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X and Y are compact spaces. T : P(X) x P(Y) = RU {+o0} is a
proper convex and weak* lower semi-continuous on M(X) x M(Y).
D(T) will denote its effective domain. Its “partial domains” are then

Di(T) ={p e P(X);IveP(Y),(uv) e D(T)}

and
Do(T) ={v € P(Y); 3u € P(X),(n,v) € D(T)}.

» For u € P(X), consider the partial maps 7, : v — T (g, v) on P(Y
» For v € P(Y)), consider the partial map 7, : u — T (u,v) on P(X
> +o00 outside the probability measures.

~—

~—

They are clearly convex and weak*-lower semi-continuous on M(Y)

(resp., M(X)).
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Linear Transfers

Let 7 : P(X) x P(Y) = RU{+oo} be a proper convex and weak* lower
semi-continuous on M(X) x M(Y). Say that

1. T is a backward linear Transfer, if there exists a convex operator
T~ : C(Y) — LSC(X) such that for each u € Di(T), the Legendre
transform of 7, on M(Y) satisfies:

T:(8) =[x T g(x)du(x) forany g € C(Y). (1)

2. 7T is a forward linear transfer, if there exists a concave operator
Tt : C(X)— USC(Y) such that for each v € D>(T), the Legendre
transform of 7, on M(X) satisfies:

TI(F) ==y T (=) dv(y) forany fe C(X). (2

We shall call T (resp., T™) the forward (resp., backward) Kantorovich
operator associated to 7.
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Familiar formulae

So, if T is a forward linear transfer on X x Y, then for any pu € P(X)
and v € P(Y), we have

T(uw) =sup{ [ TH(y)duly) = [ £ () £ € €O},
while if 7 is a backward linear transfer on X x Y, then
T (u,v) = sup{ /Yg(y) dv(y) — /X T g(x) du(x); g € C(Y)}.
A a transfer T is symmetric if
T (v, p) :== T (v,p) for all p € P(X) and v € P(X).
If T is a backward linear transfer with Kantorovich operator T, then
T(u,v) :=T(v, ) is a forward linear transfer with operator

THf=—-T-(-1).
This means that if 7 is symmetric, then TTf = —T~(—f).
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First examples of linear mass transfers

1. The identity transfer Z on P(X) x P(X) is the map

[0 if p=v
I(p,v) = { +00 otherwise. G)

This corresponds to when the Kantorovich operators are the identity.
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First examples of linear mass transfers

1. The identity transfer Z on P(X) x P(X) is the map

[0 if p=v
I(p,v) = { +00 otherwise. G)

This corresponds to when the Kantorovich operators are the identity.

2. The trivial transfer: Any pair of functions ¢; € C(X), x € C(Y)
define trivially a linear transfer via

T(u,u):/chdu—/Xcld,u.

The Kantorovich operators are then

Ttf=c+inf(f —c) and T-g = c; +sup(g — ).
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First examples of linear mass transfers

1. The identity transfer Z on P(X) x P(X) is the map

[0 if p=v
I(p,v) = { +00 otherwise. G)

This corresponds to when the Kantorovich operators are the identity.

2. The trivial transfer: Any pair of functions ¢; € C(X), x € C(Y)
define trivially a linear transfer via

T(u,u):/chdu—/Xcld,u.

The Kantorovich operators are then

Ttf=c+inf(f —c) and T-g = c; +sup(g — ).

3. Monge-Kantorovich transfer: Any function ¢ € C(X x Y)
determines a linear transfer. Optimal transport theory.
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Monge-Kantorovich theory

Telpov) = inf { | clxy))drmim & K(pv)}.

where (i, V) is the set of probability measures m on X x Y whose
marginal on X (resp. on Y) is u (resp., v) .

Monge-Kantorovich theory readily yields that 7. is both a forward and
backward linear transfer. The Kantorovich operators are:

THf(y) = inf c(x,y) + f(x) and T g(x) = supg(y) — c(x,y),
xeX yey

for any f € C(X) (resp., g € C(Y)), and
Ty = sl [ TER )~ | F)du(x); £ e €0}
= s [ g~ [ Toe()dutx) g € CV}.
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Backward and forward Hamilton-Jacobi Equations

On a given compact manifold M, consider the cost:

1
cHy.x) = inf{/o L(t,y(t),4(t)) dt;y € CH([0, T), M); 7(0) = y,/(T) = x},
where L: TM — R U {400} is a given Tonelli Lagrangian.
Teu(p,v) :=inf{ cHy,x)dmm e K(p,v)}
MxM

is a forward linear transfer with Kantorovich operator given by
T, f(x) = V#(1,x), where Vf(t,x) is —at least formally— a solution for
the Hamilton-Jacobi equation

OV + H(t,x,V,V) = O0on[0,1] x M,
V(0,x) = f(x).
Similarly, it has a backward Kantorovich potential is given by
T1 g(y) = Wg(0,y), Wg(t,y) being is a solution for the backward
Hamilton-Jacobi equation
{ W + H(t, x, VW)
W(l,y)

0 on [0,1] x M,
g(y)-
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One-sided linear transfers: constrained mass transports

1. Martingale transports:

~finf{ [gaype €O, y) dT(x,y)im € MT (u,v)} if u<cv
Ty, v) = { +00 if not.

where MT (i, v) is the set of martingale transport plans, i.e., probabilities
7 on RY x RY with marginals 1 and v, such that for g-almost x € RY,
the component 7, of its disintegration (7y)x with respect to p, i.e.
dr(x,y) = dni(y)du(x), and 7« has its barycenter at x.

It is a backward linear transfer with Kantorovich operator:

T~ f(x) = fc «(x) the concave envelope of y — f(y) + c(x,y),

2. Dynamic mass transports with free-end time
Ghoussoub-Young Heon Kim-Aaron Palmer (Tomorrow).
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Non cost-minimizing transfers-Stochastic transports

Given a Lagrangian L: [0, T] x M x M* — R, define the following
stochastic counterpart of the optimal transportation problem.

i v) = inf {E [/01 L(t,X(t),ﬁX(t.,X))dt}

X(O)NM,X(l)Ny,XGA}

A is the set of R9-valued continuous semimartingales X(-) verifying
dX = Bx(t)dt + dW

for some measurable drift Sx : [0, T] x C([0,1]) — M*.
This does not fit in the standard optimal mass transport theory. However,

TL(#,V)ISUP{/M f(x)dz/f/MVf(O,x)du; fecg°},

where V¢ solves the Hamilton-Jacobi-Bellman equation
ov 1

5r T3AV(EX) +H(E X, VV) =0, V(LX) =f(x) (HJB)

7. is a backward linear transfer with operator T, f = V4(0, -).
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Weak optimal transports

Story started with Marton who defined transports of the following type:

Tty =int{ [ 2 [ dxn)an) dutain & G |

where ~ is convex on R and d : X x Y — R is lower semi-continuous.
Marton's weak transfer correspond to y(t) = t? and d(x,y) = |x — y/|.
This is a backward linear transfer with Kantorovich potential

ot =sup{ [ f)dat) = ([ dey)do)i o e P

Gozlan et al. defined Weak Transport associated to ¢ : X x P(X) — R as

T = inf{ | .m0 dp(0; € K(pov).
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A representation of linear transfers as generalized optimal

mass transports

Proposition

Let T : P(X) x P(Y) = RU {+o0} be such that {0x;x € X} C Di(T).
Then, T is a backward linear transfer if and only if there exists a lower
semi-continuous function ¢ : X X P(Y) = R U {400} with o — ¢(x,0)
convex on P(Y) for each x € X such that for every p € P(X), and

v e P(Y), we have

T(u,v) = ir71rf /X c(x,my) dp(x);m e K(p,v)}.

The corresponding backward Kantorovich operator is given for every
g e C(Y) by

T-g(x) = sup{ / g(y) do(y) - T(x,0);0 € P(Y)}.
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Operations on linear mass transfers

The class of backward linear transfers on X x Y is a convex cone of
weak*-lower semi-continuous convex functions on P(X) x P(Y).
1. (Inf-convolution) If Ty (resp., T2) is a backward linear transfer on
X1 x Xz (resp., on X2 x X3) with Kantorovich operator T; (resp.,
T, ), then

T+ Ta(p, v) := inf{T1 (1, 0) + Ta(o,v); o € P(X2)}.

is also a backward linear transfer on X; x X3 with Kantorovich
operator equal to T; o T, .

2. (Tensorization) If 71 (resp., T2) is a backward linear transfer on
X1 xYr (resp., Xo X Y2) with X; C D(ﬂ) and X5 C D(7-2), then

Ti ® Ta(p,v) = inf {/ (Ti(x1, g 0) + T2(3x2, T %0 ) dip(x1, x2); 7 € K (s, l/)} .
X

1 X X3

is a backward linear transfer on (X; x X32) x (Y1 x Y2), with
Kantorovich operator

T~ g(x1,x2) = sup{ f(y1,y2)do(y1, y2)—Ti(x1,01)—T2(x2, 02); 0 € K(o1,02)}.
Y1 X Yo
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Convex Transfers

T :P(X)xP(Y) = RU{+oo} is said to be a backward convex transfer
(resp., forward convex transfer), if there exists a family of backward linear
transfers (resp., forward linear transfers) (7;)ic; such that

T(u,v) =supTi(u,v) forall pe P(X), veP(Y).
icl

1. T is a backward convex transfer, if there exists a family of convex
operators (T, )i from C(Y) — LSC(X) such that for each
p € Di(T), the Legendre transform of 7, on M(Y) satisfies:

Ti(8) = inf [y T 8(x)du(x) for any g € C(¥).

2. T is a forward convex transfer, if there exists a family of concave
operators (T;")s from C(X) — USC(Y') such that for each
v € Dy(T), the Legendre transform of 7, on M(X) satisfies:

T(f) = —Sitelyfy TH(=f)(y)dv(y) forany f e C(X).
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Examples of convex transfers

1. If T is a linear backward (resp., forward) transfer and o : RT — R is
convex increasing, then a(7) is a backward (resp., forward) convex
transfer.

2. In particular, for any p > 1, TP is a convex transfer.

3. If ais a strictly convex and superlinear, then

dv

T(p,v)= / a(=—)dp, if u << v and +oo otherwise.
x dp

is a backward convex transfer.

4. The Donsker-Varadhan entropy, which is defined as

() = {W?, VA, if p=fuJFeD(E)

400, otherwise,

where £ is a Dirichlet form with domain D(€) on L2(v), is a
backward convex transfer.
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Entropic Transfers: An important class of convex transfers

Let « (resp., 8) be a convex increasing (resp., concave increasing) real
function on R, and let £ : P(X) x P(Y) = RU {+o0}. Say that
» £ is a B-backward transfer, if there exists a convex operator
E~ : C(Y) — LSC(X) such that for each € Di(T), the Legendre
transform of £, on M(Y) is:

Exlg)=8 ([x E”g(x)du(x)) forany g € C(Y).
» £ is a a-forward transfer, if there exists a concave operator
E* : C(X) — USC(Y) such that for each v € Dy(T),
EXNf) = —a (fy ET(=f)(y)dv(y)) forany f e C(X).

If 7 is a backward linear transfer with Kantorovich operator T, then
E % T is a a backward (-transfer with Kantorovich operator E~ o T~

ET (1) =sup | / g(y) dv(y)-5( /X E-oT g(x)) du(x)); & € C(X3)}.
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Logarithmic Transfers

If £ is an a-forward transfer on X x Y, then for u € P(X), v € P(Y),

) = fo ([ E70) ) - [ ) autas £ 00}
while if £ is a 3-backward transfer, then

E(p,v) = sup { /Yg(y) dv(y) - B (/X E~g(x) du(X)) g€ C(Y)}.
A typical example is of course the logarithmic entropy,

d
H(p,v) = /X Iog(d—:) dv, if v << p and 400 otherwise

H(p,v) = sup{/x fdv— Iog(/x el du); f e C(X)},

making it a log-backward transfer.
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Transfer Inequalities

Standard Transport-Entropy inequalities are normally of the form
T(o,p) < M&i(p,0)  forall o € P(X),
T (1, 0) < Xa&a(p,0)  for all o € P(X),
T(o1,02) < M&i(o1, 1) + Xa&a(o2, 1) for all 01,02 € P(X),

where i is a fixed measure, and A;, > are two positive reals.
In our terminology, These amount to find p, A1, and A, such that

(AM&1) * (=T) (w, ) = 0,
20E) * (=T) (1, 1) > 0,
(Aé1) * (=T) * (A2&2) (i, ) = 0,
where T (u,v) = T (v, ). Note for example that
Evx(=T)xE (p,v) = inf{E1 (01, p)—Ta(o1, 02)+E(02,v); 01,02 € P(2)}.
One then writes duality formulas for the transfers
Eix(=T), &E*(=T) and &+ (-T)*&

where T is any convex transfer, while &1, & are entropic transfers.
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A sample: Extension of Maurey's inequality

» Consider & (resp., &) a forward as-transfer on Z; x Xy (resp.,
ap-transfer on Zp x Xz) with Kantorovich operator EfL (resp., Ej)

» Let T (resp., T2) be forward linear transfers on Y; x Zy (resp.,
Y> x Z») with Kantorovich operator T;" (resp., T;").
» Let F be a backward convex transfer on Y; x Y5 with Kantorovich
operators (F;);.
Then, for p € P(X1) and v € P(Xz) given, TFAE:
1. For all o1 € P(X1),02 € P(X2), we have

F(o1,02) < MTi*E1(01, 1) + X To * Ex(02,v).

2. For all g € C(Y2) and all i € I, we have

1 1
Alal(/x Ef'on'o(—)\—lF’. g) dﬂ)—i—)\gag(/x E2+oT2+(/\—2g) dv) > 0.
1 2
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Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let 7 be a backward linear
transfer on X x X with Kantorovich operator T. For n € N, Let
To=T*T %....%xT n-times. Then

L To(u,v) = sup { [y gly) dv— [, T"g(x) dpi g € C(X)}.
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Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let 7 be a backward linear
transfer on X x X with Kantorovich operator T. For n € N, Let
To=T%*T%...%«T n-times. Then

L To(u,v) = sup { [y gly) dv— [, T"g(x) dpi g € C(X)}.

2. There exists a constant C > 0 and a number ¢ € R such that

|Ta(pt,v) —€n| < C forall u,v € P(X) and n € N.

3. Weak KAM solutions: Assume ¢ = 0, then there exists
Teo : C(X) = C(X) such that TTf = To.f. Moreover,
Too Toof = Toof.
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Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let 7 be a backward linear
transfer on X x X with Kantorovich operator T. For n € N, Let
To=T%*T%...%«T n-times. Then

L To(u,v) = sup { [y gly) dv— [, T"g(x) dpi g € C(X)}.

2. There exists a constant C > 0 and a number ¢ € R such that

|Ta(pt,v) —€n| < C forall u,v € P(X) and n € N.

3. Weak KAM solutions: Assume ¢ = 0, then there exists
Teo : C(X) = C(X) such that TTf = To.f. Moreover,
Too Toof = Toof.
4. Peierls Barrier: Too(p,v) := sup { [y fdv — [, Toofdp} is a
fec(X)
backward linear transfer.
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Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let 7 be a backward linear
transfer on X x X with Kantorovich operator T. For n € N, Let
To=T%*T%...%«T n-times. Then
L To(u,v) = sup { [y gly) dv— [, T"g(x) dpi g € C(X)}.
2. There exists a constant C > 0 and a number ¢ € R such that
|Ta(pt,v) —€n| < C forall u,v € P(X) and n € N.

3. Weak KAM solutions: Assume ¢ = 0, then there exists
Teo : C(X) = C(X) such that TTf = To.f. Moreover,
Too Toof = Toof.

4. Peierls Barrier: Too(p,v) := sup { [y fdv — [, Toofdp} is a
fec(x)
backward linear transfer.

5. Mather measure: ueig]EX) T (, ) = 0 and the infimum is achieved
by a measure i in the projected Aubry set
A:={p e P(X) : Teo(p, 1) = 0}
such that (fi, i) belongs to the Aubry set
D= {(u,v) € P(X) x P(X) : T(p,v) + Tos(v, ) =0} C A x A.
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Multi-transfers are even more fascinating!

THANK YOU
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