

Equilibration of renormalised solutions to nonlinear reaction-diffusion systems

Klemens Fellner

Institute of Mathematics and Scientific Computing,

University of Graz

joint works with Bao Quoc Tang and Laurent Desvillettes

Introduction/Overview

Large-Time-Behaviour of Nonlinear RD systems

- Motivation/Application: Volume-Surface RD models
- Complex Balanced Equilibria \rightarrow Entropy (Free Energy)
- Geometry → Non-Convex Entropy-Dissipation
- Exponential Equilibration of Renormalised Solutions
- Indirect Diffusion Effect \rightarrow Nonlinear Diffusion
- Boundary Equilibria → Global Attractor Conjecture
- A non-complex balanced Amyloid Model

A Volume-Surface Reaction-Diffusion Model **Model Assumptions and Quantities**

A complex-balanced reaction-diffusion network

$$L(\Omega) \xleftarrow{\beta}{\alpha} P(\Omega)$$
$$\lambda \Uparrow \gamma \qquad \qquad \uparrow \xi$$
$$\ell(\Gamma) \xrightarrow{\sigma(\mathsf{aPKC})} p(\Gamma_2)$$

Lgl protein in cytoplasm (Ω) and cell cortex ($\Gamma = \partial \Omega$). aPKC kinase phosphorylates Lgl on a subpart Γ_2 of cortex.

L(t, x) cytoplasmic Lgl $\leftrightarrow l(t, x)$ cortical Lgl \rightarrow activation of aPKC $\rightarrow p(t, x)$ cortical p-Lgl $\rightarrow P(t, x)$ cytoplasmic p-Lgl $\leftrightarrow L(t, x)$

Asymmetric stem-cell division:

Cell-diversity by localisation of cell-fate determinants into one side of the cell cortex and into one of two daughter cells.^a

^aGFP-Pon in SOP precursor cells in living Drosophila larvae [Meyer, Emery, Berdnik, Wirtz-Peitz, Knoblich, Current Biology, 2005]

Complex balance reaction network

Figure 1: l-Lgl(Γ) with and without surface diffusion

Numerical analysis of VSRD models including discrete entropy structure/estimates: ^a

^a[Egger, F., Pietschmann, Tang]

Figure 2: p-Lgl(Γ) with and without surface diffusion

Surface diffusion $O(10^{-2})$: indirect surface diffusion effect via weakly reversible reaction O(1) and volume diffusion $O(10^{-2})$

Figure 3: L-Lgl(Ω) with and without surface diffusion

Surface diffusion and weakly reversible reaction lead to stationary hump in L within Ω .

UN

Figure 4: P-Lgl(Ω) with and without surface diffusion

Stationary hump in *L* as consequence of inflow from *p* into $P \rightarrow L$ and shape of Ω .

UN

Another (Volume-Surface) RD Model Lipolysis

Lipolysis: Breakdown of lipids and hydrolysis of triglycerides into glycerol and fatty acids.

Systems of Reaction-Diffusion Equations

Nonlinear Complex Balance Networks

Substances: $S = \{S_1, \ldots, S_N\},\$

Complexes: $C = \{ \boldsymbol{y}_1, \dots, \boldsymbol{y}_{|C|} \}$ with $\boldsymbol{y}_i \in (\{0\} \cup [1, \infty))^N$,

Reactions: $\mathcal{R} = \{ m{y}
ightarrow m{y}' \}$ from source $m{y}$ into product $m{y}' \in \mathcal{C}.$

Mass action law reaction rate for $\boldsymbol{y}_r o \boldsymbol{y}_r'$: $\mathbf{c}^{\boldsymbol{y}_r} = \prod_{i=1}^N c_i^{y_{r,i}}$

Reaction rate constant k_r of the reaction $\boldsymbol{y}_r \rightarrow \boldsymbol{y}_r'$.

Reaction vector: $\mathbf{R}(\mathbf{c}) = \sum_{r=1}^{|\mathcal{R}|} k_r \mathbf{c}^{\mathbf{y}_r} (\mathbf{y}'_r - \mathbf{y}_r)$

Systems of Reaction-Diffusion Equations

Nonlinear Complex Balance Networks

Nonlinear reaction-diffusion network

$$\frac{\partial}{\partial t}\mathbf{c} - \mathbb{D}\Delta\mathbf{c} = \mathbf{R}(\mathbf{c}) \quad \text{ for } \quad (x,t) \in \Omega \times (0,+\infty),$$

with $\mathbb{D} = \operatorname{diag}(d_1, \ldots, d_N)$.

Homogeneous Neumann BCs on Lipschitz domain Ω .

[JH72]: A complex balanced network has a unique positive equilibrium, which balances the total outflow and inflow for all complexes $y \in C$:

$$\sum_{\{r: \boldsymbol{y}_r = \boldsymbol{y}\}} k_r \mathbf{c}_{\infty}^{\boldsymbol{y}_r} = \sum_{\{s: \boldsymbol{y}_s' = \boldsymbol{y}\}} k_s \mathbf{c}_{\infty}^{\boldsymbol{y}_s}.$$

Systems of Reaction-Diffusion Equations

Nonlinear Complex Balance Networks

Relative (free energy) entropy functional

$$\mathcal{E}(\mathbf{c}|\mathbf{c}_{\infty}) = \sum_{i=1}^{N} \int_{\Omega} \left(c_{i} \log \frac{c_{i}}{c_{i,\infty}} - c_{i} + c_{i,\infty} \right) dx$$

Explicit (nontrivial) entropy dissipation functional with $e(x,y) = x \log (x/y) - x + y$

$$\mathcal{D}(\mathbf{c}) = -\frac{d}{dt} \mathcal{E}(\mathbf{c} | \mathbf{c}_{\infty})$$

= $\sum_{i=1}^{N} d_i \int_{\Omega} \frac{|\nabla c_i|^2}{c_i} dx + \sum_{r=1}^{|\mathcal{R}|} k_r \mathbf{c}_{\infty}^{y_r} e\left(\frac{\mathbf{c}^{y_r}}{\mathbf{c}_{\infty}^{y_r}}, \frac{\mathbf{c}^{y_r'}}{\mathbf{c}_{\infty}^{y_r'}}\right) \ge 0$

Systems of Reaction-Diffusion Equations Nonlinear Complex Balance Networks

Theorem:^a For complex balanced RD networks without boundary equilibria, any renormalised (Fisher [2015]) solution $\mathbf{c}(x,t)$ converges exponentially to \mathbf{c}_{∞} in L^1 with a rate $\lambda/2$:

$$\sum_{i=1}^{N} \|c_i(t) - c_{i,\infty}\|_{L^1(\Omega)}^2 \le C_{\mathrm{CKP}}^{-1} \mathcal{E}(\mathbf{c}_0 | \mathbf{c}_{\infty}) e^{-\lambda t} \quad \text{for a.a. } t > 0,$$

where $C_{\rm CKP}$ is the constant in a Csiszár-Kullback-Pinsker type inequality.

Renormalised solutions satisfy all mass/charge conservation laws and a weak entropy-dissipation law, Fisher [2017]

^a[K.F. B.Q.Tang, to appear in ZAMP]

The Entropy Method

Quantitative large-time behaviour

 $\mathcal{E}(f)$ non-increasing convex entropy functional

 $\mathcal{P}(f)$ entropy production, f_{∞} entropy minimising equilibrium

$$\frac{d}{dt}\mathcal{E}(f) = \frac{d}{dt}\mathcal{E}(f) - \mathcal{E}(f_{\infty})) = -\mathcal{P}(f) \le 0$$

provided conservation laws: $\mathcal{P}(f) = 0 \iff f = f_{\infty}$

$$\mathcal{P} \ge \Phi(\mathcal{E}(f) - \mathcal{E}(f_{\infty})), \quad \Phi(0) = 0, \quad \Phi \ge 0$$

 \Rightarrow explicit convergence in entropy, exponential if $\Phi'(0) > 0$

 \Rightarrow convergence in L_1 : $||f - f_{\infty}||_1^2 \leq C(\mathcal{E}(f) - \mathcal{E}(f_{\infty}))$

Cziszár-Kullback-Pinsker inequalities for convex entropies

The Entropy Method

Entropy Method

Advantages:

- **•** based on functional inequalities \rightarrow "robust"
- \checkmark avoids linearisation \rightarrow "global" results
- allows for explicit constants

nonlinear diffusion: [T], [CJMTU], [AMTU], [DV]...

inhomogeneous kinetic equations: [DV], ...

reaction-diffusion systems: [Grö83], [Grö92], [DF06], [DF08], [DF14], [MMH15], [FL16], [PSZ17], [DFT17], [FT17], [HHMM18], [FT18] no Bakry-Emery strategy

Systems of Reaction-Diffusion Equations Entropy Method for Complex Balance Networks

Theorem:^a For any complex balanced reaction networks without boundary equilibria, there exists a constant $\lambda > 0$ and the "exponential" entropy entropy-dissipation estimate

$\mathcal{D}(\mathbf{c}(t)) \geq \lambda \, \mathcal{E}(\mathbf{c}(t) | \mathbf{c}_{\infty}),$

- Proof via convexification: [MMH15] (detailed balance)
- Proof via explicit estimates using conservation laws
 $\mathbb{Q}\,\overline{\mathbf{c}} = \mathbf{M}$: [DFT17], [FT17]

Proof via reduction to finite-dimensional inequality: [FT18]

^a[L. Desvillettes, K.F., B.Q. Tang, SIMA 2017], [K.F., B.Q. Tang, Nonlinear Analysis 2017.]

Systems of Reaction-Diffusion Equations Entropy Method for Complex Balance Networks

Lemma:^{*a*} For all states $\overline{\mathbf{c}} \in \mathbb{R}^N_{>0}$ satisfying $\mathcal{E}(\overline{\mathbf{c}}|\mathbf{c}_{\infty}) < +\infty$ and the conservation laws $\mathbb{Q}\overline{\mathbf{c}} = \mathbf{M}$, there exists a positive constant $H_1 = H_1(\mathbb{Q}, \mathbf{M}, \mathbf{y} \in \mathcal{C}, \mathcal{E}(\overline{\mathbf{c}}|\mathbf{c}_{\infty}))$ such that

$$\sum_{r=1}^{|\mathcal{R}|} \left[\sqrt{\frac{\overline{\mathbf{c}}}{\mathbf{c}_{\infty}}}^{\boldsymbol{y}_{r}} - \sqrt{\frac{\overline{\mathbf{c}}}{\mathbf{c}_{\infty}}}^{\boldsymbol{y}_{r}} \right]^{2} \ge H_{1} \sum_{i=1}^{N} \left(\sqrt{\frac{\overline{c_{i}}}{c_{i,\infty}}} - 1 \right)^{2}.$$

Here, $\sqrt{\frac{\overline{\mathbf{c}}}{\mathbf{c}_{\infty}}} = \left(\sqrt{\frac{\overline{c_{1}}}{c_{1,\infty}}}, \dots, \sqrt{\frac{\overline{c_{N}}}{c_{N,\infty}}} \right).$

This finite-dimensional inequality implies

 $\mathcal{D}(\mathbf{c}(t)) \geq \lambda(H_1) \,\mathcal{E}(\mathbf{c}(t) | \mathbf{c}_{\infty}),$

^a[K.F., B.Q. Tang, to appear in ZAMP]

Example:

Boundary equilibrium $(a^*, b^*, c^*) = (0, 0, M)$.

Problem: $\mathcal{D}(a^*, b^*, c^*)) = 0$, but $\mathcal{E}(\mathbf{c}^* | \mathbf{c}_{\infty}) > 0$ No global entropy-entropy dissipation estimate possible!

Our approach: weaker entropy-entropy dissipation estimate along solution trajectories

$$\mathcal{D}(\mathbf{c}(t)) \ge \lambda(t) \,\mathcal{E}(\mathbf{c}(t) | \mathbf{c}_{\infty})$$

Difficulty: $\lambda(t) \rightarrow 0$ near boundary equilibria.

However, if $\lambda(t)$ satisfies $\int_0^{+\infty} \lambda(s) ds = +\infty$, then

$$\mathcal{E}(\mathbf{c}(t)|\mathbf{c}_{\infty}) \leq \mathcal{E}(\mathbf{c}_{0}|\mathbf{c}_{\infty})e^{-\int_{0}^{t}\lambda(s)ds} \to 0 \quad \text{ as } t \to \infty.$$

- \Rightarrow (algebraic) instability of boundary equilibria
- \Rightarrow Exponential convergence to positive equilibrium

Corresponding RD system

$$\begin{cases} a_t - d_a \Delta a = -k_1 a + k_3 b^2, & x \in \Omega, \quad t > 0, \\ b_t - d_b \Delta b = k_1 a + k_2 b c - 2k_3 b^2, & x \in \Omega, \quad t > 0, \\ c_t - d_c \Delta c = k_1 a - k_2 b c, & x \in \Omega, \quad t > 0, \\ \nabla a \cdot \nu = \nabla b \cdot \nu = \nabla c \cdot \nu = 0, & x \in \partial \Omega, \quad t > 0, \end{cases}$$

$$inf h(x, t) \ge \frac{1}{1 - c_1 c_2} \quad \text{for all} \quad t \ge 0$$

$$\lim_{x \in \Omega} b(x, t) \ge \frac{1}{\|\frac{1}{b_0}\|_{L^{\infty}}} + 2k_3 t, \quad \text{for all} \quad t \ge 0.$$

Solutions would need infinite initial entropy to remain close to boundary equilibria for an unbounded time interval.^a

^a[L. Desvillettes, K.F., B.Q. Tang, SIMA 2017]

Theorem:^a Let $\mathbf{c}(t)$ be a renormalised solution of an arbitray complex balanced network. Assume that there exists $H_1: [0,\infty) \to [0,\infty)$ such that $\int_0^\infty H_1(s) ds = +\infty$ and for a.a. $t \ge 0$

$$\sum_{r=1}^{|\mathcal{R}|} \left[\sqrt{\frac{\overline{\mathbf{c}}(t)}{\mathbf{c}_{\infty}}}^{\mathbf{y}_{r}} - \sqrt{\frac{\overline{\mathbf{c}}(t)}{\mathbf{c}_{\infty}}}^{\mathbf{y}_{r}'} \right]^{2} \ge H_{1}(t) \sum_{i=1}^{N} \left(\sqrt{\frac{\overline{c_{i}}(t)}{c_{i,\infty}}} - 1 \right)^{2}$$

Then, the renormalised solution c(t) converges exponentially to the positive equilibrium c_{∞} .

^a[K.F., B.Q. Tang, to appear in ZAMP]

Global Attractor Conjecture:

For any complex balanced mass action law reaction networks, all solution trajectory subject to positive initial data are conjectured to converge to the positive equilibrium c_{∞} .

Proof for ODE systems by Gheorghe Craciun in 2015?

Above finite-dimensional inequality has ODE structure!?

But ODE system and averaged PDE concentrations:

$$\frac{d}{dt}\boldsymbol{u} = \mathbf{R}(\boldsymbol{u}) \neq \overline{\mathbf{R}(\mathbf{c})} = \frac{d}{dt}\overline{\mathbf{c}}(t)$$

Boundary equilibria for complex balanced reaction networks:

Open problem!

- $\begin{cases} \partial_t c_i d_i \Delta(c_i^{m_i}) = f_i(\mathbf{c}), & x \in \Omega, \quad t > 0, \quad i = 1, \dots, N, \\ d_i \nabla(c_i^{m_i}) \cdot \overrightarrow{n} = 0, & x \in \partial\Omega, \quad t > 0, \quad i = 1, \dots, N, \\ c_i(x, 0) = c_{i,0}(x), & x \in \Omega, & i = 1, \dots, N, \end{cases}$
- (i) $|f_i(\mathbf{c})| \leq C(1+|\mathbf{c}|^{\nu}), \ \forall \mathbf{c} = (c_1, \dots, c_N) \in \mathbb{R}^N, \ \forall i = 1, \dots, N$
- (ii) Mass dissipation: There exist positive constants $\lambda_1, \ldots, \lambda_N > 0$ such that: $\sum_{i=1}^{S} \lambda_i f_i(u) \leq 0, \quad \forall \mathbf{c} \in \mathbb{R}^S$
- (iii) Quasi-positivity \Rightarrow Propagation of non-negativity

• Assume $m_i > \max\{\nu - 1; 1\}$ and $m_i > \nu - \frac{4}{d+2}$ if $d \ge 3$. \Rightarrow Existence of global weak nonnegative solutions $c_i \in C([0, \infty); L^1(\Omega)), c_i^{m_i} \in L^1(0, T; W^{1,1}(\Omega)),$ $f_i(\mathbf{c}) \in L^1(\Omega \times [0, T])$ and

 $||c_i||_{L^{\infty}(Q_T)} \leq C_T$ for all T > 0 and $i = 1, \dots, N$,

Single reaction $\alpha_1 \mathcal{A}_1 + \dots + \alpha_M \mathcal{A}_M \stackrel{k_b}{\rightleftharpoons} \beta_1 \mathcal{B}_1 + \dots + \beta_N \mathcal{B}_N.$ ⇒ Exponential convergence to equilibrium $\forall 1 \leq p < \infty$,

$$\sum_{i=1}^{M} \|a_i(t) - a_{i\infty}\|_{L^p(\Omega)} + \sum_{j=1}^{N} \|b_j(t) - b_{j\infty}\|_{L^p(\Omega)} \le C e^{-\lambda_p t}$$

Proof of existence theory extends [LP17]

- Duality estimates
- Specific bootstrap

A generalised version of Logarithmic Sobolev Inequality:

$$\int_{\Omega} \frac{|\nabla a_i|^2}{a_i^{2-m_i}} dx \ge C(\Omega, m_i) \,\overline{a}_i^{m_i-1} \int_{\Omega} a_i \log \frac{a_i}{\overline{a}_i} dx.$$

Degeneracy for $\overline{a}_i \sim 0$ is control by functional inequalities for indirect diffusion effect and conservation law, since not all $\overline{a}_i \sim 0$ can be small at the same time.

Setting of "slowly growing" apriori estimates:

First algebraic convergence, then exponential convergence!

Indirect diffusion effect \sim "coercive hypocoercivity"

Models for amyloids and protein aggregation with Marie Doumic, Mathieu Mézache, Human Rezaei

Model for transient oscillations in coagulation-fragmentation experiments of PrP fibrils

$$\begin{cases} \mathcal{V} + \mathcal{W} & \xrightarrow{k} & 2\mathcal{W}, \\ \mathcal{W} + \mathcal{C}_{i} & \xrightarrow{a_{i}} & \mathcal{C}_{i+1}, & 1 \leq i \leq n, \\ \mathcal{C}_{i} + \mathcal{V} & \xrightarrow{b_{i}} & \mathcal{C}_{i-1} + 2\mathcal{V}, & 2 \leq i \leq n. \end{cases}$$

Simplest two-polymer model with normalised coefficients

$$\begin{cases} \frac{dv}{dt} = v \left[-kw + c_2 \right], \\ \frac{dw}{dt} = w \left[kv - c_1 \right], \end{cases} \qquad \begin{cases} \frac{dc_1}{dt} = -wc_1 + vc_2, \\ \frac{dc_2}{dt} = wc_1 - vc_2, \end{cases}$$

Models for amyloids and protein aggregation with Marie Doumic, Mathieu Mézache, Human Rezaei

small parameter $\varepsilon = \frac{1}{k}$

$$\begin{cases} \frac{dv}{dt} = v \left[w_{\infty} - w \right] + \varepsilon v \left[v_{\infty} + w_{\infty} - v - w \right], \\ \frac{dw}{dt} = w \left[v - v_{\infty} \right] + \varepsilon w \left[v_{\infty} + w_{\infty} - v - w \right]. \end{cases}$$

Zero-order Hamiltonian $H = v_0 - v_\infty \ln v_0 + w_0 - w_\infty \ln w_0$ Full model entropy

$$\frac{d}{dt}H(v(t),w(t)) = -\varepsilon \left[(v - v_{\infty}) + (w - w_{\infty}) \right]^{2}.$$

 \Rightarrow Equilibration and oscillations for k large.

Models for amyloids and protein aggregation

with Marie Doumic, Mathieu Mézache, Human Rezaei

THANK YOU VERY MUCH!!

