Deterministic particle approximations for transport models with nonlinear mobility

Marco Di Francesco

University of L'Aquila

Work in collaboration with Simone Fagioli and Emanuela Radici (University of L'Aquila)

Entropies, the Geometry of Nonlinear Flows, and their Applications -Banff, April 9-13 2018

The follow-the-leader model

Particle approximation of the nonlocal model

Table of contents

The follow-the-leader model

article approximation of the nonlocal model

Continuity equations with local/nonlocal transport and/or diffusion:

$$\partial_t \rho + \operatorname{div}(\rho V[\rho, \nabla \rho]) = 0, \qquad \rho = \rho(t, x), \quad x \in \mathbb{R}^d, \ t \ge 0.$$

Continuity equations with local/nonlocal transport and/or diffusion:

$$\partial_t \rho + \operatorname{div}(\rho V[\rho, \nabla \rho]) = 0, \qquad \rho = \rho(t, x), \quad x \in \mathbb{R}^d, \ t \ge 0.$$

If $V[\rho, \nabla \rho]$ is a gradient, we have a gradient flow:

 $\partial_t \rho + \operatorname{div}(\rho \nabla f[\rho]) = 0.$

Continuity equations with local/nonlocal transport and/or diffusion:

$$\partial_t \rho + \operatorname{div}(\rho V[\rho, \nabla \rho]) = 0, \qquad \rho = \rho(t, x), \quad x \in \mathbb{R}^d, \ t \ge 0.$$

If $V[\rho, \nabla \rho]$ is a gradient, we have a gradient flow:

$$\partial_t \rho + \operatorname{div}(\rho \nabla f[\rho]) = 0.$$

In relevant examples, the speed $|V[\rho, \nabla \rho]|$ is cut-off at high densities no matter what the direction is: **prevention of overcrowding:**

 $\partial_t \rho + \operatorname{div}(\rho \mathbf{v}(\rho) \nabla g[\rho]) = 0.$

Continuity equations with local/nonlocal transport and/or diffusion:

$$\partial_t
ho + \operatorname{div}(
ho V[
ho,
abla
ho]) = 0, \qquad
ho =
ho(t, x), \quad x \in \mathbb{R}^d, \ t \ge 0.$$

If $V[\rho, \nabla \rho]$ is a gradient, we have a gradient flow:

$$\partial_t \rho + \operatorname{div}(\rho \nabla f[\rho]) = 0.$$

In relevant examples, the speed $|V[\rho, \nabla \rho]|$ is cut-off at high densities no matter what the direction is: **prevention of overcrowding:**

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}(\rho) \nabla g[\rho]) = 0.$$

Typical law for $v(\rho)$

Let $\rho_{\max} > 0$ be a maximal density. Then,

$$v : [0, \rho_{\max}] \rightarrow [0, v_{\max}], \quad v \text{ decreasing, and } v(\rho_{\max}) = 0.$$

Examples in biology

Aggregation/Swarming phenomena

Avoiding blow-up of the density when aggregation phenomena dominate, with the goal of detecting *pattern-formation* for large times rather than concentration to Dirac masses:

$$\partial_t \rho + \operatorname{div}(\rho v(\rho) \nabla(a(\rho) + W * \rho)) = 0,$$

with $a(\rho)$ a nonlinear diffusion function and W = W(x) an aggregative kernel.

5 / 22

Examples in biology

Aggregation/Swarming phenomena

Avoiding blow-up of the density when aggregation phenomena dominate, with the goal of detecting *pattern-formation* for large times rather than concentration to Dirac masses:

$$\partial_t \rho + \operatorname{div}(\rho v(\rho) \nabla(a(\rho) + W * \rho)) = 0,$$

with $a(\rho)$ a nonlinear diffusion function and W = W(x) an aggregative kernel.

Modified chemotaxis modelling

To prevent concentration in the Keller-Segel system:

$$\rho_t = D_{\rho} \Delta \rho - \chi \operatorname{div}(\rho(\rho_{\max} - \rho) \nabla c)$$

$$\varepsilon c_t = D_c \Delta c + \alpha \rho - \beta c.$$

Examples in real-world applications

Traffic flow: extended LRW equation

d = 1, vehicles moving in the same direction, external potential V = V(x) describing possible heterogeneities on the road:

 $\partial_t \rho + \partial_x (\rho v(\rho) V'(x)) = 0.$

Examples in real-world applications

Traffic flow: extended LRW equation

d = 1, vehicles moving in the same direction, external potential V = V(x) describing possible heterogeneities on the road:

$$\partial_t \rho + \partial_x (\rho v(\rho) V'(x)) = 0.$$

Pedestrian motion

d = 1, 2, pedestrians moving with speed $v(\rho)$ and direction $\nabla \varphi / |\nabla \varphi|$, where φ is determined nonlocally from the overall density. Examples:

• (Hughes) $|\nabla \varphi| = c(\rho)$, with cost function $c(\rho)$ increasing with the density.

• (Colombo et al.)
$$\rho_t + \operatorname{div}\left(\rho v(\rho)(\nu(x) - \varepsilon \frac{\nabla \eta * \rho}{\sqrt{1 + |\nabla \eta * \rho|^2}})\right) = 0.$$

Examples in real-world applications

Traffic flow: extended LRW equation

d = 1, vehicles moving in the same direction, external potential V = V(x) describing possible heterogeneities on the road:

$$\partial_t \rho + \partial_x (\rho v(\rho) V'(x)) = 0.$$

Pedestrian motion

d = 1, 2, pedestrians moving with speed $v(\rho)$ and direction $\nabla \varphi / |\nabla \varphi|$, where φ is determined nonlocally from the overall density. Examples:

• (Hughes) $|\nabla \varphi| = c(\rho)$, with cost function $c(\rho)$ increasing with the density.

• (Colombo et al.)
$$\rho_t + \operatorname{div}\left(\rho v(\rho)(\nu(x) - \varepsilon \frac{\nabla \eta * \rho}{\sqrt{1 + |\nabla \eta * \rho|^2}})\right) = 0.$$

Other applications include:

- Phase segregation with long range interactions
- Simplified models for Fermi-Dirac condensates

Comparison with other approaches preventing high densities (Katy Craig's talk).

M. Di Francesco (L'Aquila)

• All aforementioned applications are best formulated in a (discrete) microscopic setting, as they describe *individual-based phenomena*.

- All aforementioned applications are best formulated in a (discrete) microscopic setting, as they describe *individual-based phenomena*.
- The (continuum) macroscopic description has two main advantages:

- All aforementioned applications are best formulated in a (discrete) microscopic setting, as they describe *individual-based phenomena*.
- The (continuum) macroscopic description has two main advantages:
 - Broad range of numerical methods available.

- All aforementioned applications are best formulated in a (discrete) microscopic setting, as they describe *individual-based phenomena*.
- The (continuum) macroscopic description has two main advantages:
 - Broad range of numerical methods available.
 - Detecting large time behaviour (patterns, diffusive decay, concentrations, etc.).

- All aforementioned applications are best formulated in a (discrete) microscopic setting, as they describe *individual-based phenomena*.
- The (continuum) macroscopic description has two main advantages:
 - Broad range of numerical methods available.
 - Detecting large time behaviour (patterns, diffusive decay, concentrations, etc.).
- The continuum description needs to be rigorously validated, via *many particle limits*.

- All aforementioned applications are best formulated in a (discrete) microscopic setting, as they describe *individual-based phenomena*.
- The (continuum) macroscopic description has two main advantages:
 - Broad range of numerical methods available.
 - Detecting large time behaviour (patterns, diffusive decay, concentrations, etc.).
- The continuum description needs to be rigorously validated, via *many particle limits*.
- First step in the understanding of those limits: no diffusion. Deterministic particle limits.

- All aforementioned applications are best formulated in a (discrete) microscopic setting, as they describe *individual-based phenomena*.
- The (continuum) macroscopic description has two main advantages:
 - Broad range of numerical methods available.
 - Detecting large time behaviour (patterns, diffusive decay, concentrations, etc.).
- The continuum description needs to be rigorously validated, via *many particle limits*.
- First step in the understanding of those limits: no diffusion. Deterministic particle limits.

Main difficulty

The velocity field is typically not continuous w.r.t. tight convergence, because of the local dependency on $\rho.$

Related literature

Case v constant (linear mobility):

- Nonlocal interaction equations with regular kernels: Dobrushin (1979)
- Nonlocal interaction equations (with singular kernels): Carrillo et al.
- Deterministic diffusion (linear case): Russo (1990)
- Nonlinear diffusion: Gosse-Toscani (2006)
- Multidimensional deterministic diffusion via gamma convergence: Carrillo, Craig, Patacchini...
- Diffusion and nonlocal interactions: Matthes et al.
- Case v non-constant (nonlinear mobility):
 - General setting with velocity field continuous w.r.t. measure topology: Piccoli-Rossi 2013

Table of contents

The follow-the-leader model

article approximation of the nonlocal model

General continuum model:

$$\rho_t + \operatorname{div}(\rho \underbrace{v(\rho)\nabla(V + W * \rho)}_{\text{velocity field}}) = 0.$$

General continuum model:

$$\rho_t + \operatorname{div}(\rho \underbrace{v(\rho)\nabla(V + W * \rho)}_{\text{velocity field}}) = 0.$$

Discrete counterpart with N particles x_1, \ldots, x_N :

$$\dot{x}_i(t) = v(R_i(t))\Big(
abla V(x_i(t)) + (
abla W * ilde{
ho}^N(x_i(t)))\Big),$$

with

- R_i a suitable reconstruction of the density around the particle x_i ,
- $\tilde{\rho}^{N}$ a suitable replacement for the global discrete density.

10 / 22

General continuum model:

$$\rho_t + \operatorname{div}(\rho \underbrace{v(\rho)\nabla(V + W * \rho)}_{\text{velocity field}}) = 0.$$

Discrete counterpart with N particles x_1, \ldots, x_N :

$$\dot{x}_i(t) = v(R_i(t))\Big(
abla V(x_i(t)) + (
abla W * ilde{
ho}^N(x_i(t)))\Big),$$

with

- R_i a suitable reconstruction of the density around the particle x_i ,
- $\tilde{\rho}^N$ a suitable replacement for the global discrete density.

Fact 1: with d = 1 the reconstruction of the density is much easier, and one-dimensional cases are relevant to some of our target applications (e.g. traffic flow).

General continuum model:

$$\rho_t + \operatorname{div}(\rho \underbrace{\nu(\rho)\nabla(V + W * \rho)}_{\text{velocity field}}) = 0.$$

Discrete counterpart with N particles x_1, \ldots, x_N :

$$\dot{x}_i(t) = v(R_i(t))\Big(
abla V(x_i(t)) + (
abla W * ilde{
ho}^N(x_i(t)))\Big),$$

with

- R_i a suitable reconstruction of the density around the particle x_i ,
- $\tilde{\rho}^N$ a suitable replacement for the global discrete density.

Fact 1: with d = 1 the reconstruction of the density is much easier, and one-dimensional cases are relevant to some of our target applications (e.g. traffic flow). Fact 2: the nonlocal part can be discretized as

$$\tilde{\rho}^{N}(t) = \frac{M}{N} \sum_{i} \delta_{x_{i}(t)}, \qquad \nabla W * \tilde{\rho}^{N}(x_{i}(t)) = \frac{M}{N} \sum_{i} \nabla W(x_{i}(t) - x_{j}(t)),$$

(where M is the total mass).

M. Di Francesco (L'Aquila)

Scalar conservation laws: the result¹

The unique entropy solution to the d = 1 conservation law

$$\rho_t + (\rho v(\rho))_x = 0,$$

with given $\rho(t = 0) \in L^{\infty}$, compactly supported, and with mass M, is approximated in L^1 (strongly) as $N \to +\infty$ by the discrete density

$$\rho^{N}(t,x) = \sum_{i=0}^{N-1} R_{i}(t) \chi_{[x_{i}(t),x_{i+1}(t))}, \qquad R_{i}(t) = \frac{\ell_{N}}{x_{i+1}(t) - x_{i}(t)}, \quad \ell_{N} = M/N,$$

where x_i , $i = 1, \ldots, N$ solve

$$\dot{x}_N(t) = v(0)$$

 $\dot{x}_i(t) = v(R_i(t)), \quad i = 0, \dots, N-1,$

with initial condition $\bar{x}_0, \ldots, \bar{x}_N$ such that

$$\int_{\bar{x}_i}^{\bar{x}_{i+1}} \rho(t=0,x) dx = \ell_N.$$

¹DF-Rosini, ARMA 2015

M. Di Francesco (L'Aquila)

• Result holds in presence of vacuum.

- Result holds in presence of vacuum.
- Essential for the result is a control of the BV norm of ρ^N .

- Result holds in presence of vacuum.
- Essential for the result is a control of the BV norm of ρ^N .
- If we assume $\rho \mapsto \rho v'(\rho)$ non-increasing, then the result does not require the initial norm to be finite $(L^{\infty}-BV$ smoothing effect).

- Result holds in presence of vacuum.
- Essential for the result is a control of the BV norm of ρ^N .
- If we assume $\rho \mapsto \rho v'(\rho)$ non-increasing, then the result does not require the initial norm to be finite (L^{∞} -BV smoothing effect).
- Otherwise, we need $\rho(t = 0) \in BV(\mathbb{R})$. The *BV* norm can be proven to be *non-increasing*.

12 / 22

- Result holds in presence of vacuum.
- Essential for the result is a control of the BV norm of ρ^N .
- If we assume ρ → ρv'(ρ) non-increasing, then the result does not require the initial norm to be finite (L[∞]-BV smoothing effect).
- Otherwise, we need $\rho(t = 0) \in BV(\mathbb{R})$. The *BV* norm can be proven to be *non-increasing*.
- The scheme leads to the unique *entropy solution*. Surprising, since the scheme does not display the shock structure of a conservation law (kinetic velocity ≠ characteristic velocity).

- Result holds in presence of vacuum.
- Essential for the result is a control of the BV norm of ρ^N .
- If we assume ρ → ρν'(ρ) non-increasing, then the result does not require the initial norm to be finite (L[∞]-BV smoothing effect).
- Otherwise, we need $\rho(t = 0) \in BV(\mathbb{R})$. The *BV* norm can be proven to be *non-increasing*.
- The scheme leads to the unique *entropy solution*. Surprising, since the scheme does not display the shock structure of a conservation law (kinetic velocity ≠ characteristic velocity).
- Approach can be extended to
 - Dirichlet boundary conditions,
 - Second order traffic models,
 - (Small BV-norm solutions to the) Hughes model for pedestrians.

Table of contents

Particle approximation of the nonlocal model

The continuum nonlocal model

We study²

$$\partial_t
ho - \partial_x (
ho \mathbf{v}(
ho) \mathbf{K}' *
ho) = \mathbf{0}$$

 $ho(t = \mathbf{0}) = ar
ho \in L^\infty_c(\mathbb{R}; [\mathbf{0},
ho_{\mathsf{max}}]) \cap BV(\mathbb{R})$

Assumptions on K

$$\mathcal{K}\in \mathcal{C}^2(\mathbb{R}),\ \mathcal{K}(-x)=\mathcal{K}(x),\ \mathcal{K}'>0\ ext{on}\ (0,+\infty),\ \mathcal{K}''\in ext{Lip}_{\mathit{loc}}(\mathbb{R}).$$

Assumptions on v

$$v \in C^1([0, +\infty))$$
, v decreasing on $[0, \rho_{\max}]$, $v \equiv 0$ on $[\rho_{\max}, +\infty)$.

Same atomization algorithm as before \Rightarrow Initial positions of N + 1 particles $\bar{x}_0 < \ldots < \bar{x}_N$.

M. Di Francesco (L'Aquila)

(1a)

²DF, Fagioli, Radici - submitted

The discrete model

$$\begin{split} \dot{x}_{i}(t) &= -\frac{1}{N} \underbrace{v(R_{i}(t))}_{\text{forward density}} \sum_{j>i} K'(x_{i}(t) - x_{j}(t)) - \frac{1}{N} \underbrace{v(R_{i-1}(t))}_{\text{backward density}} \sum_{j

$$\begin{aligned} \text{Discrete density:} \qquad R_{i}(t) &= \frac{1}{N(x_{i+1}(t) - x_{i}(t))} \end{split}$$$$

Properties:

- Discrete maximum principle $x_{i+1}(t) x_i(t) \ge \frac{M}{\rho_{\max}N}$, i.e. $R_i(t) \le \rho_{\max}$
- Global existence
- $x_0(t) \geq \bar{x}_0, x_N(t) \leq \bar{x}_N$ (confined support)

Estimates

$$ho^{N}(t,x) = \sum_{i=0}^{N-1} R_{i}(t)\chi_{[x_{i}(t),x_{i+1}(t))}$$
 $TV[
ho^{N}(\cdot,t)] = R_{0}(t) + \sum_{i=0}^{N-2} |R_{i+1}(t) - R_{i}(t)| + R_{N-1}(t)$

Uniform BV estimate

There exists a constant C>0 depending only on K, v, and $meas(supp[\bar{\rho}])$, such that

$$TV[\rho^N(\cdot, t)] \leq TV[\bar{\rho}]e^{Ct}$$
, for all $t \geq 0$.

- The proof crucially uses the monotonicity of v and the splitting of the use of 'upwind' densities in the velocity field.
- The overcrowding prevention effect is also crucial: without it, particles would collapse into a single point mass.

Convergence of the scheme

- The previous BV-estimate allows to control space-oscillations.
- As for time-oscillations, we prove Lipschitz equi-continuity in the 1-Wasserstein distance

$$W_1(\rho^N(t,\cdot),\rho^N(s,\cdot))\leq C|t-s|,$$

with C > 0 independent of N.

 Rossi-Savaré 2003 (Aubin/Lions-type compactness theorem) implies strong compactness of ρ^N in L¹([0, +∞) × ℝ).

Entropy solutions

Similarly to scalar conservation laws, we define

Definition

 $\rho: [0, +\infty) \times \mathbb{R} \to [0, +\infty)$ is an entropy solution to (1a) with initial condition $\overline{\rho}$ if $\rho \in L^{\infty}([0, +\infty); L^{1} \cap L^{\infty}(\mathbb{R}))$ and, for all constants $c \geq 0$ and for all $\varphi \in C_{c}([0, +\infty) \times \mathbb{R})$ with $\varphi \geq 0$ one has

$$\begin{split} \int_{\mathbb{R}} |\bar{\rho}(x) - c|\varphi(0,x)dx + \int_{0}^{+\infty} \int_{\mathbb{R}} (|\rho - c|\varphi_{t} \\ -\operatorname{sign}(\rho - c) \left[(f(\rho) - f(c))\mathcal{K}' * \rho\varphi_{x} - f(c)\mathcal{K}'' * \rho\varphi \right] \right) dxdt \geq 0, \end{split}$$
where $f(z) = zv(z).$

Notice that entropy solutions are weak solutions.

Theorem

- There exists no more than one entropy solution to (1a) with initial condition $\bar{
 ho}$
- $\rho^N \to \rho$ as $N \to +\infty$ and ρ is an entropy solution (proof: very technical).

Non uniqueness of weak solutions

Consider $v(\rho) = (1 - \rho)_+$ and the initial condition

 $\bar{\rho}(x) = \chi_{[-1,-1/2]} + \chi_{[1/2,1]}.$

Let $\rho_s(t,x) = \overline{\rho}(x)$ for all $t \ge 0$.

- ρ_s is a (stationary) weak solution to (1a)
- ρ_s is not an entropy solution. Proof: use test functions that concentrate around -1/2 and 1/2 to violate the entropy condition. Extra assumption needed: K'' > 0 on the support of $\bar{\rho}$.
- We know the scheme converges to an entropy solution, therefore there are *at least two weak solutions* with this initial condition.
- Why is ρ_s not satisfying the entropy condition: the discontinuities at $\pm 1/2$ are not admissible.
- The scheme catches this behavior because particles at $\pm 1/2$ are forced to *move*.

Simulations

Extension to the diffusive case³

$$\partial_t \rho = \partial_{xx} \varphi(\rho) + \partial_x (\rho v(\rho) K' * \rho)$$

- On bounded intervals with no-slip boundary conditions
- Initial datum away from the vacuum state
- Convergence to weak solutions via BV estimate
- Diffusion term may be degenerate, φ is required to be *non-decreasing*
- Assumption on *K* are the same as before.

³Fagioli, Radici - to appear on M3AS

End of the talk

Thanks for your attention!