A Theory of Transfers

Nassif Ghoussoub, UBC based on joint work with Malcolm Bowles

BIRS, April 2018

Nassif Ghoussoub, UBC based on joint work with Malcolm Bowles A Theory of Transfers

Notation

X and Y are compact spaces. $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ is a proper convex and weak^{*} lower semi-continuous on $\mathcal{M}(X) \times \mathcal{M}(Y)$. $D(\mathcal{T})$ will denote its effective domain. Its "partial domains" are then

$$D_1(\mathcal{T}) = \{ \mu \in \mathcal{P}(X); \exists \nu \in \mathcal{P}(Y), (\mu, \nu) \in D(\mathcal{T}) \}$$

and

$$D_2(\mathcal{T}) = \{ \nu \in \mathcal{P}(Y); \exists \mu \in \mathcal{P}(X), (\mu, \nu) \in D(\mathcal{T}) \}.$$

- ▶ For $\mu \in \mathcal{P}(X)$, consider the partial maps $\mathcal{T}_{\mu} : \nu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(Y)$,
- ▶ For $\nu \in \mathcal{P}(Y)$), consider the partial map $\mathcal{T}_{\nu} : \mu \to \mathcal{T}(\mu, \nu)$ on $\mathcal{P}(X)$,

- ∢ ≣ ▶

• $+\infty$ outside the probability measures.

They are clearly convex and weak*-lower semi-continuous on $\mathcal{M}(Y)$ (resp., $\mathcal{M}(X)$).

Linear Transfers

Let $\mathcal{T}: \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ be a proper convex and weak^{*} lower semi-continuous on $\mathcal{M}(X) \times \mathcal{M}(Y)$. Say that

1. \mathcal{T} is a *backward linear Transfer*, if there exists a convex operator $\mathcal{T}^- : \mathcal{C}(Y) \to LSC(X)$ such that for each $\mu \in D_1(\mathcal{T})$, the Legendre transform of \mathcal{T}_{μ} on $\mathcal{M}(Y)$ satisfies:

 $\mathcal{T}^*_\mu(g) = \int_X T^-g(x) \, d\mu(x) \quad \text{ for any } g \in C(Y). \tag{1}$

2. \mathcal{T} is a *forward linear transfer*, if there exists a concave operator $T^+ : C(X) \to USC(Y)$ such that for each $\nu \in D_2(\mathcal{T})$, the Legendre transform of \mathcal{T}_{ν} on $\mathcal{M}(X)$ satisfies:

 $\mathcal{T}^*_{\nu}(f) = -\int_Y T^+(-f)(y) \, d\nu(y) \quad \text{for any } f \in C(X).$ (2)

ロト (日本) (日本) (日本) (日本) (日本)

We shall call T^+ (resp., T^-) the forward (resp., backward) Kantorovich operator associated to T.

Familiar formulae

So, if \mathcal{T} is a forward linear transfer on $X \times Y$, then for any $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$, we have

$$\mathcal{T}(\mu,\nu) = \sup\big\{\int_Y T^+f(y)\,d\nu(y) - \int_X f(x)\,d\mu(x);\,f\in C(X)\big\},\,$$

while if \mathcal{T} is a backward linear transfer on $X \times Y$, then

$$\mathcal{T}(\mu,\nu) = \sup\big\{\int_Y g(y)\,d\nu(y) - \int_X T^-g(x)\,d\mu(x);\,g\in C(Y)\big\}.$$

A a transfer \mathcal{T} is symmetric if

$$\mathcal{T}(
u,\mu) := \mathcal{T}(
u,\mu) ext{ for all } \mu \in \mathcal{P}(X) ext{ and }
u \in \mathcal{P}(X).$$

If \mathcal{T} is a backward linear transfer with Kantorovich operator T^- , then $\tilde{\mathcal{T}}(\mu,\nu) := \mathcal{T}(\nu,\mu)$ is a forward linear transfer with operator $\tilde{T}^+f = -T^-(-f)$. This means that if \mathcal{T} is symmetric, then $T^+f = -T^-(-f)$.

< 🗇 🕨 < 🖃

First examples of linear mass transfers

1. The identity transfer \mathcal{I} on $\mathcal{P}(X) \times \mathcal{P}(X)$ is the map

$$\mathcal{I}(\mu,\nu) = \begin{cases} 0 & \text{if } \mu = \nu \\ +\infty & \text{otherwise.} \end{cases}$$
(3)

This corresponds to when the Kantorovich operators are the identity.

First examples of linear mass transfers

1. The identity transfer \mathcal{I} on $\mathcal{P}(X) \times \mathcal{P}(X)$ is the map

$$\mathcal{I}(\mu,\nu) = \begin{cases} 0 & \text{if } \mu = \nu \\ +\infty & \text{otherwise.} \end{cases}$$
(3)

This corresponds to when the Kantorovich operators are the identity.

2. The trivial transfer: Any pair of functions $c_1 \in C(X)$, $c_2 \in C(Y)$ define trivially a linear transfer via

$$\mathcal{T}(\mu,\nu) = \int_Y c_2 \, d
u - \int_X c_1 \, d\mu.$$

The Kantorovich operators are then

 $T^+f = c_2 + \inf(f - c_1)$ and $T^-g = c_1 + \sup(g - c_2)$.

First examples of linear mass transfers

1. The identity transfer \mathcal{I} on $\mathcal{P}(X) \times \mathcal{P}(X)$ is the map

$$\mathcal{I}(\mu,\nu) = \begin{cases} 0 & \text{if } \mu = \nu \\ +\infty & \text{otherwise.} \end{cases}$$
(3)

This corresponds to when the Kantorovich operators are the identity.

2. The trivial transfer: Any pair of functions $c_1 \in C(X)$, $c_2 \in C(Y)$ define trivially a linear transfer via

$$\mathcal{T}(\mu,\nu) = \int_Y c_2 d\nu - \int_X c_1 d\mu.$$

The Kantorovich operators are then

 $T^+f = c_2 + \inf(f - c_1)$ and $T^-g = c_1 + \sup(g - c_2)$.

3. Monge-Kantorovich transfer: Any function $c \in C(X \times Y)$ determines a linear transfer. Optimal transport theory.

$$\mathcal{T}_{c}(\mu,\nu) := \inf \big\{ \int_{X \times Y} c(x,y) \big) \, d\pi; \pi \in \mathcal{K}(\mu,\nu) \big\},\$$

where $\mathcal{K}(\mu, \nu)$ is the set of probability measures π on $X \times Y$ whose marginal on X (resp. on Y) is μ (resp., ν). Monge-Kantorovich theory readily yields that \mathcal{T}_{c} is both a forward and

backward linear transfer. The Kantorovich operators are:

$$T_c^+f(y) = \inf_{x \in X} c(x,y) + f(x) \quad \text{and} \quad T_c^-g(x) = \sup_{y \in Y} g(y) - c(x,y),$$

for any $f \in C(X)$ (resp., $g \in C(Y)$), and

$$\begin{aligned} \mathcal{T}_{c}(\mu,\nu) &= \sup \left\{ \int_{Y} T_{c}^{+}f(y) \, d\nu(y) - \int_{X} f(x) \, d\mu(x); \, f \in C(X) \right\} \\ &= \sup \left\{ \int_{Y} g(y) \, d\nu(y) - \int_{X} T_{c}^{-}g(x) \, d\mu(x); \, g \in C(Y) \right\} \end{aligned}$$

Backward and forward Hamilton-Jacobi Equations

On a given compact manifold M, consider the cost:

$$c^{L}(y,x):=\inf\{\int_{0}^{1}L(t,\gamma(t),\dot{\gamma}(t))\,dt;\gamma\in C^{1}([0,T),M);\gamma(0)=y,\gamma(T)=x\},$$

where $L: TM \to \mathbb{R} \cup \{+\infty\}$ is a given Tonelli Lagrangian.

$$\mathcal{T}_{c^{L}}(\mu,\nu) := \inf \left\{ \int_{M \times M} c^{L}(y,x) \, d\pi; \pi \in \mathcal{K}(\mu,\nu) \right\}$$

is a forward linear transfer with Kantorovich operator given by $T_1^+f(x) = V_f(1,x)$, where $V_f(t,x)$ is -at least formally- a solution for the Hamilton-Jacobi equation

$$\begin{cases} \partial_t V + H(t, x, \nabla_x V) = 0 \text{ on } [0, 1] \times M, \\ V(0, x) = f(x). \end{cases}$$

Similarly, it has a backward Kantorovich potential is given by $T_1^-g(y) = W_g(0, y), W_g(t, y)$ being is a solution for the backward Hamilton-Jacobi equation

$$\begin{cases} \partial_t W + H(t, x, \nabla_x W) = 0 \text{ on } [0, 1] \times M, \\ W(1, y) = g(y). \end{cases}$$

1. Martingale transports:

$$\mathcal{T}_{M}(\mu,\nu) = \begin{cases} \inf \{ \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} c(x,y) \, d\pi(x,y); \pi \in MT(\mu,\nu) \} & \text{if } \mu \prec_{C} \nu \\ +\infty & \text{if not.} \end{cases}$$

where $MT(\mu, \nu)$ is the set of martingale transport plans, i.e., probabilities π on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and ν , such that for μ -almost $x \in \mathbb{R}^d$, the component π_x of its disintegration $(\pi_x)_x$ with respect to μ , i.e. $d\pi(x, y) = d\pi_x(y)d\mu(x)$, and π_x has its barycenter at x. It is a backward linear transfer with Kantorovich operator:

 $T^{-}f(x) = f_{c,x}(x)$ the concave envelope of $y \to f(y) + c(x,y)$,

2. Dynamic mass transports with free-end time Ghoussoub-Young Heon Kim-Aaron Palmer (Tomorrow).

Non cost-minimizing transfers-Stochastic transports

Given a Lagrangian $L: [0, T] \times M \times M^* \to \mathbb{R}$, define the following stochastic counterpart of the optimal transportation problem.

$$\mathcal{T}_L(\mu,
u) := \inf \left\{ \mathbb{E}\left[\int_0^1 L(t,X(t),eta_X(t,X)) \, dt
ight] \Big| X(0) \sim \mu, X(1) \sim
u, X \in \mathcal{A}
ight\}$$

 $\mathcal A$ is the set of $\mathbb R^d$ -valued continuous semimartingales $X(\cdot)$ verifying

 $dX = \beta_X(t)dt + dW$

for some measurable drift $\beta_X : [0, T] \times C([0, 1]) \to M^*$. This does not fit in the standard optimal mass transport theory. However,

$$\mathcal{T}_L(\mu,
u) = \sup\left\{\int_M f(x) \, d
u - \int_M V_f(0, x) \, d\mu; \, f \in \mathcal{C}_b^\infty
ight\},$$

where V_f solves the Hamilton-Jacobi-Bellman equation

$$\frac{\partial V}{\partial t} + \frac{1}{2}\Delta V(t,x) + H(t,x,\nabla V) = 0, \quad V(1,x) = f(x).$$
(HJB)

 \mathcal{T}_L is a backward linear transfer with operator $\mathcal{T}_L^- f_{-} = V_f(0, \cdot)$.

Story started with Marton who defined transports of the following type:

$$\mathcal{T}_{\gamma,d}(\mu,\nu) = \inf\left\{\int_X \gamma\left(\int_Y d(x,y)d\pi_x(y)\right) \, d\mu(x); \pi \in \mathcal{K}(\mu,\nu)\right\},\,$$

where γ is convex on \mathbb{R}^+ and $d: X \times Y \to \mathbb{R}$ is lower semi-continuous. Marton's weak transfer correspond to $\gamma(t) = t^2$ and d(x, y) = |x - y|. This is a backward linear transfer with Kantorovich potential

$$T^{-}f(x) = \sup\left\{\int_{Y} f(y)d\sigma(y) - \gamma\left(\int_{Y} d(x,y) d\sigma(y)\right); \ \sigma \in \mathcal{P}(Y)\right\}.$$

Gozlan et al. defined Weak Transport associated to $c: X \times \mathcal{P}(X) \rightarrow \mathbb{R}$ as

$$\mathcal{T}(\mu,\nu) = \inf_{\pi} \{ \int_{X} c(x,\pi_{x}) d\mu(x); \pi \in \mathcal{K}(\mu,\nu) \}.$$

A representation of linear transfers as generalized optimal mass transports

Proposition

Let $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ be such that $\{\delta_x; x \in X\} \subset D_1(\mathcal{T})$. Then, \mathcal{T} is a backward linear transfer if and only if there exists a lower semi-continuous function $c : X \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ with $\sigma \to c(x, \sigma)$ convex on $\mathcal{P}(Y)$ for each $x \in X$ such that for every $\mu \in \mathcal{P}(X)$, and $\nu \in \mathcal{P}(Y)$, we have

$$\mathcal{T}(\mu,\nu) = \inf_{\pi} \int_{X} c(x,\pi_{x}) d\mu(x); \pi \in \mathcal{K}(\mu,\nu) \}.$$

The corresponding backward Kantorovich operator is given for every $g \in C(Y)$ by

$$T^-g(x) = \sup\{\int_Y g(y) d\sigma(y) - \mathcal{T}(x,\sigma); \sigma \in \mathcal{P}(Y)\}.$$

Operations on linear mass transfers

The class of backward linear transfers on $X \times Y$ is a convex cone of weak*-lower semi-continuous convex functions on $\mathcal{P}(X) \times \mathcal{P}(Y)$.

1. (Inf-convolution) If \mathcal{T}_1 (resp., \mathcal{T}_2) is a backward linear transfer on $X_1 \times X_2$ (resp., on $X_2 \times X_3$) with Kantorovich operator \mathcal{T}_1^- (resp., \mathcal{T}_2^-), then

$$\mathcal{T}_1 \star \mathcal{T}_2(\mu, \nu) := \inf \{ \mathcal{T}_1(\mu, \sigma) + \mathcal{T}_2(\sigma, \nu); \ \sigma \in \mathcal{P}(X_2) \}.$$

is also a backward linear transfer on $X_1 \times X_3$ with Kantorovich operator equal to $T_1^- \circ T_2^-$.

2. (Tensorization) If \mathcal{T}_1 (resp., \mathcal{T}_2) is a backward linear transfer on $X_1 \times Y_1$ (resp., $X_2 \times Y_2$) with $X_1 \subset D(\mathcal{T}_1)$ and $X_2 \subset D(\mathcal{T}_2)$, then

$$\mathcal{T}_1 \otimes \mathcal{T}_2(\mu, \nu) = \inf \left\{ \int_{X_1 \times X_2} \left(\mathcal{T}_1(x_1, \pi_{x_1, x_2}) + \mathcal{T}_2(x_2, \pi_{x_1, x_2}) \right) d\mu(x_1, x_2); \pi \in \mathcal{K}(\mu, \nu) \right\}.$$

is a backward linear transfer on $(X_1 \times X_2) \times (Y_1 \times Y_2)$, with Kantorovich operator

$$T^{-}g(x_1, x_2) = \sup\{\int_{Y_1 \times Y_2} f(y_1, y_2) d\sigma(y_1, y_2) - \mathcal{T}_1(x_1, \sigma_1) - \mathcal{T}_2(x_2, \sigma_2); \ \sigma \in \mathcal{K}(\sigma_1, \sigma_2)\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Convex Transfers

 $\mathcal{T} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$ is said to be a *backward convex transfer* (resp., *forward convex transfer*), if there exists a family of backward linear transfers (resp., forward linear transfers) $(\mathcal{T}_i)_{i \in I}$ such that

$$\mathcal{T}(\mu,
u) = \sup_{i \in I} \mathcal{T}_i(\mu,
u) \quad \text{for all } \mu \in \mathcal{P}(X), \
u \in \mathcal{P}(Y).$$

T is a *backward convex transfer*, if there exists a family of convex operators (*T_i⁻*)_{*i*∈*I*} from *C*(*Y*) → *LSC*(*X*) such that for each μ ∈ *D*₁(*T*), the Legendre transform of *T_μ* on *M*(*Y*) satisfies:

$$\mathcal{T}^*_\mu(g) = \inf_{i \in I} \int_X \mathcal{T}^-_i g(x) \, d\mu(x) \quad ext{ for any } g \in C(Y).$$

T is a forward convex transfer, if there exists a family of concave operators (T_i⁺)_s from C(X) → USC(Y) such that for each ν ∈ D₂(T), the Legendre transform of T_ν on M(X) satisfies:

$$\mathcal{T}^*_{\nu}(f) = -\sup_{i\in I}\int_Y \mathcal{T}^+_i(-f)(y)\,d\nu(y) \quad \text{ for any } f\in \mathcal{C}(X).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Examples of convex transfers

- 1. If \mathcal{T} is a linear backward (resp., forward) transfer and $\alpha : \mathbb{R}^+ \to \mathbb{R}$ is convex increasing, then $\alpha(\mathcal{T})$ is a backward (resp., forward) convex transfer.
- 2. In particular, for any $p \ge 1$, \mathcal{T}^p is a convex transfer.
- 3. If α is a strictly convex and superlinear, then

$$\mathcal{T}(\mu,
u) = \int_X lpha(rac{d
u}{d\mu})\,d\mu, \quad ext{if } \mu <<
u ext{ and } +\infty ext{ otherwise.}$$

is a backward convex transfer.

4. The Donsker-Varadhan entropy, which is defined as

$$\mathcal{I}(\mu,
u) := egin{cases} \mathcal{E}(\sqrt{f}, \sqrt{f}), & ext{ if } \mu = f
u, \sqrt{f} \in \mathbb{D}(\mathcal{E}) \ +\infty, & ext{ otherwise,} \end{cases}$$

where \mathcal{E} is a Dirichlet form with domain $\mathbb{D}(\mathcal{E})$ on $L^2(\nu)$, is a backward convex transfer.

Entropic Transfers: An important class of convex transfers

Let α (resp., β) be a convex increasing (resp., concave increasing) real function on \mathbb{R} , and let $\mathcal{E} : \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathbb{R} \cup \{+\infty\}$. Say that

E is a β-backward transfer, if there exists a convex operator
E⁻: C(Y) → LSC(X) such that for each μ ∈ D₁(T), the Legendre transform of E_μ on M(Y) is:

 $\mathcal{E}^*_\mu(g) = \beta\left(\int_X E^-g(x)\,d\mu(x)
ight) \quad ext{ for any } g\in \mathcal{C}(Y).$

► \mathcal{E} is a α -forward transfer, if there exists a concave operator $E^+: C(X) \rightarrow USC(Y)$ such that for each $\nu \in D_2(\mathcal{T})$, $\mathcal{E}_{\nu}^*(f) = -\alpha \left(\int_Y E^+(-f)(y) \, d\nu(y) \right)$ for any $f \in C(X)$.

If \mathcal{T} is a backward linear transfer with Kantorovich operator T^- , then $\mathcal{E} \star \mathcal{T}$ is a backward β -transfer with Kantorovich operator $E^- \circ T^-$.

$$\mathcal{E}\star\mathcal{T}(\mu,\nu)=\sup\big\{\int_Z g(y)\,d\nu(y)-\beta(\int_X E^-\circ T^-g(x))\,d\mu(x));\,g\in C(X_3)\big\}.$$

- 本間 と 本臣 と 本臣 と 一臣

Logarithmic Transfers

If \mathcal{E} is an α -forward transfer on $X \times Y$, then for $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$,

$$\mathcal{E}(\mu,\nu) = \sup \big\{ \alpha \left(\int_Y E^+ f(y) \, d\nu(y) \right) - \int_X f(x) \, d\mu(x); \, f \in C(X) \big\},$$

while if ${\mathcal E}$ is a $\beta\text{-backward}$ transfer, then

$$\mathcal{E}(\mu,\nu) = \sup \left\{ \int_{Y} g(y) \, d\nu(y) - \beta \left(\int_{X} E^{-}g(x) \, d\mu(x) \right); \, g \in C(Y) \right\}.$$

A typical example is of course the logarithmic entropy,

$$\mathcal{H}(\mu,
u) = \int_X \log(rac{d
u}{d\mu}) \, d
u, \quad ext{if }
u << \mu ext{ and } +\infty ext{ otherwise}$$

$$\mathcal{H}(\mu,\nu) = \sup\{\int_X f \, d\nu - \log(\int_X e^f \, d\mu); \, f \in C_b(X)\},$$

making it a log-backward transfer.

Transfer Inequalities

Standard Transport-Entropy inequalities are normally of the form

$$\begin{split} \mathcal{T}(\sigma,\mu) &\leq \lambda_1 \mathcal{E}_1(\mu,\sigma) \quad \text{ for all } \sigma \in \mathcal{P}(X), \\ \mathcal{T}(\mu,\sigma) &\leq \lambda_2 \mathcal{E}_2(\mu,\sigma) \quad \text{ for all } \sigma \in \mathcal{P}(X), \\ \mathcal{T}(\sigma_1,\sigma_2) &\leq \lambda_1 \mathcal{E}_1(\sigma_1,\mu) + \lambda_2 \mathcal{E}_2(\sigma_2,\mu) \quad \text{ for all } \sigma_1,\sigma_2 \in \mathcal{P}(X), \end{split}$$

where μ is a fixed measure, and λ_1 , λ_2 are two positive reals. In our terminology, These amount to find μ , λ_1 , and λ_2 such that

$$egin{aligned} &(\lambda_1\mathcal{E}_1)\star(-\mathcal{T})\,(\mu,\mu)\geq 0,\ &\lambda_2\mathcal{E}_2)\star(- ilde{\mathcal{T}})\,(\mu,\mu)\geq 0,\ &(\lambda_1 ilde{\mathcal{E}}_1)\star(-\mathcal{T})\star(\lambda_2\mathcal{E}_2)\,(\mu,\mu)\geq 0, \end{aligned}$$

where $\tilde{\mathcal{T}}(\mu, \nu) = \mathcal{T}(\nu, \mu)$. Note for example that

 $\tilde{\mathcal{E}}_1\star(-\mathcal{T})\star\mathcal{E}_2(\mu,\nu) = \inf\{\mathcal{E}_1(\sigma_1,\mu) - \mathcal{T}_2(\sigma_1,\sigma_2) + \mathcal{E}_2(\sigma_2,\nu); \ \sigma_1,\sigma_2 \in \mathcal{P}(Z)\}.$

One then writes duality formulas for the transfers

$$\mathcal{E}_1 \star (-\mathcal{T}), \quad \mathcal{E}_2 \star (-\tilde{\mathcal{T}}) \quad \text{and} \quad \tilde{\mathcal{E}}_1 \star (-\mathcal{T}) \star \mathcal{E}_2$$

where \mathcal{T} is any convex transfer, while \mathcal{E}_1 , \mathcal{E}_2 are entropic transfers

A sample: Extension of Maurey's inequality

- ► Consider \mathcal{E}_1 (resp., \mathcal{E}_2) a forward α_1 -transfer on $Z_1 \times X_1$ (resp., α_2 -transfer on $Z_2 \times X_2$) with Kantorovich operator E_1^+ (resp., E_2^+).
- ▶ Let \mathcal{T}_1 (resp., \mathcal{T}_2) be forward linear transfers on $Y_1 \times Z_1$ (resp., $Y_2 \times Z_2$) with Kantorovich operator \mathcal{T}_1^+ (resp., \mathcal{T}_2^+).
- Let *F* be a backward convex transfer on Y₁ × Y₂ with Kantorovich operators (F_i[−])_i.

Then, for $\mu \in \mathcal{P}(X_1)$ and $\nu \in \mathcal{P}(X_2)$ given, TFAE:

1. For all $\sigma_1 \in \mathcal{P}(X_1), \sigma_2 \in \mathcal{P}(X_2)$, we have

 $\mathcal{F}(\sigma_1, \sigma_2) \leq \lambda_1 \mathcal{T}_1 \star \mathcal{E}_1(\sigma_1, \mu) + \lambda_2 \mathcal{T}_2 \star \mathcal{E}_2(\sigma_2, \nu).$

2. For all $g \in C(Y_2)$ and all $i \in I$, we have

$$\lambda_1\alpha_1\big(\int_{X_1} E_1^+ \circ T_1^+ \circ (-\frac{1}{\lambda_1}F_i^-g)\,d\mu\big) + \lambda_2\alpha_2(\int_{X_2} E_2^+ \circ T_2^+(\frac{1}{\lambda_2}g)\,d\nu) \ge 0.$$

・伺い くほり くほり

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator \mathcal{T} . For $n \in \mathbb{N}$, Let $\mathcal{T}_n = \mathcal{T} \star \mathcal{T} \star \dots \star \mathcal{T}$ *n*-times. Then 1. $\mathcal{T}_n(\mu, \nu) = \sup \{ \int_X g(y) \, d\nu - \int_X \mathcal{T}^n g(x) \, d\mu; g \in C(X) \}.$

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator T. For $n \in \mathbb{N}$, Let $\mathcal{T}_n = \mathcal{T} \star \mathcal{T} \star \dots \star \mathcal{T}$ n-times. Then 1. $\mathcal{T}_n(\mu, \nu) = \sup \{ \int_X g(y) d\nu - \int_X T^n g(x) d\mu; g \in C(X) \}.$ 2. There exists a constant C > 0 and a number $\ell \in \mathbb{R}$ such that $|\mathcal{T}_n(\mu, \nu) - \ell n| \leq C$ for all $\mu, \nu \in \mathcal{P}(X)$ and $n \in \mathbb{N}$.

3. Weak KAM solutions: Assume $\ell = 0$, then there exists $T_{\infty} : C(X) \to C(X)$ such that $TT_{\infty}f = T_{\infty}f$. Moreover, $T_{\infty}T_{\infty}T_{\infty}f = T_{\infty}f$.

- < ⊒ → ---

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator T. For $n \in \mathbb{N}$, Let $\mathcal{T}_n = \mathcal{T} \star \mathcal{T} \star \dots \star \mathcal{T}$ n-times. Then 1. $\mathcal{T}_n(\mu, \nu) = \sup \{ \int_X g(y) d\nu - \int_X \mathcal{T}^n g(x) d\mu; g \in C(X) \}.$ 2. There exists a constant C > 0 and a number $\ell \in \mathbb{R}$ such that $|\mathcal{T}_n(\mu, \nu) - \ell n| \leq C$ for all $\mu, \nu \in \mathcal{P}(X)$ and $n \in \mathbb{N}$.

3. Weak KAM solutions: Assume $\ell = 0$, then there exists $T_{\infty}: C(X) \rightarrow C(X)$ such that $TT_{\infty}f = T_{\infty}f$. Moreover,

 $T_{\infty}T_{\infty}f = T_{\infty}f.$

4. Peierls Barrier: $\mathcal{T}_{\infty}(\mu, \nu) := \sup_{f \in C(X)} \left\{ \int_{X} f d\nu - \int_{X} \mathcal{T}_{\infty} f d\mu \right\}$ is a

backward linear transfer.

Let X be a compact metric space, and let \mathcal{T} be a backward linear transfer on $X \times X$ with Kantorovich operator T. For $n \in \mathbb{N}$, Let $\mathcal{T}_n = \mathcal{T} \star \mathcal{T} \star \dots \star \mathcal{T}$ n-times. Then 1. $\mathcal{T}_n(\mu, \nu) = \sup \{ \int_X g(y) d\nu - \int_X \mathcal{T}^n g(x) d\mu; g \in C(X) \}.$ 2. There exists a constant C > 0 and a number $\ell \in \mathbb{R}$ such that

 $|\mathcal{T}_n(\mu,\nu) - \ell n| \leq C$ for all $\mu,\nu\in\mathcal{P}(X)$ and $n\in\mathbb{N}$.

- 3. Weak KAM solutions: Assume $\ell = 0$, then there exists $T_{\infty} : C(X) \to C(X)$ such that $TT_{\infty}f = T_{\infty}f$. Moreover, $T_{\infty}T_{\infty}f = T_{\infty}f$.
- 4. Peierls Barrier: $\mathcal{T}_{\infty}(\mu, \nu) := \sup_{f \in C(X)} \left\{ \int_{X} f d\nu \int_{X} \mathcal{T}_{\infty} f d\mu \right\}$ is a

backward linear transfer.

5. Mather measure: $\inf_{\mu \in \mathcal{P}(X)} \mathcal{T}(\mu, \mu) = 0$ and the infimum is achieved by a measure $\bar{\mu}$ in the projected Aubry set

$$\mathcal{A} := \{\mu \in \mathcal{P}(X) \, : \, \mathcal{T}_{\infty}(\mu,\mu) = 0\}$$

such that $(\bar{\mu}, \bar{\mu})$ belongs to the Aubry set

$$\mathcal{D} := \{(\mu, \nu) \in \mathcal{P}(X) \times \mathcal{P}(X) : \mathcal{T}(\mu, \nu) + \mathcal{T}_{\infty}(\nu, \mu) = 0\} \subset \mathcal{A} \times \mathcal{A}.$$

Multi-transfers are even more fascinating!

THANK YOU

< ≣⇒

≣ ▶

< 🗇 🕨

æ

Nassif Ghoussoub, UBC based on joint work with Malcolm Bowles A Theory of Transfers