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Classical (super-) Ricci flows

A Riemannian manifold (M, gt) with time-dependent metric is a Ricci flow if

−1

2
∂tgt = Ricgt .

Examples:

� ’Solitons’: let Ricg0 ≥ κg0 for κ ∈ R, then

gt = (1− 2κt)g0 ,

is a super Ricci flow
κ = 0: steady, κ < 0: expanding, κ > 0: shrinking (here t < 1

2κ
)

� Neck pinch: dim= 3
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Robust approaches and characterizations I

Strong interest in robust descriptions of (super) Ricci flows in presence of
singularities, many recent developments:

� [BAMLER, KLEINER ’17], [KLEINER, LOTT ’14]:
’canonical’ Ricci flow through singularities, limit of flow with surgery

� [HASLHOFER, NABER ’15]:
characterization via functional inequalities on path space

� [TOPPING, MCCANN ’08]:
characterization via optimal transport

� [STURM ’16], [KOPFER, STURM ’16]:
synthetic notion of super Ricci flow on metric measure spaces



Robust approaches and characterizations II

(M, gt) is a super Ricci flow, i.e. − 1
2
∂tgt ≤ Ricgt iff any of the following hold

� Bochner inequality:

Γ2,t(ψ) ≥ 1

2
∂tΓt(ψ) for all smooth ψ : M → R

Note that

Γ2,t(ψ) :=
1

2
∆|∇ψ|2 − 〈∇ψ,∆∇ψ〉 = Ricgt(∇ψ) + ‖Hessψ‖2HS

≥ +
1

2
∂t|∇ψ|2 =

1

2
∂tΓt(ψ)

� gradient estimates:

Γt(Pt,sψ̄) ≤ Pt,sΓs(ψ̄) for all s ≤ t ,

where Pt,sψ̄ is the solution to heat equation

∂tψ(t, ·) = ∆tψ(t, ·), ψ(s, ·) = ψ̄
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Robust approaches and characterizations II

(M, gt) is a super Ricci flow, i.e. − 1
2
∂tgt ≤ Ricgt iff any of the following hold

� transport estimates:

W2,s(P̂t,sµ, P̂t,sν) ≤W2,t(µ, ν) for all µ, ν ∈ P(M), s ≤ t ,

where P̂t,s is the dual heat flow on measures and W2,t is the L2 Kantorovich
distance w.r.t. Riemannian distance dt

W 2
2,t(µ, ν) := inf

q∈Cpl(µ,ν)

∫
dt(x, y)2dq(x, y) .

� dynamic convexity of entropy: for all W2,t-geodesics (µa)a∈[0,1]

∂a

∣∣∣
a=1−

Ent(µa)− ∂a
∣∣∣
a=0+

Ent(µa) ≥ −1

2
∂tW

2
2,t−(µ0, µ1) ,

where Ent(µ) =
∫

log dµ
dvol dµ. Note that

d2

da2
Ent(µa) =

∫
Γ2,t(ψ

a)dµa ≥ 1

2
∂t

∫
Γt(ψ

a)dµa = −1

2
∂t|µ̇a|2t
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Robust approaches and characterizations III

The previous equivalent properties are meaningfull also in a non-smooth setting, i.e.

� for a Dirichlet space (X,mt) with Dirichlet forms Et and asociated Γ operators

� time-dependent metric measure spaces (X, dt,mt)

This allows for synthetic definition of super Ricci flow for mm-spaces, see [STURM

’16], [KOPFER, STURM ’16]

In particular, for a static mm-space recover synthetic definition of lower Ricci
curvature bounds by [LOTT,VILLANI ’09], [STURM ’06]:

(X, d,m) satisfies Ric ≥ 0 :⇔ Ent is convex along W2 − geodesics

11/20

Entropy

µ0 µ1/2
µ1
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Discrete Markov chains

Setting

� X finite set

� Q : X × X → R+ transition rates

� ∆ generator of continuous time Markov chain

∆ψ(x) =
∑
y

(
ψ(y)− ψ(x)

)
Qxy

� π reversible probability measure on X

∀x, y : Qxyπ(x) = Qyxπ(y)

� probability measures on X

P(X ) =
{
µ ∈ RX+ :

∑
x

µ(x) = 1
}

x y

Q(x, y)

Problem:

L2-Kantorovich distance W2 is degenerate (for any choice of distance on X ) and
does not admit non-trivial geodesics, gradient flows, ...
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Discrete optimal transport

Benamou–Brenier formula for W2

W2(ρ0, ρ1)2 = inf
ρ,V

{∫ 1

0

∫
Rn

|V (x)|2

ρt(x)
dxdt : ∂tρ+∇ · V = 0

}

discrete transport distance

W(µ0, µ1)2 := inf
µ,V

{
1

2

∫ 1

0

∑
x,y∈X

|V (x, y)|2

Λ
(
µt(x)Qxy, µt(y)Qyx

)dt :

d

dt
µt(x) +

1

2

∑
y∈X

Vt(x, y)− Vt(y, x) = 0

}
where Λ(s, t) :=

s− t
log s− log t

is the logarithmic mean

Theorem [MAAS ’11, E.-MAAS ’12]

W defines a geodesic distance on the set of probability measures P(X ).
The law of the Markov chain evolves as the gradient flow of the entropy

H(µ) =
∑
x

µ(x) log
(
µ(x)/π(x)

)
.
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Entropic curvature bounds for Markov chains

In the spirit of the approach of [LOTT–VILLANI ’09, STURM ’06] we define in [E.-MAAS’12]:

Definition:

Markov triple (X , Q, π) has Ricci curvature bounded below by κ ∈ R if the entropy is
κ-convex along geodesics in (P(X ),W), i.e.

H(µt) ≤ (1− t)H(µ0) + tH(µ1)− κ

2
t(1− t)W(µ0, µ1)2 .

Alternative approaches to discrete Ricci curvature:

� [OLLIVIER ’09] contractivity in W1

� [BONCIOCAT–STURM ’09] approximate W2 geodesics

� [JOST ET AL. ’11] discrete Bakry–Émery condition

� [S.T. YAU ET AL. ’15], [MÜNCH ’14], [DIER ET AL. ’17]

modified Bakry–Émery condition

� ...

Ent

ϱ0

ϱ1/2

ϱ1

P(X)
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First examples

� Circle: Ric ≥ 0

X = {1, . . . , n}, Q(i, i± 1) = 1

� Complete graph: Ric ≥ n/2

X = {1, . . . , n}, Q(i, j) = 1

� Discrete cube: Ric ≥ 2

Qn = {0, 1}n, Q(x, y) = 1 for all x ∼ y



A first definition of super Ricci flow

Definition:

The time-dependent Markov triple (X , Qt, πt) is a super Ricci flow iff the entropy is
dynamically convex in (P(X ),Wt), i.e.

∂a

∣∣∣
a=1−

Entt(µ
a)− ∂a

∣∣∣
a=0+

Entt(µ
a) ≥ −1

2
∂tW2

t (µ0, µ1) .

A first example:
Let Ric(X , Q0, π0) ≥ κ, then (X , Qt, π0) is a super Ricci flow for

Qt =
1

1− 2κt
Q0

area
*

→

goer '
goer '

raced
goer '

roar '
roam

'

H
oodoo

roared

room
'

goer '

rata
radar

rooted
gear '

H
oodoo

roofed

If κ > 0, collapse at t∗ = 1/2κ

Qt → +∞ as t ↑ t∗

Goal: Give meaning to flow past
singularities!
Idea: Use heat flow!
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Heat flow on singular space times

Goal: solve heat equation

∂tψ(t, x) = ∆tψ(t, x) =
∑
y∈Xt

[
ψ(t, y)− ψ(t, x)

]
Qt(x, y)

and adjoint heat equation

∂tµ(t, x) = −∆̂tµ(t, x) = −
∑
y∈X

µ(t, y)Qt(y, x)− µ(t, x)Qt(x, y)

on a time-dependent Markov triple (Xt, Qt, πt) with changing space Xt !

Allow for collapse and spawning of vertices

asE)
are good

ago

a. )

I
I

ED
.

d
*

N

good

egg
•→

ago

i.

*
ago
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Heat flow on singular space times – setting

Setting: Let (Xt, Qt, πt)t∈[0,T ] satisfy the following

� ex. partition 0 = t0 < t1 < · · · < tn = T and sets Xi, X̄i such that Xti = X̄i,
Xt = Xi for t ∈ Ii = (ti, ti+1) and surjective ci : Xi → X̄i+1, si+1 : Xi+1 → X̄i

� t 7→ πt is Lipschitz on Ii and limt↑ti+1 πt(x) exists in (0, 1)

� t 7→ logQt is locally Lipschitz on Ii and limt↑ti+1 Qt(x, y) exists in [0,∞], if
limit is +∞ moreover we have

∫ ti+1 Qt(x, y) = +∞

� ci(x) = ci(y) iff there exist x = x0, x1, . . . , xn = y with Qt(xj , xj+1)↗∞
� we have

Qti+1 (z, z
′) =

1

πti+1 (z)

∑
x∈c−1

i
(z)

x′∈c−1
i (z′)

lim
t↑ti+1

Qt(x, x
′)πt(x)

� similar assumptions for t ↓ ti+1...

as

E) 8.9
f

too
•.→)

U
E

ari

I
I

ED
.

d
Ki

N

j
•.

Egg
BY

good

i.

*
good
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Heat flow on singular space-times – existence, uniqueness

Define the space-time Ss,t =
{

(r, x) : r ∈ [s, t], x ∈ Xr
}

Theorem:

For s ∈ [0, T ) and ψ̄ ∈ RXs exist unique ψ : Ss,T → R s.t. ( ψ(t, ·) =: Pt,sψ̄ )

� ∂tψ(t, ·) = ∆tψ(t, ·) on Xi × Ii, ψ(s, ·) = ψ̄,

� for x ∈ c−1
i (z) and y ∈ s−1

i+1(z) we have

ψ(ti+1, z) = lim
t↑ti+1

ψ(t, x) = lim
t↓ti+1

ψ(t, y) .

For t ∈ (0, T ] and µ̄ ∈ RXt exist unique µ : S0,t → R s.t. ( µ(s, ·) =: P̂t,sµ̄ )

� ∂tµ(t, ·) = −∆̂tµ(t, ·) on Xi × Ii, µ(t, ·) = µ̄,
� for z ∈ Xti+1 we have

µ(ti+1, z) =
∑

x∈c−1
i (z)

lim
t↑ti+1

µ(t, x) =
∑

y∈s−1
i+1(z)

lim
t↓ti+1

µ(t, y) .

We have adjointness: 〈Pt,sψ, µ〉 = 〈ψ, P̂t,sµ〉
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Discrete caré du champs operators

For µ ∈ P(Xt) and ψ ∈ RXt we define the integrated Γ-operators

Γt(µ, ψ) := 〈∇ψ,∇ψΛt(µ)〉

where Λt(µ)(x, y) = Λ
(
µ(x)Qt(x, y), µ(y)Qt(y, x)

)
, and

Γ2,t(µ, ψ) :=
1

2
〈∇ψ,∇ψ∆̂Λt(µ)〉 − 〈∇ψ,∇∆tψΛt(µ)〉 ,

where ∆̂Λt(µ)(x, y) = ∂µ(x)Λ(µ)t∆̂tµ(x) + ∂µ(y)Λ(µ)t∆̂µ(y),

These are discrete analogues of∫
Γ(ψ)dµ ,

∫
Γ2(ψ)dµ .

Note that

Wt(µ
0, µ1)2 = inf

{∫ 1

0

Γt(µ
a, ψa) da : ∂aµ

a +∇ · (Λ(µa)t∇ψa) = 0
}

d2

da2
Entt(µ

a) = Γ2,t(µ
a, ψa)
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Characterizations of discrete super Ricci flows

Theorem:

For a time-dependent Markov triple (Xt, Qt, πt) TFAE:

� Bochner inequality:

Γ2,t(µ, ψ) ≥ 1

2
∂tΓt(µ, ψ) a.e. t, ∀µ ∈ P(Xt), ψ ∈ RXt ,

� gradient estimate:

Γt(µ, Pt,sψ) ≤ Γs(P̂t,sµ, ψ) ∀s ≤ t, µ ∈ P(Xt), ψ ∈ RXs ,

� transport estimate:

Wt(P̂t,sµ, P̂t,sν) ≤ Ws(µ, ν) ∀s ≤ t, µ, ν ∈ P(Xt) ,

� dynamic convexity of entropy: for a.e. t and allWt-geodesics (µa)a∈[0,1]

∂a

∣∣∣
a=1−

Entt(µ
a)− ∂a

∣∣∣
a=0+

Entt(µ
a) ≥ −1

2
∂tW2

t−(µ0, µ1) .

If these properties hold (Xt, Qt, πt)t is called a super Ricci flow.



Examples

Collapse:

Let (Y, QY , πY ), (Z, QZ , πZ) be Markov triples with Ric(Y) ≥ 0, Ric(Z) ≥ κ > 0.
Then the time-dependent triple

(Xt, Qt, πt) :=

{
(Y, QY , πY )⊗ (Z, LtQZ , πZ) , 0 ≤ t < t1 := 1/2κ ,

(Y, QY , πY ) , t ≥ t1; ,

with Lt = 1/(1− 2κt) is a super Ricci flow.
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Examples

Explosion:

Let (Y, QY , πY ), (Z, QZ , πZ) be Markov triples with Ric(Y) ≥ 0, Ric(Z) ≥ κ < 0.
Then the time-dependent triple

(Xt, Qt, πt) :=

{
(Y, QY , πY ) , 0 ≤ t ≤ t1 ,
(Y, QY , πY )⊗ (Z, LtQZ , πZ) , t ≥ t1 ,

with Lt = −1/2κ(t− t1) is a super Ricci flow.
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Ideas for the proof

� Bochner inequality and gradient estimate: consider interpolation

φ(r) = Ar(P̂t,rµ, Pr,sψ)

Bochner⇔ φ′(r) ≤ 0 on (ti, ti+1); φ continuous across singular times

� gradient estimate and transport estimate: uses dual discrete transport problem

Wt(µ
0, µ1)2 = sup

{
〈φ1, µ1〉 − 〈φ0, µ0〉 : 〈∂aφa, ν〉+

1

2
Γt(ν, φ

a) ≤ 0 ∀ν
}

by gradient estimate, if φa is a HJ-subsolution at s, Pt,sφa is a HJ-subsol. at t

� from gradient estimates to dynamic convexity: core argument passing through
dynamic evolution variational inequality

� from dynamic convexity to Bochner: one has that

Hess(Entt)(µ
a)[·] = Γ2,t(µ

a, ·) , −∂t|µ̇a|2t = ∂tΓt(µ
a, ψa)



Stability of super Ricci flows

Let (Xn, Qnt , πnt )t discrete time-dep. Markov triples that converge to
time-dep. continuous mm-space (X, dt,mt)t. More precisely:

there exist maps in : P(Xn)→ P(X) s.t.

� whenever in(µn)→ µ, in(νn)→ ν we have for all t:

Ent(µ|πt) ≤ lim inf
n

Ent(µn|πnt ) , W2(µ, ν) ≤ lim inf
n
Wn(µn, νn) .

� for each µ, ν ex. in(µn)→ µ, in(νn)→ ν s.t. for all t:

Ent(µ|πt) = lim
n

Ent(µn|πnt ) , W2(µ, ν) = lim
n
Wn(µn, νn) .

Theorem:

If (Xn, Qnt , πnt )t are discrete super Ricci flows, then (X, dt,mt) is a super Ricci flow
in the sense of [STURM ’16].



Conclusion

� Existence and uniqueness of solutions to the heat equation on time-dependent
weighted graphs with time-dependent base set

� 4 equivalent characterizations of discrete super Ricci flows using heat flow and
discrete optimal transport

� consistency with synthetic notion of super Ricci flow for mm-spaces

Further questions:

� How to characterize minimal discrete super Ricci flows?

� Can one construct such flows starting from a given Markov triple (X0, Q0, π0)?

� Existence/uniqueness of heat flow on singular continuous space-times?

Thank you for your attention!



Conclusion

� Existence and uniqueness of solutions to the heat equation on time-dependent
weighted graphs with time-dependent base set

� 4 equivalent characterizations of discrete super Ricci flows using heat flow and
discrete optimal transport

� consistency with synthetic notion of super Ricci flow for mm-spaces

Further questions:

� How to characterize minimal discrete super Ricci flows?

� Can one construct such flows starting from a given Markov triple (X0, Q0, π0)?

� Existence/uniqueness of heat flow on singular continuous space-times?

Thank you for your attention!



Conclusion

� Existence and uniqueness of solutions to the heat equation on time-dependent
weighted graphs with time-dependent base set

� 4 equivalent characterizations of discrete super Ricci flows using heat flow and
discrete optimal transport

� consistency with synthetic notion of super Ricci flow for mm-spaces

Further questions:

� How to characterize minimal discrete super Ricci flows?

� Can one construct such flows starting from a given Markov triple (X0, Q0, π0)?

� Existence/uniqueness of heat flow on singular continuous space-times?

Thank you for your attention!


