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Notation

X and Y are compact spaces. T : P(X )× P(Y )→ R ∪ {+∞} is a
proper convex and weak∗ lower semi-continuous on M(X )×M(Y ).
D(T ) will denote its effective domain. Its “partial domains” are then

D1(T ) = {µ ∈ P(X );∃ν ∈ P(Y ), (µ, ν) ∈ D(T )}

and
D2(T ) = {ν ∈ P(Y );∃µ ∈ P(X ), (µ, ν) ∈ D(T )}.

I For µ ∈ P(X ), consider the partial maps Tµ : ν → T (µ, ν) on P(Y ),

I For ν ∈ P(Y )), consider the partial map Tν : µ→ T (µ, ν) on P(X ),

I +∞ outside the probability measures.

They are clearly convex and weak∗-lower semi-continuous on M(Y )
(resp., M(X )).
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Linear Transfers

Let T : P(X )×P(Y )→ R∪ {+∞} be a proper convex and weak∗ lower
semi-continuous on M(X )×M(Y ). Say that

1. T is a backward linear Transfer, if there exists a convex operator
T− : C (Y )→ LSC (X ) such that for each µ ∈ D1(T ), the Legendre
transform of Tµ on M(Y ) satisfies:

T ∗µ (g) =
∫
X
T−g(x) dµ(x) for any g ∈ C (Y ). (1)

2. T is a forward linear transfer, if there exists a concave operator
T+ : C (X )→ USC (Y ) such that for each ν ∈ D2(T ), the Legendre
transform of Tν on M(X ) satisfies:

T ∗ν (f ) = −
∫
Y
T+(−f )(y) dν(y) for any f ∈ C (X ). (2)

We shall call T+ (resp., T−) the forward (resp., backward) Kantorovich
operator associated to T .
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Familiar formulae

So, if T is a forward linear transfer on X × Y , then for any µ ∈ P(X )
and ν ∈ P(Y ), we have

T (µ, ν) = sup
{∫

Y

T+f (y) dν(y)−
∫
X

f (x) dµ(x); f ∈ C (X )
}
,

while if T is a backward linear transfer on X × Y , then

T (µ, ν) = sup
{∫

Y

g(y) dν(y)−
∫
X

T−g(x) dµ(x); g ∈ C (Y )
}
.

A a transfer T is symmetric if

T (ν, µ) := T (ν, µ) for all µ ∈ P(X ) and ν ∈ P(X ).

If T is a backward linear transfer with Kantorovich operator T−, then
T̃ (µ, ν) := T (ν, µ) is a forward linear transfer with operator
T̃+f = −T−(−f ).
This means that if T is symmetric, then T+f = −T−(−f ).
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First examples of linear mass transfers

1. The identity transfer I on P(X )× P(X ) is the map

I(µ, ν) =

{
0 if µ = ν
+∞ otherwise.

(3)

This corresponds to when the Kantorovich operators are the identity.

2. The trivial transfer: Any pair of functions c1 ∈ C (X ), c2 ∈ C (Y )
define trivially a linear transfer via

T (µ, ν) =

∫
Y

c2 dν −
∫
X

c1 dµ.

The Kantorovich operators are then

T+f = c2 + inf(f − c1) and T−g = c1 + sup(g − c2).

3. Monge-Kantorovich transfer: Any function c ∈ C (X × Y )
determines a linear transfer. Optimal transport theory.
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Monge-Kantorovich theory

Tc(µ, ν) := inf
{∫

X×Y
c(x , y)) dπ;π ∈ K(µ, ν)

}
,

where K(µ, ν) is the set of probability measures π on X × Y whose
marginal on X (resp. on Y ) is µ (resp., ν) .
Monge-Kantorovich theory readily yields that Tc is both a forward and
backward linear transfer. The Kantorovich operators are:

T+
c f (y) = inf

x∈X
c(x , y) + f (x) and T−c g(x) = sup

y∈Y
g(y)− c(x , y),

for any f ∈ C (X ) (resp., g ∈ C (Y )), and

Tc(µ, ν) = sup
{∫

Y

T+
c f (y) dν(y)−

∫
X

f (x) dµ(x); f ∈ C (X )
}

= sup
{∫

Y

g(y) dν(y)−
∫
X

T−c g(x) dµ(x); g ∈ C (Y )
}
.
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Backward and forward Hamilton-Jacobi Equations

On a given compact manifold M, consider the cost:

cL(y , x) := inf{
∫ 1

0

L(t, γ(t), γ̇(t)) dt; γ ∈ C 1([0,T ),M); γ(0) = y , γ(T ) = x},

where L : TM → R ∪ {+∞} is a given Tonelli Lagrangian.

TcL(µ, ν) := inf
{∫

M×M
cL(y , x) dπ;π ∈ K(µ, ν)

}
is a forward linear transfer with Kantorovich operator given by
T+
1 f (x) = Vf (1, x), where Vf (t, x) is –at least formally– a solution for

the Hamilton-Jacobi equation{
∂tV + H(t, x ,∇xV ) = 0 on [0, 1]×M,

V (0, x) = f (x).

Similarly, it has a backward Kantorovich potential is given by
T−1 g(y) = Wg (0, y), Wg (t, y) being is a solution for the backward
Hamilton-Jacobi equation{

∂tW + H(t, x ,∇xW ) = 0 on [0, 1]×M,
W (1, y) = g(y).
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One-sided linear transfers: constrained mass transports

1. Martingale transports:

TM(µ, ν) =

{
inf{

∫
Rd×Rd c(x , y) dπ(x , y);π ∈ MT (µ, ν)} if µ ≺C ν

+∞ if not.

where MT (µ, ν) is the set of martingale transport plans, i.e., probabilities
π on Rd × Rd with marginals µ and ν, such that for µ-almost x ∈ Rd ,
the component πx of its disintegration (πx)x with respect to µ, i.e.
dπ(x , y) = dπx(y)dµ(x), and πx has its barycenter at x .
It is a backward linear transfer with Kantorovich operator:

T−f (x) = fc,x(x) the concave envelope of y → f (y) + c(x , y),

2. Dynamic mass transports with free-end time
Ghoussoub-Young Heon Kim-Aaron Palmer (Tomorrow).
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Non cost-minimizing transfers-Stochastic transports

Given a Lagrangian L : [0,T ]×M ×M∗ → R, define the following
stochastic counterpart of the optimal transportation problem.

TL(µ, ν) := inf

{
E
[∫ 1

0

L(t,X (t), βX (t,X )) dt

]∣∣∣∣X (0) ∼ µ,X (1) ∼ ν,X ∈ A
}

A is the set of Rd -valued continuous semimartingales X (·) verifying

dX = βX (t)dt + dW

for some measurable drift βX : [0,T ]× C ([0, 1])→ M∗.
This does not fit in the standard optimal mass transport theory. However,

TL(µ, ν) = sup

{∫
M

f (x) dν −
∫
M

Vf (0, x) dµ; f ∈ C∞b
}
,

where Vf solves the Hamilton-Jacobi-Bellman equation

∂V

∂t
+

1

2
∆V (t, x) + H(t, x ,∇V ) = 0, V (1, x) = f (x). (HJB)

TL is a backward linear transfer with operator T−L f = Vf (0, ·).
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Weak optimal transports

Story started with Marton who defined transports of the following type:

Tγ,d(µ, ν) = inf

{∫
X

γ

(∫
Y

d(x , y)dπx(y)

)
dµ(x);π ∈ K(µ, ν)

}
,

where γ is convex on R+ and d : X × Y → R is lower semi-continuous.
Marton’s weak transfer correspond to γ(t) = t2 and d(x , y) = |x − y |.
This is a backward linear transfer with Kantorovich potential

T−f (x) = sup

{∫
Y

f (y)dσ(y)− γ
(∫

Y

d(x , y) dσ(y)

)
; σ ∈ P(Y )

}
.

Gozlan et al. defined Weak Transport associated to c : X ×P(X )→ R as

T (µ, ν) = inf
π
{
∫
X

c(x , πx) dµ(x);π ∈ K(µ, ν)}.
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A representation of linear transfers as generalized optimal
mass transports

Proposition
Let T : P(X )× P(Y )→ R ∪ {+∞} be such that {δx ; x ∈ X} ⊂ D1(T ).
Then, T is a backward linear transfer if and only if there exists a lower
semi-continuous function c : X × P(Y )→ R ∪ {+∞} with σ → c(x , σ)
convex on P(Y ) for each x ∈ X such that for every µ ∈ P(X ), and
ν ∈ P(Y ), we have

T (µ, ν) = inf
π

∫
X

c(x , πx) dµ(x);π ∈ K(µ, ν)}.

The corresponding backward Kantorovich operator is given for every
g ∈ C (Y ) by

T−g(x) = sup{
∫
Y

g(y) dσ(y)− T (x , σ);σ ∈ P(Y )}.
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Operations on linear mass transfers

The class of backward linear transfers on X × Y is a convex cone of
weak∗-lower semi-continuous convex functions on P(X )× P(Y ).

1. (Inf-convolution) If T1 (resp., T2) is a backward linear transfer on
X1 × X2 (resp., on X2 × X3) with Kantorovich operator T−1 (resp.,
T−2 ), then

T1 ? T2(µ, ν) := inf{T1(µ, σ) + T2(σ, ν); σ ∈ P(X2)}.

is also a backward linear transfer on X1 × X3 with Kantorovich
operator equal to T−1 ◦ T

−
2 .

2. (Tensorization) If T1 (resp., T2) is a backward linear transfer on
X1 × Y1 (resp., X2 × Y2) with X1 ⊂ D(T1) and X2 ⊂ D(T2), then

T1 ⊗ T2(µ, ν) = inf

{∫
X1×X2

(
T1(x1, πx1,x2 ) + T2(x2, πx1,x2 )

)
dµ(x1, x2);π ∈ K(µ, ν)

}
.

is a backward linear transfer on (X1 × X2)× (Y1 × Y2), with
Kantorovich operator

T−g(x1, x2) = sup{
∫
Y1×Y2

f (y1, y2)dσ(y1, y2)−T1(x1, σ1)−T2(x2, σ2); σ ∈ K(σ1, σ2)}.
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Convex Transfers

T : P(X )×P(Y )→ R∪ {+∞} is said to be a backward convex transfer
(resp., forward convex transfer), if there exists a family of backward linear
transfers (resp., forward linear transfers) (Ti )i∈I such that

T (µ, ν) = sup
i∈I
Ti (µ, ν) for all µ ∈ P(X ), ν ∈ P(Y ).

1. T is a backward convex transfer, if there exists a family of convex
operators (T−i )i∈I from C (Y )→ LSC (X ) such that for each
µ ∈ D1(T ), the Legendre transform of Tµ on M(Y ) satisfies:

T ∗µ (g) = inf
i∈I

∫
X
T−i g(x) dµ(x) for any g ∈ C (Y ).

2. T is a forward convex transfer, if there exists a family of concave
operators (T+

i )s from C (X )→ USC (Y ) such that for each
ν ∈ D2(T ), the Legendre transform of Tν on M(X ) satisfies:

T ∗ν (f ) = − sup
i∈I

∫
Y
T+
i (−f )(y) dν(y) for any f ∈ C (X ).
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Examples of convex transfers

1. If T is a linear backward (resp., forward) transfer and α : R+ → R is
convex increasing, then α(T ) is a backward (resp., forward) convex
transfer.

2. In particular, for any p ≥ 1, T p is a convex transfer.

3. If α is a strictly convex and superlinear, then

T (µ, ν) =

∫
X

α(
dν

dµ
) dµ, if µ << ν and +∞ otherwise.

is a backward convex transfer.

4. The Donsker-Varadhan entropy, which is defined as

I(µ, ν) :=

{
E(
√
f ,
√
f ), if µ = f ν,

√
f ∈ D(E)

+∞, otherwise,

where E is a Dirichlet form with domain D(E) on L2(ν), is a
backward convex transfer.
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Entropic Transfers: An important class of convex transfers

Let α (resp., β) be a convex increasing (resp., concave increasing) real
function on R, and let E : P(X )× P(Y )→ R ∪ {+∞}. Say that

I E is a β-backward transfer, if there exists a convex operator
E− : C (Y )→ LSC (X ) such that for each µ ∈ D1(T ), the Legendre
transform of Eµ on M(Y ) is:

E∗µ(g) = β
(∫

X
E−g(x) dµ(x)

)
for any g ∈ C (Y ).

I E is a α-forward transfer, if there exists a concave operator
E+ : C (X )→ USC (Y ) such that for each ν ∈ D2(T ),

E∗ν (f ) = −α
(∫

Y
E+(−f )(y) dν(y)

)
for any f ∈ C (X ).

If T is a backward linear transfer with Kantorovich operator T−, then
E ? T is a a backward β-transfer with Kantorovich operator E− ◦ T−.

E?T (µ, ν) = sup
{∫

Z

g(y) dν(y)−β(

∫
X

E−◦T−g(x)) dµ(x)); g ∈ C (X3)
}
.
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Logarithmic Transfers

If E is an α-forward transfer on X × Y , then for µ ∈ P(X ), ν ∈ P(Y ),

E(µ, ν) = sup
{
α

(∫
Y

E+f (y) dν(y)

)
−
∫
X

f (x) dµ(x); f ∈ C (X )
}
,

while if E is a β-backward transfer, then

E(µ, ν) = sup
{∫

Y

g(y) dν(y)− β
(∫

X

E−g(x) dµ(x)

)
; g ∈ C (Y )

}
.

A typical example is of course the logarithmic entropy,

H(µ, ν) =

∫
X

log(
dν

dµ
) dν, if ν << µ and +∞ otherwise

H(µ, ν) = sup{
∫
X

f dν − log(

∫
X

ef dµ); f ∈ Cb(X )},

making it a log-backward transfer.
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Transfer Inequalities

Standard Transport-Entropy inequalities are normally of the form

T (σ, µ) ≤ λ1E1(µ, σ) for all σ ∈ P(X ),

T (µ, σ) ≤ λ2E2(µ, σ) for all σ ∈ P(X ),

T (σ1, σ2) ≤ λ1E1(σ1, µ) + λ2E2(σ2, µ) for all σ1, σ2 ∈ P(X ),

where µ is a fixed measure, and λ1, λ2 are two positive reals.
In our terminology, These amount to find µ, λ1, and λ2 such that

(λ1E1) ? (−T ) (µ, µ) ≥ 0,

λ2E2) ? (−T̃ ) (µ, µ) ≥ 0,

(λ1Ẽ1) ? (−T ) ? (λ2E2) (µ, µ) ≥ 0,

where T̃ (µ, ν) = T (ν, µ). Note for example that

Ẽ1?(−T )?E2 (µ, ν) = inf{E1(σ1, µ)−T2(σ1, σ2)+E2(σ2, ν); σ1, σ2 ∈ P(Z )}.

One then writes duality formulas for the transfers

E1 ? (−T ), E2 ? (−T̃ ) and Ẽ1 ? (−T ) ? E2
where T is any convex transfer, while E1, E2 are entropic transfers.
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A sample: Extension of Maurey’s inequality

I Consider E1 (resp., E2) a forward α1-transfer on Z1 × X1 (resp.,
α2-transfer on Z2 × X2) with Kantorovich operator E+

1 (resp., E+
2 ).

I Let T1 (resp., T2) be forward linear transfers on Y1 × Z1 (resp.,
Y2 × Z2) with Kantorovich operator T+

1 (resp., T+
2 ).

I Let F be a backward convex transfer on Y1 × Y2 with Kantorovich
operators (F−i )i .

Then, for µ ∈ P(X1) and ν ∈ P(X2) given, TFAE:

1. For all σ1 ∈ P(X1), σ2 ∈ P(X2), we have

F(σ1, σ2) ≤ λ1T1 ? E1(σ1, µ) + λ2T2 ? E2(σ2, ν).

2. For all g ∈ C (Y2) and all i ∈ I , we have

λ1α1

( ∫
X1

E+
1 ◦T

+
1 ◦(−

1

λ1
F−i g) dµ

)
+λ2α2(

∫
X2

E+
2 ◦T

+
2 (

1

λ2
g) dν) ≥ 0.
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Weak KAM theory on Wasserstein space

Let X be a compact metric space, and let T be a backward linear
transfer on X × X with Kantorovich operator T . For n ∈ N, Let
Tn = T ? T ? .... ? T n-times. Then

1. Tn(µ, ν) = sup
{ ∫

X
g(y) dν −

∫
X
T ng(x) dµ; g ∈ C (X )

}
.

2. There exists a constant C > 0 and a number ` ∈ R such that

|Tn(µ, ν)− `n| ≤ C for all µ, ν ∈ P(X ) and n ∈ N.

3. Weak KAM solutions: Assume ` = 0, then there exists
T∞ : C (X )→ C (X ) such that TT∞f = T∞f . Moreover,
T∞T∞f = T∞f .

4. Peierls Barrier: T∞(µ, ν) := sup
f∈C(X )

{∫
X
fdν −

∫
X
T∞fdµ

}
is a

backward linear transfer.
5. Mather measure: inf

µ∈P(X )
T (µ, µ) = 0 and the infimum is achieved

by a measure µ̄ in the projected Aubry set

A := {µ ∈ P(X ) : T∞(µ, µ) = 0}
such that (µ̄, µ̄) belongs to the Aubry set

D := {(µ, ν) ∈ P(X )× P(X ) : T (µ, ν) + T∞(ν, µ) = 0} ⊂ A×A.
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Multi-transfers are even more fascinating!

THANK YOU
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