(-f)(y) d \nu(y)\right) \quad \text { for any } f \in C(X)
$$

If \mathcal{T} is a backward linear transfer with Kantorovich operator T^{-}, then $\mathcal{E} \star \mathcal{T}$ is a a backward β-transfer with Kantorovich operator $E^{-} \circ T^{-}$. $\left.\mathcal{E} \star \mathcal{T}(\mu, \nu)=\sup \left\{\int_{Z} g(y) d \nu(y)-\beta\left(\int_{X} E^{-} \circ T^{-} g(x)\right) d \mu(x)\right) ; g \in C\left(X_{3}\right)\right\}$.

Logarithmic Transfers

If \mathcal{E} is an α-forward transfer on $X \times Y$, then for $\mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y)$,

$$
\mathcal{E}(\mu, \nu)=\sup \left\{\alpha\left(\int_{Y} E^{+} f(y) d \nu(y)\right)-\int_{X} f(x) d \mu(x) ; f \in C(X)\right\},
$$

while if \mathcal{E} is a β-backward transfer, then

$$
\mathcal{E}(\mu, \nu)=\sup \left\{\int_{Y} g(y) d \nu(y)-\beta\left(\int_{X} E^{-} g(x) d \mu(x)\right) ; g \in C(Y)\right\} .
$$

A typical example is of course the logarithmic entropy,

$$
\begin{gathered}
\mathcal{H}(\mu, \nu)=\int_{X} \log \left(\frac{d \nu}{d \mu}\right) d \nu, \quad \text { if } \nu \ll \mu \text { and }+\infty \text { otherwise } \\
\mathcal{H}(\mu, \nu)=\sup \left\{\int_{X} f d \nu-\log \left(\int_{X} e^{f} d \mu\right) ; f \in C_{b}(X)\right\},
\end{gathered}
$$

making it a log-backward transfer.

Transfer Inequalities

Standard Transport-Entropy inequalities are normally of the form

$$
\begin{gathered}
\mathcal{T}(\sigma, \mu) \leq \lambda_{1} \mathcal{E}_{1}(\mu, \sigma) \quad \text { for all } \sigma \in \mathcal{P}(X), \\
\mathcal{T}(\mu, \sigma) \leq \lambda_{2} \mathcal{E}_{2}(\mu, \sigma) \quad \text { for all } \sigma \in \mathcal{P}(X), \\
\mathcal{T}\left(\sigma_{1}, \sigma_{2}\right) \leq \lambda_{1} \mathcal{E}_{1}\left(\sigma_{1}, \mu\right)+\lambda_{2} \mathcal{E}_{2}\left(\sigma_{2}, \mu\right) \quad \text { for all } \sigma_{1}, \sigma_{2} \in \mathcal{P}(X),
\end{gathered}
$$

where μ is a fixed measure, and λ_{1}, λ_{2} are two positive reals.
In our terminology, These amount to find μ, λ_{1}, and λ_{2} such that

$$
\begin{gathered}
\left(\lambda_{1} \mathcal{E}_{1}\right) \star(-\mathcal{T})(\mu, \mu) \geq 0, \\
\left.\lambda_{2} \mathcal{E}_{2}\right) \star(-\tilde{\mathcal{T}})(\mu, \mu) \geq 0, \\
\left(\lambda_{1} \tilde{\mathcal{E}}_{1}\right) \star(-\mathcal{T}) \star\left(\lambda_{2} \mathcal{E}_{2}\right)(\mu, \mu) \geq 0,
\end{gathered}
$$

where $\tilde{\mathcal{T}}(\mu, \nu)=\mathcal{T}(\nu, \mu)$. Note for example that
$\tilde{\mathcal{E}}_{1} \star(-\mathcal{T}) \star \mathcal{E}_{2}(\mu, \nu)=\inf \left\{\mathcal{E}_{1}\left(\sigma_{1}, \mu\right)-\mathcal{T}_{2}\left(\sigma_{1}, \sigma_{2}\right)+\mathcal{E}_{2}\left(\sigma_{2}, \nu\right) ; \sigma_{1}, \sigma_{2} \in \mathcal{P}(Z)\right\}$.
One then writes duality formulas for the transfers

$$
\mathcal{E}_{1} \star(-\mathcal{T}), \quad \mathcal{E}_{2} \star(-\tilde{\mathcal{T}}) \quad \text { and } \quad \tilde{\mathcal{E}}_{1} \star(-\mathcal{T}) \star \mathcal{E}_{2}
$$

where \mathcal{T} is any convex transfer, while $\mathcal{E}_{1}, \mathcal{E}_{2}$ are entropic transfers

A sample: Extension of Maurey's inequality

- Consider \mathcal{E}_{1} (resp., \mathcal{E}_{2}) a forward α_{1}-transfer on $Z_{1} \times X_{1}$ (resp., α_{2}-transfer on $Z_{2} \times X_{2}$) with Kantorovich operator E_{1}^{+}(resp., E_{2}^{+}).
- Let \mathcal{T}_{1} (resp., \mathcal{T}_{2}) be forward linear transfers on $Y_{1} \times Z_{1}$ (resp., $Y_{2} \times Z_{2}$) with Kantorovich operator T_{1}^{+}(resp., T_{2}^{+}).
- Let \mathcal{F} be a backward convex transfer on $Y_{1} \times Y_{2}$ with Kantorovich operators $\left(F_{i}^{-}\right)_{i}$.
Then, for $\mu \in \mathcal{P}\left(X_{1}\right)$ and $\nu \in \mathcal{P}\left(X_{2}\right)$ given, TFAE:

1. For all $\sigma_{1} \in \mathcal{P}\left(X_{1}\right), \sigma_{2} \in \mathcal{P}\left(X_{2}\right)$, we have

$$
\mathcal{F}\left(\sigma_{1}, \sigma_{2}\right) \leq \lambda_{1} \mathcal{T}_{1} \star \mathcal{E}_{1}\left(\sigma_{1}, \mu\right)+\lambda_{2} \mathcal{T}_{2} \star \mathcal{E}_{2}\left(\sigma_{2}, \nu\right)
$$

2. For all $g \in C\left(Y_{2}\right)$ and all $i \in I$, we have

$$
\lambda_{1} \alpha_{1}\left(\int_{X_{1}} E_{1}^{+} \circ T_{1}^{+} \circ\left(-\frac{1}{\lambda_{1}} F_{i}^{-} g\right) d \mu\right)+\lambda_{2} \alpha_{2}\left(\int_{X_{2}} E_{2}^{+} \circ T_{2}^{+}\left(\frac{1}{\lambda_{2}} g\right) d \nu\right) \geq 0 .
$$

Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator T. For $n \in \mathbb{N}$, Let $\mathcal{T}_{n}=\mathcal{T} \star \mathcal{T} \star \ldots \star \mathcal{T} n$-times. Then

1. $\mathcal{T}_{n}(\mu, \nu)=\sup \left\{\int_{X} g(y) d \nu-\int_{X} T^{n} g(x) d \mu ; g \in C(X)\right\}$.

Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator T. For $n \in \mathbb{N}$, Let $\mathcal{T}_{n}=\mathcal{T} \star \mathcal{T} \star \ldots \star \mathcal{T} n$-times. Then

1. $\mathcal{T}_{n}(\mu, \nu)=\sup \left\{\int_{X} g(y) d \nu-\int_{X} T^{n} g(x) d \mu ; g \in C(X)\right\}$.
2. There exists a constant $C>0$ and a number $\ell \in \mathbb{R}$ such that

$$
\left|\mathcal{T}_{n}(\mu, \nu)-\ell n\right| \leq C \quad \text { for all } \mu, \nu \in \mathcal{P}(X) \text { and } n \in \mathbb{N} .
$$

3. Weak KAM solutions: Assume $\ell=0$, then there exists $T_{\infty}: C(X) \rightarrow C(X)$ such that $T T_{\infty} f=T_{\infty} f$. Moreover, $T_{\infty} T_{\infty} f=T_{\infty} f$.

Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator T. For $n \in \mathbb{N}$, Let $\mathcal{T}_{n}=\mathcal{T} \star \mathcal{T} \star \ldots \star \mathcal{T} n$-times. Then

1. $\mathcal{T}_{n}(\mu, \nu)=\sup \left\{\int_{X} g(y) d \nu-\int_{X} T^{n} g(x) d \mu ; g \in C(X)\right\}$.
2. There exists a constant $C>0$ and a number $\ell \in \mathbb{R}$ such that

$$
\left|\mathcal{T}_{n}(\mu, \nu)-\ell n\right| \leq C \quad \text { for all } \mu, \nu \in \mathcal{P}(X) \text { and } n \in \mathbb{N} .
$$

3. Weak KAM solutions: Assume $\ell=0$, then there exists $T_{\infty}: C(X) \rightarrow C(X)$ such that $T T_{\infty} f=T_{\infty} f$. Moreover, $T_{\infty} T_{\infty} f=T_{\infty} f$.
4. Peierls Barrier: $\mathcal{T}_{\infty}(\mu, \nu):=\sup _{f \in C(X)}\left\{\int_{X} f d \nu-\int_{X} T_{\infty} f d \mu\right\}$ is a backward linear transfer.

Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator T. For $n \in \mathbb{N}$, Let $\mathcal{T}_{n}=\mathcal{T} \star \mathcal{T} \star \ldots \star \mathcal{T} n$-times. Then

1. $\mathcal{T}_{n}(\mu, \nu)=\sup \left\{\int_{X} g(y) d \nu-\int_{X} T^{n} g(x) d \mu ; g \in C(X)\right\}$.
2. There exists a constant $C>0$ and a number $\ell \in \mathbb{R}$ such that

$$
\left|\mathcal{T}_{n}(\mu, \nu)-\ell n\right| \leq C \quad \text { for all } \mu, \nu \in \mathcal{P}(X) \text { and } n \in \mathbb{N} .
$$

3. Weak KAM solutions: Assume $\ell=0$, then there exists $T_{\infty}: C(X) \rightarrow C(X)$ such that $T T_{\infty} f=T_{\infty} f$. Moreover, $T_{\infty} T_{\infty} f=T_{\infty} f$.
4. Peierls Barrier: $\mathcal{T}_{\infty}(\mu, \nu):=\sup _{f \in C(X)}\left\{\int_{X} f d \nu-\int_{X} T_{\infty} f d \mu\right\}$ is a backward linear transfer.
5. Mather measure: $\inf _{\mu \in \mathcal{P}(X)} \mathcal{T}(\mu, \mu)=0$ and the infimum is achieved by a measure $\bar{\mu}$ in the projected Aubry set

$$
\mathcal{A}:=\left\{\mu \in \mathcal{P}(X): \mathcal{T}_{\infty}(\mu, \mu)=0\right\}
$$

such that $(\bar{\mu}, \bar{\mu})$ belongs to the Aubry set

$$
\mathcal{D}:=\left\{(\mu, \nu) \in \mathcal{P}(X) \times \mathcal{P}(X): \mathcal{T}(\mu, \nu)+\mathcal{T}_{\infty}(\nu, \mu)=0\right\} \subset \mathcal{A} \times \mathcal{A} .
$$

Multi-transfers are even more fascinating!

THANK YOU

