Super Ricci flows for weighted graphs and Markov chains

Matthias Erbar (joint work with Eva Kopfer) Institute for Applied Mathematics, University of Bonn

April 13, 2018

A Riemannian manifold (M, g_t) with time-dependent metric is a Ricci flow if

$$-\frac{1}{2}\partial_t g_t = \operatorname{Ric}_{g_t}\,.$$

Examples:

Solitons': let $\operatorname{Ric}_{g_0} \ge \kappa g_0$ for $\kappa \in \mathbb{R}$, then

$$g_t = (1 - 2\kappa t)g_0 ,$$

is a super Ricci flow

 $\kappa = 0$: steady, $\kappa < 0$: expanding, $\kappa > 0$: shrinking (here $t < \frac{1}{2\kappa}$)

A Riemannian manifold (M, g_t) with time-dependent metric is a super Ricci flow if

$$-\frac{1}{2}\partial_t g_t \leq \operatorname{Ric}_{g_t}\,.$$

Examples:

Solitons': let $\operatorname{Ric}_{g_0} \ge \kappa g_0$ for $\kappa \in \mathbb{R}$, then

$$g_t = (1 - 2\kappa t)g_0 ,$$

is a super Ricci flow

 $\kappa = 0$: steady, $\kappa < 0$: expanding, $\kappa > 0$: shrinking (here $t < \frac{1}{2\kappa}$)

A Riemannian manifold (M, g_t) with time-dependent metric is a super Ricci flow if

$$-rac{1}{2}\partial_t g_t \leq \operatorname{Ric}_{g_t}$$
 .

Examples:

Solitons': let $\operatorname{Ric}_{g_0} \ge \kappa g_0$ for $\kappa \in \mathbb{R}$, then

$$g_t = (1 - 2\kappa t)g_0 ,$$

is a super Ricci flow

 $\kappa = 0$: steady, $\kappa < 0$: expanding, $\kappa > 0$: shrinking (here $t < \frac{1}{2\kappa}$)

A Riemannian manifold (M, g_t) with time-dependent metric is a super Ricci flow if

$$-rac{1}{2}\partial_t g_t \leq \operatorname{Ric}_{g_t}$$
 .

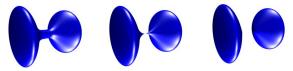
Examples:

Solitons': let $\operatorname{Ric}_{g_0} \ge \kappa g_0$ for $\kappa \in \mathbb{R}$, then

$$g_t = (1 - 2\kappa t)g_0 ,$$

is a super Ricci flow

 $\kappa = 0$: steady, $\kappa < 0$: expanding, $\kappa > 0$: shrinking (here $t < \frac{1}{2\kappa}$)



Strong interest in robust descriptions of (super) Ricci flows in presence of singularities, many recent developments:

■ [BAMLER, KLEINER '17], [KLEINER, LOTT '14]:

'canonical' Ricci flow through singularities, limit of flow with surgery

[HASLHOFER, NABER '15]:

characterization via functional inequalities on path space

■ [TOPPING, McCann '08]:

characterization via optimal transport

[STURM '16], [KOPFER, STURM '16]:

synthetic notion of super Ricci flow on metric measure spaces

Robust approaches and characterizations II

 (M, g_t) is a super Ricci flow, i.e. $-\frac{1}{2}\partial_t g_t \leq \text{Ric}_{g_t}$ iff any of the following hold Bochner inequality:

$$\Gamma_{2,t}(\psi) \geq \frac{1}{2} \partial_t \Gamma_t(\psi) \quad \text{for all smooth } \psi: M \to \mathbb{R}$$

Note that

$$\begin{split} \Gamma_{2,t}(\psi) &:= \frac{1}{2} \Delta |\nabla \psi|^2 - \langle \nabla \psi, \Delta \nabla \psi \rangle = \operatorname{Ric}_{g_t}(\nabla \psi) + \|\operatorname{Hess} \psi\|_{\operatorname{HS}}^2 \\ &\geq + \frac{1}{2} \partial_t |\nabla \psi|^2 = \frac{1}{2} \partial_t \Gamma_t(\psi) \end{split}$$

gradient estimates:

$$\Gamma_t(P_{t,s}\bar{\psi}) \le P_{t,s}\Gamma_s(\bar{\psi}) \quad \text{for all } s \le t \;,$$

where $P_{t,s}\bar{\psi}$ is the solution to heat equation

$$\partial_t \psi(t,\cdot) = \Delta_t \psi(t,\cdot), \quad \psi(s,\cdot) = \bar{\psi}$$

Robust approaches and characterizations II

 (M, g_t) is a super Ricci flow, i.e. $-\frac{1}{2}\partial_t g_t \leq \text{Ric}_{g_t}$ iff any of the following hold Bochner inequality:

$$\Gamma_{2,t}(\psi) \geq \frac{1}{2} \partial_t \Gamma_t(\psi) \quad \text{for all smooth } \psi: M \to \mathbb{R}$$

Note that

$$\begin{split} \Gamma_{2,t}(\psi) &:= \frac{1}{2} \Delta |\nabla \psi|^2 - \langle \nabla \psi, \Delta \nabla \psi \rangle = \operatorname{Ric}_{g_t}(\nabla \psi) + \|\operatorname{Hess} \psi\|_{\operatorname{HS}}^2 \\ &\geq + \frac{1}{2} \partial_t |\nabla \psi|^2 = \frac{1}{2} \partial_t \Gamma_t(\psi) \end{split}$$

gradient estimates:

$$\Gamma_t(P_{t,s}\bar{\psi}) \le P_{t,s}\Gamma_s(\bar{\psi}) \quad \text{for all } s \le t \;,$$

where $P_{t,s}\bar{\psi}$ is the solution to heat equation

$$\partial_t \psi(t,\cdot) = \Delta_t \psi(t,\cdot), \quad \psi(s,\cdot) = \bar{\psi}$$

Robust approaches and characterizations II

 (M, g_t) is a super Ricci flow, i.e. $-\frac{1}{2}\partial_t g_t \leq \text{Ric}_{g_t}$ iff any of the following hold Bochner inequality:

$$\Gamma_{2,t}(\psi) \geq \frac{1}{2} \partial_t \Gamma_t(\psi) \quad \text{for all smooth } \psi: M \to \mathbb{R}$$

Note that

$$\begin{split} \Gamma_{2,t}(\psi) &:= \frac{1}{2} \Delta |\nabla \psi|^2 - \langle \nabla \psi, \Delta \nabla \psi \rangle = \operatorname{Ric}_{g_t}(\nabla \psi) + \|\operatorname{Hess} \psi\|_{\operatorname{HS}}^2 \\ &\geq + \frac{1}{2} \partial_t |\nabla \psi|^2 = \frac{1}{2} \partial_t \Gamma_t(\psi) \end{split}$$

gradient estimates:

$$\Gamma_t(P_{t,s}\bar{\psi}) \le P_{t,s}\Gamma_s(\bar{\psi}) \quad \text{for all } s \le t \;,$$

where $P_{t,s}\bar{\psi}$ is the solution to heat equation

$$\partial_t \psi(t, \cdot) = \Delta_t \psi(t, \cdot), \quad \psi(s, \cdot) = \bar{\psi}$$

 (M, g_t) is a super Ricci flow, i.e. $-\frac{1}{2}\partial_t g_t \leq \text{Ric}_{g_t}$ iff any of the following hold transport estimates:

$$W_{2,s}(\hat{P}_{t,s}\mu,\hat{P}_{t,s}\nu) \leq W_{2,t}(\mu,\nu) \quad \text{for all } \mu,\nu\in\mathcal{P}(M), \; s\leq t \;,$$

where $\hat{P}_{t,s}$ is the dual heat flow on measures and $W_{2,t}$ is the L^2 Kantorovich distance w.r.t. Riemannian distance d_t

$$W_{2,t}^2(\mu,\nu) := \inf_{q \in \mathsf{Cpl}(\mu,\nu)} \int d_t(x,y)^2 \mathrm{d}q(x,y) \; .$$

dynamic convexity of entropy: for all $W_{2,t}$ -geodesics $(\mu^a)_{a \in [0,1]}$

$$\partial_a \Big|_{a=1-} \operatorname{Ent}(\mu^a) - \partial_a \Big|_{a=0+} \operatorname{Ent}(\mu^a) \ge -\frac{1}{2} \partial_t W_{2,t-}^2(\mu^0,\mu^1) ,$$

where $\operatorname{Ent}(\mu) = \int \log \frac{\mathrm{d}\mu}{\mathrm{d}\mathrm{vol}} \mathrm{d}\mu$. Note that

$$\frac{\mathrm{d}^2}{\mathrm{d}a^2}\mathsf{Ent}(\mu^a) = \int \Gamma_{2,t}(\psi^a) \mathrm{d}\mu^a \ge \frac{1}{2}\partial_t \int \Gamma_t(\psi^a) \mathrm{d}\mu^a = -\frac{1}{2}\partial_t |\dot{\mu}^a|_t^2$$

 (M, g_t) is a super Ricci flow, i.e. $-\frac{1}{2}\partial_t g_t \leq \text{Ric}_{g_t}$ iff any of the following hold transport estimates:

$$W_{2,s}(\hat{P}_{t,s}\mu,\hat{P}_{t,s}\nu) \leq W_{2,t}(\mu,\nu) \quad \text{for all } \mu,\nu\in\mathcal{P}(M), \; s\leq t \;,$$

where $\hat{P}_{t,s}$ is the dual heat flow on measures and $W_{2,t}$ is the L^2 Kantorovich distance w.r.t. Riemannian distance d_t

$$W_{2,t}^2(\boldsymbol{\mu},\boldsymbol{\nu}) := \inf_{q \in \mathsf{Cpl}(\boldsymbol{\mu},\boldsymbol{\nu})} \int d_t(\boldsymbol{x},\boldsymbol{y})^2 \mathrm{d}q(\boldsymbol{x},\boldsymbol{y}) \; .$$

dynamic convexity of entropy: for all $W_{2,t}$ -geodesics $(\mu^a)_{a \in [0,1]}$

$$\partial_a \Big|_{a=1-} \operatorname{Ent}(\mu^a) - \partial_a \Big|_{a=0+} \operatorname{Ent}(\mu^a) \ge -\frac{1}{2} \partial_t W_{2,t-}^2(\mu^0,\mu^1) ,$$

where $\text{Ent}(\mu) = \int \log \frac{d\mu}{d\text{vol}} d\mu$. Note that

$$\frac{\mathrm{d}^2}{\mathrm{d}a^2}\mathsf{Ent}(\mu^a) = \int \Gamma_{2,t}(\psi^a) \mathrm{d}\mu^a \ge \frac{1}{2}\partial_t \int \Gamma_t(\psi^a) \mathrm{d}\mu^a = -\frac{1}{2}\partial_t |\dot{\mu}^a|_t^2$$

 (M, g_t) is a super Ricci flow, i.e. $-\frac{1}{2}\partial_t g_t \leq \text{Ric}_{g_t}$ iff any of the following hold transport estimates:

$$W_{2,s}(\hat{P}_{t,s}\mu,\hat{P}_{t,s}\nu) \leq W_{2,t}(\mu,\nu) \quad \text{for all } \mu,\nu\in\mathcal{P}(M), \; s\leq t \;,$$

where $\hat{P}_{t,s}$ is the dual heat flow on measures and $W_{2,t}$ is the L^2 Kantorovich distance w.r.t. Riemannian distance d_t

$$W_{2,t}^2(\boldsymbol{\mu},\boldsymbol{\nu}) := \inf_{q \in \mathsf{Cpl}(\boldsymbol{\mu},\boldsymbol{\nu})} \int d_t(\boldsymbol{x},\boldsymbol{y})^2 \mathrm{d}q(\boldsymbol{x},\boldsymbol{y}) \; .$$

dynamic convexity of entropy: for all $W_{2,t}$ -geodesics $(\mu^a)_{a \in [0,1]}$

$$\partial_a \Big|_{a=1-} \operatorname{Ent}(\mu^a) - \partial_a \Big|_{a=0+} \operatorname{Ent}(\mu^a) \geq -\frac{1}{2} \partial_t W_{2,t-}^2(\mu^0,\mu^1) ,$$

where $\mathsf{Ent}(\mu) = \int \log \frac{\mathrm{d}\mu}{\mathrm{d}\mathsf{vol}} \mathrm{d}\mu.$ Note that

$$\frac{\mathrm{d}^2}{\mathrm{d}a^2}\mathsf{Ent}(\mu^a) = \int \Gamma_{2,t}(\psi^a) \mathrm{d}\mu^a \ge \frac{1}{2}\partial_t \int \Gamma_t(\psi^a) \mathrm{d}\mu^a = -\frac{1}{2}\partial_t |\dot{\mu}^a|_t^2$$

Robust approaches and characterizations III

The previous equivalent properties are meaningfull also in a non-smooth setting, i.e.

- for a Dirichlet space (X, m_t) with Dirichlet forms \mathcal{E}_t and associated Γ operators
- Itime-dependent metric measure spaces (X, d_t, m_t)

This allows for synthetic definition of super Ricci flow for mm-spaces, see [STURM '16], [KOPFER, STURM '16]

In particular, for a static mm-space recover synthetic definition of lower Ricci curvature bounds by [LOTT, VILLANI '09], [STURM '06]:

(X, d, m) satisfies Ric $\geq 0 : \Leftrightarrow$ Ent is convex along W_2 – geodesics

Robust approaches and characterizations III

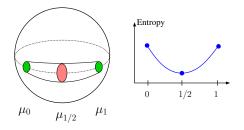
The previous equivalent properties are meaningfull also in a non-smooth setting, i.e.

- for a Dirichlet space (X, m_t) with Dirichlet forms \mathcal{E}_t and associated Γ operators
- Itime-dependent metric measure spaces (X, d_t, m_t)

This allows for synthetic definition of super Ricci flow for mm-spaces, see [STURM '16], [KOPFER, STURM '16]

In particular, for a static mm-space recover synthetic definition of lower Ricci curvature bounds by [LOTT, VILLANI '09], [STURM '06]:

(X, d, m) satisfies Ric $\geq 0 : \Leftrightarrow$ Ent is convex along W_2 – geodesics



Discrete Markov chains

Setting

- X finite set
- $\blacksquare Q: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \text{ transition rates}$
- Δ generator of continuous time Markov chain

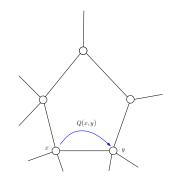
$$\Delta \psi(x) = \sum_{y} \left(\psi(y) - \psi(x) \right) Q_{xy}$$

 π reversible probability measure on $\mathcal X$

$$\forall x, y : Q_{xy}\pi(x) = Q_{yx}\pi(y)$$

probability measures on \mathcal{X}

$$\mathcal{P}(\mathcal{X}) = \left\{ \mu \in \mathbb{R}_+^{\mathcal{X}} : \sum_x \mu(x) = 1 \right\}$$



Problem:

 L^2 -Kantorovich distance W_2 is degenerate (for any choice of distance on \mathcal{X}) and does not admit non-trivial geodesics, gradient flows, ...

Discrete Markov chains

Setting

- X finite set
- $\blacksquare \ Q: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \text{ transition rates}$
- Δ generator of continuous time Markov chain

$$\Delta \psi(x) = \sum_{y} \left(\psi(y) - \psi(x) \right) Q_{xy}$$

\square π reversible probability measure on \mathcal{X}

$$\forall x, y : Q_{xy}\pi(x) = Q_{yx}\pi(y)$$

probability measures on \mathcal{X}

$$\mathcal{P}(\mathcal{X}) = \left\{ \mu \in \mathbb{R}_+^{\mathcal{X}} : \sum_x \mu(x) = 1 \right\}$$

Q(x,y)
x y

Problem:

 L^2 -Kantorovich distance W_2 is degenerate (for any choice of distance on \mathcal{X}) and does not admit non-trivial geodesics, gradient flows, ...

$$W_2(\rho_0,\rho_1)^2 = \inf_{\rho,V} \left\{ \int_0^1 \int_{\mathbb{R}^n} \frac{|V(x)|^2}{\rho_t(x)} \mathrm{d}x \mathrm{d}t : \qquad \partial_t \rho + \nabla \cdot V = 0 \right\}$$

discrete transport distance

Theorem [Maas '11, E.-Maas '12]

 \mathcal{W} defines a geodesic distance on the set of probability measures $\mathcal{P}(\mathcal{X})$. The law of the Markov chain evolves as the gradient flow of the entropy

$$\mathcal{H}(\mu) = \sum_{n} \mu(x) \log \left(\mu(x) / \pi(x) \right) \,.$$

$$W_2(\rho_0, \rho_1)^2 = \inf_{\rho, V} \left\{ \int_0^1 \int_{\mathbb{R}^n} \frac{|V(x)|^2}{\rho_t(x)} dx dt : \qquad \partial_t \rho + \nabla \cdot V = 0 \right\}$$

discrete transport distance

Theorem [MAAS '11, E.-MAAS '12]

W defines a geodesic distance on the set of probability measures $\mathcal{P}(\mathcal{X})$. The law of the Markov chain evolves as the gradient flow of the entropy

$$\mathcal{H}(\mu) = \sum_{n} \mu(x) \log \left(\mu(x) / \pi(x) \right) \,.$$

$$W_2(\rho_0,\rho_1)^2 = \inf_{\rho,V} \left\{ \int_0^1 \int_{\mathbb{R}^n} \frac{|V(x)|^2}{\rho_t(x)} \mathrm{d}x \mathrm{d}t : \qquad \partial_t \rho + \nabla \cdot V = 0 \right\}$$

discrete transport distance

Theorem [MAAS '11, E.-MAAS '12]

W defines a geodesic distance on the set of probability measures $\mathcal{P}(\mathcal{X})$. The law of the Markov chain evolves as the gradient flow of the entropy

$$\mathcal{H}(\mu) = \sum_{n} \mu(x) \log \left(\mu(x) / \pi(x) \right) \,.$$

$$W_2(\rho_0,\rho_1)^2 = \inf_{\rho,V} \left\{ \int_0^1 \int_{\mathbb{R}^n} \frac{|V(x)|^2}{\rho_t(x)} \mathrm{d}x \mathrm{d}t : \qquad \partial_t \rho + \nabla \cdot V = 0 \right\}$$

discrete transport distance

Theorem [MAAS '11, E.-MAAS '12]

W defines a geodesic distance on the set of probability measures $\mathcal{P}(\mathcal{X})$. The law of the Markov chain evolves as the gradient flow of the entropy

$$\mathcal{H}(\mu) = \sum_{n} \mu(x) \log \left(\mu(x) / \pi(x) \right) \,.$$

$$W_2(\rho_0,\rho_1)^2 = \inf_{\rho,V} \left\{ \int_0^1 \int_{\mathbb{R}^n} \frac{|V(x)|^2}{\rho_t(x)} \mathrm{d}x \mathrm{d}t : \qquad \partial_t \rho + \nabla \cdot V = 0 \right\}$$

discrete transport distance

Theorem [MAAS '11, E.-MAAS '12]

 \mathcal{W} defines a geodesic distance on the set of probability measures $\mathcal{P}(\mathcal{X})$. The law of the Markov chain evolves as the gradient flow of the entropy

$$\mathcal{H}(\mu) = \sum_{x} \mu(x) \log \left(\mu(x) / \pi(x) \right) \,.$$

Entropic curvature bounds for Markov chains

In the spirit of the approach of [LOTT-VILLANI '09, STURM '06] we define in [E.-MAAS'12]:

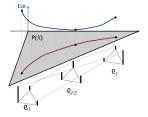
Definition:

Markov triple (\mathcal{X}, Q, π) has Ricci curvature bounded below by $\kappa \in \mathbb{R}$ if the entropy is κ -convex along geodesics in $(\mathcal{P}(\mathcal{X}), \mathcal{W})$, i.e.

$$\mathcal{H}(\mu_t) \le (1-t)\mathcal{H}(\mu_0) + t\mathcal{H}(\mu_1) - \frac{\kappa}{2}t(1-t)\mathcal{W}(\mu_0,\mu_1)^2$$

Alternative approaches to discrete Ricci curvature:

- **[OLLIVIER '09] contractivity in** W_1
- [Вонсюсат–Sturm '09] approximate W₂ geodesics
- [JOST ET AL. '11] discrete Bakry–Émery condition
- [S.T. YAU ET AL. '15], [MÜNCH '14], [DIER ET AL. '17] modified Bakry–Émery condition



Entropic curvature bounds for Markov chains

In the spirit of the approach of [LOTT-VILLANI '09, STURM '06] we define in [E.-MAAS'12]:

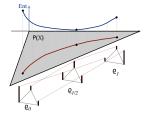
Definition:

Markov triple (\mathcal{X}, Q, π) has Ricci curvature bounded below by $\kappa \in \mathbb{R}$ if the entropy is κ -convex along geodesics in $(\mathcal{P}(\mathcal{X}), \mathcal{W})$, i.e.

$$\mathcal{H}(\mu_t) \le (1-t)\mathcal{H}(\mu_0) + t\mathcal{H}(\mu_1) - \frac{\kappa}{2}t(1-t)\mathcal{W}(\mu_0,\mu_1)^2$$

Alternative approaches to discrete Ricci curvature:

- [OLLIVIER '09] contractivity in W₁
- [BONCIOCAT-STURM '09] approximate W₂ geodesics
- [JOST ET AL. '11] discrete Bakry–Émery condition
- [S.T. YAU ET AL. '15], [MÜNCH '14], [DIER ET AL. '17] modified Bakry–Émery condition



Circle: $\operatorname{Ric} \geq 0$

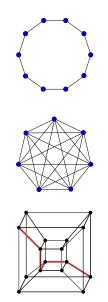
$$\mathcal{X} = \{1, \dots, n\}, \quad Q(i, i \pm 1) = 1$$

Complete graph: $\operatorname{Ric} \ge n/2$

$$\mathcal{X} = \{1, \dots, n\}, \quad Q(i, j) = 1$$

Discrete cube: $\operatorname{Ric} \geq 2$

$$\mathcal{Q}_n = \{0,1\}^n, \quad Q(x,y) = 1 \text{ for all } x \sim y$$



Definition:

The time-dependent Markov triple $(\mathcal{X}, Q_t, \pi_t)$ is a super Ricci flow iff the entropy is dynamically convex in $(\mathcal{P}(\mathcal{X}), \mathcal{W}_t)$, i.e.

$$\partial_a \Big|_{a=1-} \mathsf{Ent}_t(\mu^a) - \partial_a \Big|_{a=0+} \mathsf{Ent}_t(\mu^a) \geq -\frac{1}{2} \partial_t \mathcal{W}_t^2(\mu^0,\mu^1) \; .$$

A first example:

Let $\operatorname{Ric}(\mathcal{X}, Q_0, \pi_0) \geq \kappa$, then $(\mathcal{X}, Q_t, \pi_0)$ is a super Ricci flow for

$$Q_t = \frac{1}{1 - 2\kappa t} Q_0$$

If $\kappa > 0$, collapse at $t_* = 1/2\kappa$

 $Q_t \to +\infty$ as $t \uparrow t_*$

Goal: Give meaning to flow past singularities! Idea: Use heat flow!

Definition:

The time-dependent Markov triple $(\mathcal{X}, Q_t, \pi_t)$ is a super Ricci flow iff the entropy is dynamically convex in $(\mathcal{P}(\mathcal{X}), \mathcal{W}_t)$, i.e.

$$\partial_a \Big|_{a=1-} \mathsf{Ent}_t(\mu^a) - \partial_a \Big|_{a=0+} \mathsf{Ent}_t(\mu^a) \geq -\frac{1}{2} \partial_t \mathcal{W}_t^2(\mu^0,\mu^1) \; .$$

A first example:

Let $\operatorname{Ric}(\mathcal{X}, Q_0, \pi_0) \geq \kappa$, then $(\mathcal{X}, Q_t, \pi_0)$ is a super Ricci flow for

$$Q_t = \frac{1}{1 - 2\kappa t} Q_0$$

If $\kappa > 0$, collapse at $t_* = 1/2\kappa$

 $Q_t \to +\infty$ as $t \uparrow t_*$

Goal: Give meaning to flow past singularities! Idea: Use heat flow!

Definition:

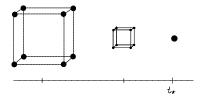
The time-dependent Markov triple $(\mathcal{X}, Q_t, \pi_t)$ is a super Ricci flow iff the entropy is dynamically convex in $(\mathcal{P}(\mathcal{X}), \mathcal{W}_t)$, i.e.

$$\partial_a \Big|_{a=1-} \mathsf{Ent}_t(\mu^a) - \partial_a \Big|_{a=0+} \mathsf{Ent}_t(\mu^a) \geq -\frac{1}{2} \partial_t \mathcal{W}_t^2(\mu^0,\mu^1) \; .$$

A first example:

Let $\operatorname{Ric}(\mathcal{X}, Q_0, \pi_0) \geq \kappa$, then $(\mathcal{X}, Q_t, \pi_0)$ is a super Ricci flow for

$$Q_t = \frac{1}{1 - 2\kappa t} Q_0$$



If
$$\kappa > 0$$
, collapse at $t_* = 1/2\kappa$

$$Q_t \to +\infty$$
 as $t \uparrow t_*$

Goal: Give meaning to flow past singularities! Idea: Use heat flow!

Goal: solve heat equation

$$\partial_t \psi(t, x) = \Delta_t \psi(t, x) = \sum_{y \in \mathcal{X}_t} \left[\psi(t, y) - \psi(t, x) \right] Q_t(x, y)$$

and adjoint heat equation

$$\partial_t \mu(t,x) = -\hat{\Delta}_t \mu(t,x) = -\sum_{y \in \mathcal{X}} \mu(t,y) Q_t(y,x) - \mu(t,x) Q_t(x,y)$$

on a time-dependent Markov triple $(\mathcal{X}_t, Q_t, \pi_t)$ with changing space \mathcal{X}_t !

Allow for collapse and spawning of vertices

Goal: solve heat equation

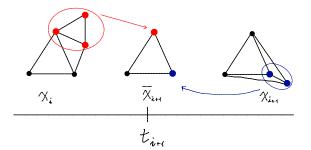
$$\partial_t \psi(t, x) = \Delta_t \psi(t, x) = \sum_{y \in \mathcal{X}_t} \left[\psi(t, y) - \psi(t, x) \right] Q_t(x, y)$$

and adjoint heat equation

$$\partial_t \mu(t,x) = -\hat{\Delta}_t \mu(t,x) = -\sum_{y \in \mathcal{X}} \mu(t,y) Q_t(y,x) - \mu(t,x) Q_t(x,y)$$

on a time-dependent Markov triple $(\mathcal{X}_t, Q_t, \pi_t)$ with changing space \mathcal{X}_t !

Allow for collapse and spawning of vertices

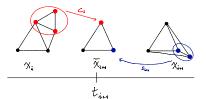


Setting: Let $(\mathcal{X}_t, Q_t, \pi_t)_{t \in [0,T]}$ satisfy the following

• ex. partition $0 = t_0 < t_1 < \cdots < t_n = T$ and sets $\mathcal{X}_i, \overline{\mathcal{X}}_i$ such that $\mathcal{X}_{t_i} = \overline{\mathcal{X}}_i, \mathcal{X}_t = \mathcal{X}_i$ for $t \in I_i = (t_i, t_{i+1})$ and surjective $c_i : \mathcal{X}_i \to \overline{\mathcal{X}}_{i+1}, s_{i+1} : \mathcal{X}_{i+1} \to \overline{\mathcal{X}}_i$

- $t \mapsto \pi_t$ is Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} \pi_t(x)$ exists in (0, 1)
- $t \mapsto \log Q_t$ is locally Lipschitz on I_i and $\lim_{t\uparrow t_{i+1}} Q_t(x, y)$ exists in $[0, \infty]$, if limit is $+\infty$ moreover we have $\int^{t_{i+1}} Q_t(x, y) = +\infty$
- $c_i(x) = c_i(y)$ iff there exist $x = x_0, x_1, \dots, x_n = y$ with $Q_t(x_j, x_{j+1}) \nearrow \infty$ • we have

$$Q_{t_{i+1}}(z, z') = \frac{1}{\pi_{t_{i+1}}(z)} \sum_{\substack{x \in c_i^{-1}(z) \\ x' \in c_i^{-1}(z')}} \lim_{t \uparrow t_{i+1}} Q_t(x, x') \pi_t(x)$$



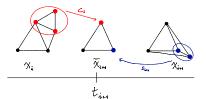
Setting: Let $(\mathcal{X}_t, Q_t, \pi_t)_{t \in [0,T]}$ satisfy the following

• ex. partition $0 = t_0 < t_1 < \cdots < t_n = T$ and sets $\mathcal{X}_i, \bar{\mathcal{X}}_i$ such that $\mathcal{X}_{t_i} = \bar{\mathcal{X}}_i$, $\mathcal{X}_t = \mathcal{X}_i$ for $t \in I_i = (t_i, t_{i+1})$ and surjective $c_i : \mathcal{X}_i \to \bar{\mathcal{X}}_{i+1}, s_{i+1} : \mathcal{X}_{i+1} \to \bar{\mathcal{X}}_i$

• $t \mapsto \pi_t$ is Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} \pi_t(x)$ exists in (0, 1)

- $t \mapsto \log Q_t$ is locally Lipschitz on I_i and $\lim_{t\uparrow t_{i+1}} Q_t(x, y)$ exists in $[0, \infty]$, if limit is $+\infty$ moreover we have $\int^{t_{i+1}} Q_t(x, y) = +\infty$
- $c_i(x) = c_i(y)$ iff there exist $x = x_0, x_1, \dots, x_n = y$ with $Q_t(x_j, x_{j+1}) \nearrow \infty$ • we have

$$Q_{t_{i+1}}(z, z') = \frac{1}{\pi_{t_{i+1}}(z)} \sum_{\substack{x \in c_i^{-1}(z) \\ x' \in c_i^{-1}(z')}} \lim_{t \uparrow t_{i+1}} Q_t(x, x') \pi_t(x)$$



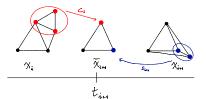
Setting: Let $(\mathcal{X}_t, Q_t, \pi_t)_{t \in [0,T]}$ satisfy the following

• ex. partition $0 = t_0 < t_1 < \cdots < t_n = T$ and sets $\mathcal{X}_i, \bar{\mathcal{X}}_i$ such that $\mathcal{X}_{t_i} = \bar{\mathcal{X}}_i$, $\mathcal{X}_t = \mathcal{X}_i$ for $t \in I_i = (t_i, t_{i+1})$ and surjective $c_i : \mathcal{X}_i \to \bar{\mathcal{X}}_{i+1}, s_{i+1} : \mathcal{X}_{i+1} \to \bar{\mathcal{X}}_i$

• $t \mapsto \pi_t$ is Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} \pi_t(x)$ exists in (0, 1)

- $t \mapsto \log Q_t$ is locally Lipschitz on I_i and $\lim_{t\uparrow t_{i+1}} Q_t(x, y)$ exists in $[0, \infty]$, if limit is $+\infty$ moreover we have $\int^{t_{i+1}} Q_t(x, y) = +\infty$
- $c_i(x) = c_i(y)$ iff there exist $x = x_0, x_1, \dots, x_n = y$ with $Q_t(x_j, x_{j+1}) \nearrow \infty$ • we have

$$Q_{t_{i+1}}(z, z') = \frac{1}{\pi_{t_{i+1}}(z)} \sum_{\substack{x \in c_i^{-1}(z) \\ x' \in c_i^{-1}(z')}} \lim_{t \uparrow t_{i+1}} Q_t(x, x') \pi_t(x)$$



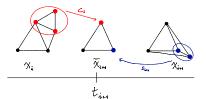
Setting: Let $(\mathcal{X}_t, Q_t, \pi_t)_{t \in [0,T]}$ satisfy the following

• ex. partition $0 = t_0 < t_1 < \cdots < t_n = T$ and sets $\mathcal{X}_i, \bar{\mathcal{X}}_i$ such that $\mathcal{X}_{t_i} = \bar{\mathcal{X}}_i$, $\mathcal{X}_t = \mathcal{X}_i$ for $t \in I_i = (t_i, t_{i+1})$ and surjective $c_i : \mathcal{X}_i \to \bar{\mathcal{X}}_{i+1}, s_{i+1} : \mathcal{X}_{i+1} \to \bar{\mathcal{X}}_i$

- $t \mapsto \pi_t$ is Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} \pi_t(x)$ exists in (0, 1)
- $t \mapsto \log Q_t$ is locally Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} Q_t(x, y)$ exists in $[0, \infty]$, if limit is $+\infty$ moreover we have $\int^{t_{i+1}} Q_t(x, y) = +\infty$

• $c_i(x) = c_i(y)$ iff there exist $x = x_0, x_1, \dots, x_n = y$ with $Q_t(x_j, x_{j+1}) \nearrow \infty$ • we have

$$Q_{t_{i+1}}(z,z') = \frac{1}{\pi_{t_{i+1}}(z)} \sum_{\substack{x \in c_i^{-1}(z) \\ x' \in c_i^{-1}(z')}} \lim_{t \uparrow t_{i+1}} Q_t(x,x') \pi_t(x)$$



Setting: Let $(\mathcal{X}_t, Q_t, \pi_t)_{t \in [0,T]}$ satisfy the following

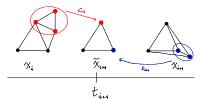
• ex. partition $0 = t_0 < t_1 < \cdots < t_n = T$ and sets $\mathcal{X}_i, \bar{\mathcal{X}}_i$ such that $\mathcal{X}_{t_i} = \bar{\mathcal{X}}_i$, $\mathcal{X}_t = \mathcal{X}_i$ for $t \in I_i = (t_i, t_{i+1})$ and surjective $c_i : \mathcal{X}_i \to \bar{\mathcal{X}}_{i+1}, s_{i+1} : \mathcal{X}_{i+1} \to \bar{\mathcal{X}}_i$

• $t \mapsto \pi_t$ is Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} \pi_t(x)$ exists in (0, 1)

■ $t \mapsto \log Q_t$ is locally Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} Q_t(x, y)$ exists in $[0, \infty]$, if limit is $+\infty$ moreover we have $\int^{t_{i+1}} Q_t(x, y) = +\infty$

• $c_i(x) = c_i(y)$ iff there exist $x = x_0, x_1, \dots, x_n = y$ with $Q_t(x_j, x_{j+1}) \nearrow \infty$ • we have

$$Q_{t_{i+1}}(z,z') = \frac{1}{\pi_{t_{i+1}}(z)} \sum_{\substack{x \in c_i^{-1}(z) \\ x' \in c_i^{-1}(z')}} \lim_{t \uparrow t_{i+1}} Q_t(x,x') \pi_t(x)$$



Setting: Let $(\mathcal{X}_t, Q_t, \pi_t)_{t \in [0,T]}$ satisfy the following

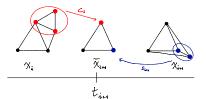
• ex. partition $0 = t_0 < t_1 < \cdots < t_n = T$ and sets $\mathcal{X}_i, \bar{\mathcal{X}}_i$ such that $\mathcal{X}_{t_i} = \bar{\mathcal{X}}_i$, $\mathcal{X}_t = \mathcal{X}_i$ for $t \in I_i = (t_i, t_{i+1})$ and surjective $c_i : \mathcal{X}_i \to \bar{\mathcal{X}}_{i+1}, s_{i+1} : \mathcal{X}_{i+1} \to \bar{\mathcal{X}}_i$

• $t \mapsto \pi_t$ is Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} \pi_t(x)$ exists in (0, 1)

■ $t \mapsto \log Q_t$ is locally Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} Q_t(x, y)$ exists in $[0, \infty]$, if limit is $+\infty$ moreover we have $\int^{t_{i+1}} Q_t(x, y) = +\infty$

• $c_i(x) = c_i(y)$ iff there exist $x = x_0, x_1, \dots, x_n = y$ with $Q_t(x_j, x_{j+1}) \nearrow \infty$ • we have

$$Q_{t_{i+1}}(z,z') = \frac{1}{\pi_{t_{i+1}}(z)} \sum_{\substack{x \in c_i^{-1}(z) \\ x' \in c_i^{-1}(z')}} \lim_{t \uparrow t_{i+1}} Q_t(x,x') \pi_t(x)$$



Setting: Let $(\mathcal{X}_t, Q_t, \pi_t)_{t \in [0,T]}$ satisfy the following

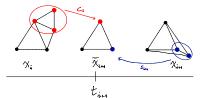
• ex. partition $0 = t_0 < t_1 < \cdots < t_n = T$ and sets $\mathcal{X}_i, \bar{\mathcal{X}}_i$ such that $\mathcal{X}_{t_i} = \bar{\mathcal{X}}_i$, $\mathcal{X}_t = \mathcal{X}_i$ for $t \in I_i = (t_i, t_{i+1})$ and surjective $c_i : \mathcal{X}_i \to \bar{\mathcal{X}}_{i+1}, s_{i+1} : \mathcal{X}_{i+1} \to \bar{\mathcal{X}}_i$

• $t \mapsto \pi_t$ is Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} \pi_t(x)$ exists in (0, 1)

■ $t \mapsto \log Q_t$ is locally Lipschitz on I_i and $\lim_{t \uparrow t_{i+1}} Q_t(x, y)$ exists in $[0, \infty]$, if limit is $+\infty$ moreover we have $\int^{t_{i+1}} Q_t(x, y) = +\infty$

• $c_i(x) = c_i(y)$ iff there exist $x = x_0, x_1, \dots, x_n = y$ with $Q_t(x_j, x_{j+1}) \nearrow \infty$ • we have

$$Q_{t_{i+1}}(z,z') = \frac{1}{\pi_{t_{i+1}}(z)} \sum_{\substack{x \in c_i^{-1}(z) \\ x' \in c_i^{-1}(z')}} \lim_{t \uparrow t_{i+1}} Q_t(x,x') \pi_t(x)$$



Heat flow on singular space-times - existence, uniqueness

Define the space-time $S_{s,t} = \{(r,x) : r \in [s,t], x \in \mathcal{X}_r\}$

Theorem:

For $s \in [0,T)$ and $\bar{\psi} \in \mathcal{R}^{\mathcal{X}_s}$ exist unique $\psi : \mathcal{S}_{s,T} \to \mathbb{R}$ s.t. $(\psi(t,\cdot) =: P_{t,s}\bar{\psi})$ $\partial_t \psi(t, \cdot) = \Delta_t \psi(t, \cdot) \text{ on } \mathcal{X}_i \times I_i, \, \psi(s, \cdot) = \bar{\psi},$ for $x \in c_i^{-1}(z)$ and $y \in s_{i+1}^{-1}(z)$ we have $\psi(t_{i+1}, z) = \lim_{t \uparrow t_{i+1}} \psi(t, x) = \lim_{t \downarrow t_{i+1}} \psi(t, y) .$ $\partial_t \mu(t, \cdot) = -\hat{\Delta}_t \mu(t, \cdot) \text{ on } \mathcal{X}_i \times I_i, \ \mu(t, \cdot) = \bar{\mu},$ for $z \in \mathcal{X}_{t_{i+1}}$ we have

We have adjointness: $\langle P_{t,s}\psi,\mu\rangle = \langle \psi,P_{t,s}\mu\rangle$

Heat flow on singular space-times - existence, uniqueness

Define the space-time $S_{s,t} = \{(r,x) : r \in [s,t], x \in \mathcal{X}_r\}$

Theorem:

$$\begin{aligned} & \text{For } s \in [0,T) \text{ and } \bar{\psi} \in \mathcal{R}^{\mathcal{X}_s} \text{ exist unique } \psi : \mathcal{S}_{s,T} \to \mathbb{R} \text{ s.t.} \qquad (\psi(t,\cdot) =: P_{t,s}\bar{\psi}) \\ & = \partial_t \psi(t,\cdot) = \Delta_t \psi(t,\cdot) \text{ on } \mathcal{X}_i \times I_i, \psi(s,\cdot) = \bar{\psi}, \\ & = \text{ for } x \in c_i^{-1}(z) \text{ and } y \in s_{i+1}^{-1}(z) \text{ we have} \\ & \psi(t_{i+1},z) = \lim_{t\uparrow t_{i+1}} \psi(t,x) = \lim_{t\downarrow t_{i+1}} \psi(t,y) \text{ .} \end{aligned}$$

$$\begin{aligned} & \text{For } t \in (0,T] \text{ and } \bar{\mu} \in \mathbb{R}^{\mathcal{X}_t} \text{ exist unique } \mu : \mathcal{S}_{0,t} \to \mathbb{R} \text{ s.t.} \qquad (\mu(s,\cdot) =: \hat{P}_{t,s}\bar{\mu}) \\ & = \partial_t \mu(t,\cdot) = -\hat{\Delta}_t \mu(t,\cdot) \text{ on } \mathcal{X}_i \times I_i, \mu(t,\cdot) = \bar{\mu}, \\ & = \text{ for } z \in \mathcal{X}_{t_{i+1}} \text{ we have} \end{aligned}$$

$$\iota(t_{i+1}, z) = \sum_{x \in c_i^{-1}(z)} \lim_{t \uparrow t_{i+1}} \mu(t, x) = \sum_{y \in s_{i+1}^{-1}(z)} \lim_{t \downarrow t_{i+1}} \mu(t, y) .$$

We have adjointness: $\langle P_{t,s}\psi,\mu\rangle=\langle\psi,\hat{P}_{t,s}\mu\rangle$

Discrete caré du champs operators

For $\mu \in \mathcal{P}(\mathcal{X}_t)$ and $\psi \in \mathbb{R}^{\mathcal{X}_t}$ we define the integrated Γ -operators $\Gamma_t(\mu, \psi) := \langle \nabla \psi, \nabla \psi \Lambda_t(\mu) \rangle$ where $\Lambda_t(\mu)(x, y) = \Lambda(\mu(x)Q_t(x, y), \mu(y)Q_t(y, x))$, and

$$\Gamma_{2,t}(\boldsymbol{\mu},\boldsymbol{\psi}) := \frac{1}{2} \langle \nabla \boldsymbol{\psi}, \nabla \boldsymbol{\psi} \hat{\Delta} \Lambda_t(\boldsymbol{\mu}) \rangle - \langle \nabla \boldsymbol{\psi}, \nabla \Delta_t \boldsymbol{\psi} \Lambda_t(\boldsymbol{\mu}) \rangle$$

where $\hat{\Delta}\Lambda_t(\mu)(x,y) = \partial_{\mu(x)}\Lambda(\mu)_t\hat{\Delta}_t\mu(x) + \partial_{\mu(y)}\Lambda(\mu)_t\hat{\Delta}\mu(y),$

These are discrete analogues of

$$\int \Gamma(\psi) \mathrm{d}\mu \ , \quad \int \Gamma_2(\psi) \mathrm{d}\mu \ .$$

Note that

$$\mathcal{W}_t(\mu^0,\mu^1)^2 = \inf\left\{\int_0^1 \Gamma_t(\mu^a,\psi^a) \,\mathrm{d}a \,:\, \partial_a\mu^a + \nabla \cdot (\Lambda(\mu^a)_t \nabla \psi^a) = 0\right\}$$
$$\frac{\mathrm{d}^2}{\mathrm{d}a^2} \mathsf{Ent}_t(\mu^a) = \Gamma_{2,t}(\mu^a,\psi^a)$$

Discrete caré du champs operators

For $\mu \in \mathcal{P}(\mathcal{X}_t)$ and $\psi \in \mathbb{R}^{\mathcal{X}_t}$ we define the integrated Γ -operators

 $\Gamma_t(\mu,\psi) := \langle \nabla \psi, \nabla \psi \Lambda_t(\mu) \rangle$

where $\Lambda_t(\mu)(x,y) = \Lambda(\mu(x)Q_t(x,y),\mu(y)Q_t(y,x))$, and

$$\Gamma_{2,t}(\mu,\psi) := \frac{1}{2} \langle \nabla \psi, \nabla \psi \hat{\Delta} \Lambda_t(\mu) \rangle - \langle \nabla \psi, \nabla \Delta_t \psi \Lambda_t(\mu) \rangle ,$$

where $\hat{\Delta}\Lambda_t(\mu)(x,y) = \partial_{\mu(x)}\Lambda(\mu)_t\hat{\Delta}_t\mu(x) + \partial_{\mu(y)}\Lambda(\mu)_t\hat{\Delta}\mu(y)$,

These are discrete analogues of

$$\int \Gamma(\psi) \mathrm{d}\mu \;, \quad \int \Gamma_2(\psi) \mathrm{d}\mu \;.$$

Note that

$$\mathcal{W}_t(\mu^0, \mu^1)^2 = \inf\left\{\int_0^1 \Gamma_t(\mu^a, \psi^a) \,\mathrm{d}a \,:\, \partial_a \mu^a + \nabla \cdot (\Lambda(\mu^a)_t \nabla \psi^a) = 0\right\}$$
$$\frac{\mathrm{d}^2}{\mathrm{d}a^2} \mathsf{Ent}_t(\mu^a) = \Gamma_{2,t}(\mu^a, \psi^a)$$

Discrete caré du champs operators

For $\mu \in \mathcal{P}(\mathcal{X}_t)$ and $\psi \in \mathbb{R}^{\mathcal{X}_t}$ we define the integrated Γ -operators

 $\Gamma_t(\mu,\psi) := \langle \nabla \psi, \nabla \psi \Lambda_t(\mu) \rangle$

where $\Lambda_t(\mu)(x,y) = \Lambda(\mu(x)Q_t(x,y),\mu(y)Q_t(y,x))$, and

$$\Gamma_{2,t}(\mu,\psi) := \frac{1}{2} \langle \nabla \psi, \nabla \psi \hat{\Delta} \Lambda_t(\mu) \rangle - \langle \nabla \psi, \nabla \Delta_t \psi \Lambda_t(\mu) \rangle ,$$

where $\hat{\Delta}\Lambda_t(\mu)(x,y) = \partial_{\mu(x)}\Lambda(\mu)_t\hat{\Delta}_t\mu(x) + \partial_{\mu(y)}\Lambda(\mu)_t\hat{\Delta}\mu(y)$,

These are discrete analogues of

$$\int \Gamma(\psi) \mathrm{d}\mu \ , \quad \int \Gamma_2(\psi) \mathrm{d}\mu \ .$$

Note that

$$\mathcal{W}_t(\mu^0,\mu^1)^2 = \inf\left\{\int_0^1 \Gamma_t(\mu^a,\psi^a) \,\mathrm{d}a \,:\, \partial_a\mu^a + \nabla \cdot (\Lambda(\mu^a)_t \nabla \psi^a) = 0\right\}$$
$$\frac{\mathrm{d}^2}{\mathrm{d}a^2} \mathsf{Ent}_t(\mu^a) = \Gamma_{2,t}(\mu^a,\psi^a)$$

Theorem:

For a time-dependent Markov triple $(\mathcal{X}_t, Q_t, \pi_t)$ TFAE:

Bochner inequality:

$$\Gamma_{2,t}(\mu,\psi) \geq rac{1}{2} \partial_t \Gamma_t(\mu,\psi) \quad ext{ a.e. } t, orall \mu \in \mathcal{P}(\mathcal{X}_t), \psi \in \mathbb{R}^{\mathcal{X}_t} \;,$$

gradient estimate:

$$\Gamma_t(\mu, P_{t,s}\psi) \le \Gamma_s(\hat{P}_{t,s}\mu, \psi) \quad \forall s \le t, \mu \in \mathcal{P}(\mathcal{X}_t), \psi \in \mathbb{R}^{\mathcal{X}_s}$$

transport estimate:

$$\mathcal{W}_t(\hat{P}_{t,s}\mu,\hat{P}_{t,s}\nu) \leq \mathcal{W}_s(\mu,\nu) \quad \forall s \leq t, \mu, \nu \in \mathcal{P}(\mathcal{X}_t) ,$$

dynamic convexity of entropy: for a.e. t and all \mathcal{W}_t -geodesics $(\mu^a)_{a \in [0,1]}$

$$\partial_a \Big|_{a=1-} \mathsf{Ent}_t(\mu^a) - \partial_a \Big|_{a=0+} \mathsf{Ent}_t(\mu^a) \geq -\frac{1}{2} \partial_t \mathcal{W}_{t-}^2(\mu^0,\mu^1) \; .$$

If these properties hold $(\mathcal{X}_t, Q_t, \pi_t)_t$ is called a super Ricci flow.

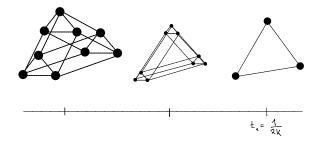
Examples

Collapse:

Let $(\mathcal{Y}, Q^Y, \pi^Y), (\mathcal{Z}, Q^Z, \pi^Z)$ be Markov triples with $\operatorname{Ric}(\mathcal{Y}) \ge 0$, $\operatorname{Ric}(\mathcal{Z}) \ge \kappa > 0$. Then the time-dependent triple

$$(\mathcal{X}_t, Q_t, \pi_t) := \begin{cases} (\mathcal{Y}, Q^Y, \pi^Y) \otimes (\mathcal{Z}, L_t Q^Z, \pi^Z) , & 0 \le t < t_1 := 1/2\kappa , \\ (\mathcal{Y}, Q^Y, \pi^Y) , & t \ge t_1; , \end{cases}$$

with $L_t = 1/(1 - 2\kappa t)$ is a super Ricci flow.



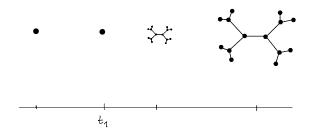
Examples

Explosion:

Let $(\mathcal{Y}, Q^Y, \pi^Y), (\mathcal{Z}, Q^Z, \pi^Z)$ be Markov triples with $\operatorname{Ric}(\mathcal{Y}) \ge 0$, $\operatorname{Ric}(\mathcal{Z}) \ge \kappa < 0$. Then the time-dependent triple

$$(\mathcal{X}_t, Q_t, \pi_t) := \begin{cases} (\mathcal{Y}, Q^Y, \pi^Y) , & 0 \le t \le t_1 , \\ (\mathcal{Y}, Q^Y, \pi^Y) \otimes (\mathcal{Z}, \mathbf{L}_t Q^Z, \pi^Z) , & t \ge t_1 , \end{cases}$$

with $L_t = -1/2\kappa(t-t_1)$ is a super Ricci flow.



Bochner inequality and gradient estimate: consider interpolation

$$\phi(r) = \mathcal{A}_r(\hat{P}_{t,r}\mu, P_{r,s}\psi)$$

Bochner $\Leftrightarrow \phi'(r) \leq 0$ on (t_i, t_{i+1}) ; ϕ continuous across singular times

gradient estimate and transport estimate: uses dual discrete transport problem

$$\mathcal{W}_t(\mu^0,\mu^1)^2 = \sup\left\{\langle \phi^1,\mu^1
angle - \langle \phi^0,\mu^0
angle \ : \ \langle \partial_a \phi^a,
u
angle + rac{1}{2}\Gamma_t(
u,\phi^a) \leq 0 \ orall
u
ight\}$$

by gradient estimate, if ϕ^a is a HJ-subsolution at s, $P_{t,s}\phi^a$ is a HJ-subsol. at t

- from gradient estimates to dynamic convexity: core argument passing through dynamic evolution variational inequality
- from dynamic convexity to Bochner: one has that

$$\operatorname{Hess}(\operatorname{Ent}_t)(\mu^a)[\cdot] = \Gamma_{2,t}(\mu^a, \cdot) , \quad -\partial_t |\dot{\mu}^a|_t^2 = \partial_t \Gamma_t(\mu^a, \psi^a)$$

Stability of super Ricci flows

Let $(\mathcal{X}^n, Q_t^n, \pi_t^n)_t$ discrete time-dep. Markov triples that converge to time-dep. continuous mm-space $(X, d_t, m_t)_t$. More precisely:

there exist maps $i_n : \mathcal{P}(\mathcal{X}_n) \to \mathcal{P}(X)$ s.t.

• whenever
$$i_n(\mu^n) \to \mu$$
, $i_n(\nu^n) \to \nu$ we have for all t :

 $\operatorname{Ent}(\mu|\pi_t) \leq \liminf_n \operatorname{Ent}(\mu^n|\pi_t^n), \qquad W_2(\mu,\nu) \leq \liminf_n \mathcal{W}^n(\mu^n,\nu^n).$

for each μ, ν ex. $i_n(\mu^n) \rightarrow \mu$, $i_n(\nu^n) \rightarrow \nu$ s.t. for all t:

$$\mathsf{Ent}(\mu|\pi_t) = \lim_n \mathsf{Ent}(\mu^n|\pi_t^n) , \quad W_2(\mu,\nu) = \lim_n \mathcal{W}^n(\mu^n,\nu^n) .$$

Theorem:

If $(\mathcal{X}^n, Q_t^n, \pi_t^n)_t$ are discrete super Ricci flows, then (X, d_t, m_t) is a super Ricci flow in the sense of [STURM '16].

Conclusion

- Existence and uniqueness of solutions to the heat equation on time-dependent weighted graphs with time-dependent base set
- 4 equivalent characterizations of discrete super Ricci flows using heat flow and discrete optimal transport
- consistency with synthetic notion of super Ricci flow for mm-spaces

Further questions:

- How to characterize minimal discrete super Ricci flows?
- Can one construct such flows starting from a given Markov triple $(\mathcal{X}_0, Q_0, \pi_0)$?
- Existence/uniqueness of heat flow on singular continuous space-times?

Thank you for your attention!

Conclusion

- Existence and uniqueness of solutions to the heat equation on time-dependent weighted graphs with time-dependent base set
- 4 equivalent characterizations of discrete super Ricci flows using heat flow and discrete optimal transport
- consistency with synthetic notion of super Ricci flow for mm-spaces

Further questions:

- How to characterize minimal discrete super Ricci flows?
- Can one construct such flows starting from a given Markov triple $(\mathcal{X}_0, Q_0, \pi_0)$?
- Existence/uniqueness of heat flow on singular continuous space-times?

Thank you for your attention!

Conclusion

- Existence and uniqueness of solutions to the heat equation on time-dependent weighted graphs with time-dependent base set
- 4 equivalent characterizations of discrete super Ricci flows using heat flow and discrete optimal transport
- consistency with synthetic notion of super Ricci flow for mm-spaces

Further questions:

- How to characterize minimal discrete super Ricci flows?
- Can one construct such flows starting from a given Markov triple $(\mathcal{X}_0, Q_0, \pi_0)$?
- Existence/uniqueness of heat flow on singular continuous space-times?

Thank you for your attention!