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Motivation

Transport/Diffusion models with nonlinear mobility

Continuity equations with local/nonlocal transport and/or diffusion:

∂tρ+ div(ρV [ρ,∇ρ]) = 0 , ρ = ρ(t, x), x ∈ Rd , t ≥ 0.

If V [ρ,∇ρ] is a gradient, we have a gradient flow:

∂tρ+ div(ρ∇f [ρ]) = 0.

In relevant examples, the speed |V [ρ,∇ρ]| is cut-off at high densities no matter what
the direction is: prevention of overcrowding:

∂tρ+ div(ρv(ρ)∇g [ρ]) = 0.

Typical law for v(ρ)

Let ρmax > 0 be a maximal density. Then,

v : [0, ρmax]→ [0, vmax ], v decreasing, and v(ρmax) = 0.
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Motivation

Examples in biology

Aggregation/Swarming phenomena

Avoiding blow-up of the density when aggregation phenomena dominate, with the goal
of detecting pattern-formation for large times rather than concentration to Dirac masses:

∂tρ+ div(ρv(ρ)∇(a(ρ) + W ∗ ρ)) = 0,

with a(ρ) a nonlinear diffusion function and W = W (x) an aggregative kernel.

Modified chemotaxis modelling

To prevent concentration in the Keller-Segel system:

ρt = Dρ∆ρ− χdiv(ρ(ρmax − ρ)∇c)

εct = Dc∆c + αρ− βc.
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Motivation

Examples in real-world applications

Traffic flow: extended LRW equation

d = 1, vehicles moving in the same direction, external potential V = V (x) describing
possible heterogeneities on the road:

∂tρ+ ∂x(ρv(ρ)V ′(x)) = 0.

Pedestrian motion

d = 1, 2, pedestrians moving with speed v(ρ) and direction ∇ϕ/|∇ϕ|, where ϕ is
determined nonlocally from the overall density. Examples:

(Hughes) |∇ϕ| = c(ρ), with cost function c(ρ) increasing with the density.

(Colombo et al.) ρt + div

(
ρv(ρ)(ν(x)− ε ∇η∗ρ√

1+|∇η∗ρ|2
)

)
= 0.

Other applications include:

Phase segregation with long range interactions

Simplified models for Fermi-Dirac condensates

Comparison with other approaches preventing high densities (Katy Craig’s talk).
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Motivation

Microscopic vs. macroscopic description

All aforementioned applications are best formulated in a (discrete) microscopic
setting, as they describe individual-based phenomena.

The (continuum) macroscopic description has two main advantages:

Broad range of numerical methods available.
Detecting large time behaviour (patterns, diffusive decay,
concentrations, etc.).

The continuum description needs to be rigorously validated, via many particle
limits.

First step in the understanding of those limits: no diffusion. Deterministic particle
limits.

Main difficulty

The velocity field is typically not continuous w.r.t. tight convergence, because of the
local dependency on ρ.
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Motivation

Related literature

Case v constant (linear mobility):

Nonlocal interaction equations with regular kernels: Dobrushin (1979)

Nonlocal interaction equations (with singular kernels): Carrillo et al.

Deterministic diffusion (linear case): Russo (1990)

Nonlinear diffusion: Gosse-Toscani (2006)

Multidimensional deterministic diffusion via gamma convergence: Carrillo, Craig,
Patacchini...

Diffusion and nonlocal interactions: Matthes et al.

Case v non-constant (nonlinear mobility):

General setting with velocity field continuous w.r.t. measure topology:
Piccoli-Rossi 2013
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The follow-the-leader model

A discrete lagrangian description

General continuum model:

ρt + div(ρ v(ρ)∇(V + W ∗ ρ)︸ ︷︷ ︸
velocity field

) = 0.

Discrete counterpart with N particles x1, . . . , xN :

ẋi (t) = v(Ri (t))
(
∇V (xi (t)) + (∇W ∗ ρ̃N(xi (t)))

)
,

with

Ri a suitable reconstruction of the density around the particle xi ,

ρ̃N a suitable replacement for the global discrete density.

Fact 1: with d = 1 the reconstruction of the density is much easier, and one-dimensional
cases are relevant to some of our target applications (e.g. traffic flow).
Fact 2: the nonlocal part can be discretized as

ρ̃N(t) =
M

N

∑
i

δxi (t) , ∇W ∗ ρ̃N(xi (t)) =
M

N

∑
i

∇W (xi (t)− xj(t)),

(where M is the total mass).
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The follow-the-leader model

Scalar conservation laws: the result1

The unique entropy solution to the d = 1 conservation law

ρt + (ρv(ρ))x = 0,

with given ρ(t = 0) ∈ L∞, compactly supported, and with mass M, is approximated in
L1 (strongly) as N → +∞ by the discrete density

ρN(t, x) =
N−1∑
i=0

Ri (t)χ[xi (t),xi+1(t)) , Ri (t) =
`N

xi+1(t)− xi (t)
, `N = M/N,

where xi , i = 1, . . . ,N solve

ẋN(t) = v(0)

ẋi (t) = v(Ri (t)) , i = 0, . . . ,N − 1,

with initial condition x̄0, . . . , x̄N such that∫ x̄i+1

x̄i

ρ(t = 0, x)dx = `N .

1DF-Rosini, ARMA 2015
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The follow-the-leader model

Scalar conservation laws: remarks

Result holds in presence of vacuum.

Essential for the result is a control of the BV norm of ρN .

If we assume ρ 7→ ρv ′(ρ) non-increasing, then the result does not require the initial
norm to be finite (L∞-BV smoothing effect).

Otherwise, we need ρ(t = 0) ∈ BV (R). The BV norm can be proven to be
non-increasing.

The scheme leads to the unique entropy solution. Surprising, since the scheme
does not display the shock structure of a conservation law (kinetic velocity 6=
characteristic velocity).

Approach can be extended to

Dirichlet boundary conditions,
Second order traffic models,
(Small BV -norm solutions to the) Hughes model for pedestrians.
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Particle approximation of the nonlocal model

The continuum nonlocal model

We study2

∂tρ− ∂x(ρv(ρ)K ′ ∗ ρ) = 0

ρ(t = 0) = ρ̄ ∈ L∞c (R ; [0, ρmax]) ∩ BV (R)

(1a)

Assumptions on K

K ∈ C 2(R), K(−x) = K(x), K ′ > 0 on (0,+∞), K ′′ ∈ Liploc(R).

Assumptions on v

v ∈ C 1([0,+∞)), v decreasing on [0, ρmax], v ≡ 0 on [ρmax,+∞).

Same atomization algorithm as before ⇒ Initial positions of N + 1 particles
x̄0 < . . . < x̄N .

2DF, Fagioli, Radici - submitted
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Particle approximation of the nonlocal model

The discrete model

ẋi (t) = − 1

N
v(Ri (t))︸ ︷︷ ︸

forward density

∑
j>i

K ′(xi (t)− xj(t))− 1

N
v(Ri−1(t))︸ ︷︷ ︸

backward density

∑
j<i

K ′(xi (t)− xj(t))

Discrete density: Ri (t) =
1

N(xi+1(t)− xi (t))

Properties:

Discrete maximum principle xi+1(t)− xi (t) ≥ M
ρmaxN

, i.e. Ri (t) ≤ ρmax

Global existence

x0(t) ≥ x̄0, xN(t) ≤ x̄N (confined support)

M. Di Francesco (L’Aquila) Deterministic particle approximations BIRS-Banff 2018 15 / 22



Particle approximation of the nonlocal model

Estimates

ρN(t, x) =
N−1∑
i=0

Ri (t)χ[xi (t),xi+1(t))

TV [ρN(·, t)] = R0(t) +
N−2∑
i=0

|Ri+1(t)− Ri (t)|+ RN−1(t)

Uniform BV estimate

There exists a constant C > 0 depending only on K , v , and meas(supp[ρ̄]), such that

TV [ρN(·, t)] ≤ TV [ρ̄]eCt , for all t ≥ 0.

The proof crucially uses the monotonicity of v and the splitting of the use of
‘upwind’ densities in the velocity field.

The overcrowding prevention effect is also crucial: without it, particles would
collapse into a single point mass.

M. Di Francesco (L’Aquila) Deterministic particle approximations BIRS-Banff 2018 16 / 22



Particle approximation of the nonlocal model

Convergence of the scheme

The previous BV -estimate allows to control space-oscillations.

As for time-oscillations, we prove Lipschitz equi-continuity in the 1-Wasserstein
distance

W1(ρN(t, ·), ρN(s, ·)) ≤ C |t − s|,
with C > 0 independent of N.

Rossi-Savaré 2003 (Aubin/Lions-type compactness theorem) implies strong
compactness of ρN in L1([0,+∞)× R).

M. Di Francesco (L’Aquila) Deterministic particle approximations BIRS-Banff 2018 17 / 22



Particle approximation of the nonlocal model

Entropy solutions

Similarly to scalar conservation laws, we define

Definition

ρ : [0,+∞)× R→ [0,+∞) is an entropy solution to (1a) with initial condition ρ̄ if
ρ ∈ L∞([0,+∞); L1 ∩ L∞(R)) and, for all constants c ≥ 0 and for all
ϕ ∈ Cc([0,+∞)× R) with ϕ ≥ 0 one has∫

R
|ρ̄(x)− c|ϕ(0, x)dx +

∫ +∞

0

∫
R

(|ρ− c|ϕt

−sign(ρ− c)
[
(f (ρ)− f (c))K ′ ∗ ρϕx − f (c)K ′′ ∗ ρϕ

])
dxdt ≥ 0,

where f (z) = zv(z).

Notice that entropy solutions are weak solutions.

Theorem

There exists no more than one entropy solution to (1a) with initial condition ρ̄

ρN → ρ as N → +∞ and ρ is an entropy solution (proof: very technical).
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Particle approximation of the nonlocal model

Non uniqueness of weak solutions

Consider v(ρ) = (1− ρ)+ and the initial condition

ρ̄(x) = χ[−1,−1/2] + χ[1/2,1].

Let ρs(t, x) = ρ̄(x) for all t ≥ 0.

ρs is a (stationary) weak solution to (1a)

ρs is not an entropy solution. Proof: use test functions that concentrate around
−1/2 and 1/2 to violate the entropy condition. Extra assumption needed: K ′′ > 0
on the support of ρ̄.

We know the scheme converges to an entropy solution, therefore there are at least
two weak solutions with this initial condition.

Why is ρs not satisfying the entropy condition: the discontinuities at ±1/2 are not
admissible.

The scheme catches this behavior because particles at ±1/2 are forced to move.
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Particle approximation of the nonlocal model

Simulations
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Particle approximation of the nonlocal model

Extension to the diffusive case3

∂tρ = ∂xxϕ(ρ) + ∂x(ρv(ρ)K ′ ∗ ρ)

On bounded intervals with no-slip boundary conditions

Initial datum away from the vacuum state

Convergence to weak solutions via BV estimate

Diffusion term may be degenerate, ϕ is required to be non-decreasing

Assumption on K are the same as before.

3Fagioli, Radici - to appear on M3AS
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Particle approximation of the nonlocal model

End of the talk

Thanks for your attention!
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