A new continuum theory for incompressible swelling materials

P. Degond

Department of Mathematics Imperial College London United Kingdom

Joint work with

Marina Ferreira (ICL / Helsinki) Sara Merino Aceituno (Sussex / Vienna) Mickaël Nahon (Ecole Normale Supérieure Lyon)

arXiv:1707.02166

pdegond@imperial.ac.uk (see http://sites.google.com/site/degond/)

- 1. Introduction
- 2. Microscopic background
- 3. Continuum model: equilibrium
- 4. Movement: non-swapping condition
- 5. Movement: minimal displacement condition
- 6. Determination of volumic growth
- 7. Conclusion and perpectives

1. Introduction

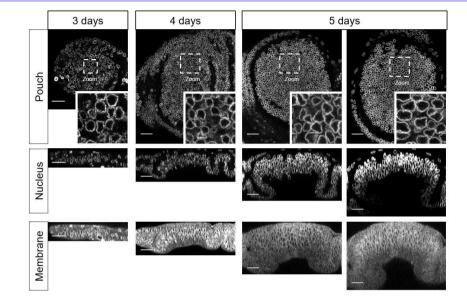
Swelling or drying media

Examples

Tissues (development) Cancer (tumor growth) Geosciences (soil) Cooking (dough, pasta) Important applications

Solid mechanics models Hyperelasticity + growth tensor [Ben Amar, Goriely, Chaplain, ...]

Fluid mechanics models Based on Darcy's law [Bertsch, Preziosi, Lowengrub, Oden, Byrne, Spreckels, ...]



Pierre Degond - Continuum models of swelling materials - Barn, Entropies, 05/04/2010

Why Darcy's law ?

General framework

packed medium: uniform density n = 1continuity eq.: $\nabla \cdot v = q = \text{growth rate (given)}$

How to determine the velocity v ? (closure problem) one scalar equation for a vector can only determine v in 1-D

Darcy's law: $v = -k\nabla p$ (with p =pressure)

gives the simplest answer but the simpler needs not be the better validity discussed in [Ambrosi-Preziosi]

Goal: revisit the closure problem assuming simple heuristics assess validity of Darcy's closure

Other modelling features

Packing heuristics: derived from compressible dynamics incompressible limit [Perthame-Quiros-Vazquez, Hecht-Vauchelet]

Leads to a free boundary problem

for the boundary of the tumor [Friedman] akin to Hele-Shaw free-boundary problem in fluid mechanics

Cell-based models

off lattice models [Drasdo, ...],

cellular automata, cellular Potts models [Merks, ...]

coarse-grained into Hele-Shaw model in [Motsch-Peurichard]

Current work

use packing heuristics

take inspiration from micro model to build continuum one

Modelling assumptions

Rule 1: non-overlapping particles in external potential minimize mechanical energy under non-overlapping constraints

- Potential and particle volume evolve in time adiabatic particle motion particles stay at energy minimum under packing constraints
- Rule 2: particles cannot swap positions
- Rule 3: Displacement between "successive positions" is minimal
- Goal: derive particle model (P), then, continuum model (C) but no formal convergence (P) \rightarrow (C) analogy with crowd models [Maury, Roudneff-Chupin, Santambrogio]

2. Microscopic background

Equilibrium problem

N spheres, positions $x_i \in \mathbb{R}^d$; radii $R_i > 0, i = 1, ..., N$ Denote $\mathcal{X} = (x_i)_{i=1,...,N}, \mathcal{R} = (R_i)_{i=1,...,N}$ External potential V(x, R)Energy $E_{\mathcal{R}}(\mathcal{X}) = \sum_{i=1}^{N} V(x_i, R_i)$ Admissible (non-overlapping) configurations: $\mathcal{A}_{\mathcal{R}} = \{\mathcal{X} \mid |x_i - x_j| \ge R_i + R_j, \forall i \neq j\}$ Seek \mathcal{X} a solution of the problem $\min_{\mathcal{X} \in \mathcal{A}_{\mathcal{R}}} E_{\mathcal{R}}(\mathcal{X})$ Non-convex problem

multiple solutions

for numerical resolution:

[Maury, D-Ferreira-Motsch, ...]

Adiabatic evolution problem

Time-varying potential V = V(x, R, t) and radii $\mathcal{R} = \mathcal{R}(t)$ Energy $E_{\mathcal{R},t}(\mathcal{X}) = \sum_{i=1}^{N} V(x_i, R_i, t)$ $\mathcal{X}(t)$ a solution of $\min_{\mathcal{X} \in \mathcal{A}_{\mathcal{R}(t)}} E_{\mathcal{R}(t),t}(\mathcal{X})$ Problem: find a smooth trajectory $\mathcal{X}(t)$ and define $\mathcal{V}(t) = \frac{d}{dt}\mathcal{X}(t)$

Time-discretization Δt ; define $t^k = k\Delta t$, $\mathcal{X}^k = \mathcal{X}(t^k)$, ... \mathcal{X}^k solves $\min_{\mathcal{X} \in \mathcal{A}_{\mathcal{R}^k}} E_{\mathcal{R}^k, t^k}(\mathcal{X})$ increment $k \to k + 1$ \mathcal{X}^k not a solution of $\min_{\mathcal{X} \in \mathcal{A}_{\mathcal{R}^{k+1}}} E_{\mathcal{R}^{k+1}, t^{k+1}}(\mathcal{X})$

Find a solution \mathcal{X}^{k+1} as close as possible to \mathcal{X}^k i.e. $\mathcal{V}^{k+1/2} = \frac{1}{\Delta t}(\mathcal{X}^{k+1} - \mathcal{X}^k)$ as small as possible stated as "minimal displacement rule" \Rightarrow "non-swapping rule" (otherwise large displacements)

Comments on microscopic description

Strategy proposed for crowd motion

[Maury, Venel, Roudneff-Chupin, Santambrogio, Al Reda ...]

Strategy applied for tumor growth modelling

[Leroy-Leretre, ...]

Finding a theoretical solution is difficult minimization problem non-convex solution not unique many closeby local minima

Problem is simpler in a continuum description goal of this work

3. Continuum model: equilibrium

Continuum equilibrium problem

Given: particle average volume $\tau(x)$; external potential $V(x, \tau)$ unknown is particle density n(x)Total number of particles $\int n(x) dx = N$ is fixed energy $F_{\tau}[n] = \int V(x, \tau(x)) n(x) dx$ non-overlapping condition $n \tau \leq 1$ admissible config: $\mathcal{A}_{\tau,N} = \{n \mid n \geq 0, n\tau \leq 1, \int n(x) dx = N\}$ seek a solution n to $\min_{n \in \mathcal{A}_{\tau,N}} F_{\tau}[n]$

Assumptions

define $W(x) = V(x, \tau(x))$ (effective potential). Assume: $W \to \infty$ as $|x| \to \infty$ W(0) = 0, $W(x) \ge 0$ and 0 is the only critical point of W level sets $\{W(x) = u\}$ compact, connected, > 0 measure $\int \tau^{-1}(x) dx \ge N$

Equilibrium problem: solution

Under the previous assumptions and other technical assumptions (skipped) problem $\min_{n \in A_{\tau,N}} F_{\tau}[n]$ has a unique solution

Given by

$$n(x) = \begin{cases} \tau^{-1}(x) & \text{if } x \in \Omega_N \\ 0 & \text{otherwise} \end{cases}$$

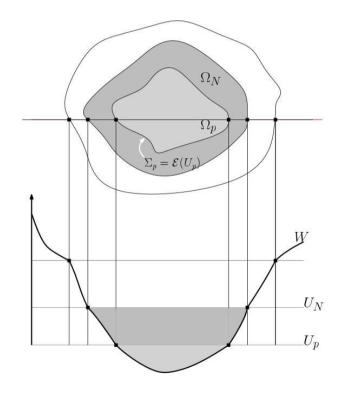
$$\Omega_N = \{x \in \mathbb{R}^d \mid 0 \le W(x) \le U_N\}$$

$$U_n \text{ s.t. } P(U_n) = N$$

$$P(u) = \int_{0 \le W(x) \le U} \tau^{-1}(x) \, dx$$

$$P(u) = \text{number of particles enclosed}$$

$$\text{by level set } \{W(x) = u\}$$



4. Movement: non-swapping condition

Adiabatic variation of V and τ

Suppose $V = V(x, t, \tau), \ \tau = \tau(x, t)$ at each t, gives solution $n(t) = n(\cdot, t)$ of previous min problem with frozen t, i.e. with $V(t) = V(\cdot, t, \cdot)$, $\tau(t) = \tau(\cdot, t)$ and $\int n(x,t) dx = N = \text{constant}$ (no source/sink of particles) energy $F_{\tau(t),t}[n] = \int V(x,\tau(x,t),t) n(x) dx$ admissible configuration: $\mathcal{A}_{\tau(t),N} =$ $\{n \mid n \ge 0, n\tau(t) \le 1, \int n(x) \, dx = N\}$ n(t) = the solution to $\min_{n \in \mathcal{A}_{\tau(t),N}} F_{\tau(t),t}[n]$ Goal: define v s.t. $\partial_t n + \nabla \cdot (nv) = 0$ $U_N(t_2)$ $U_N(t_1)$ motion of $\Sigma_N(t)$ \dot{N} (at time t_2) **Pierre Degond** ppies, 09/04/2018 \downarrow Ň (at time t_1)

↑

Non-swapping condition

Continuity eq. is an eq. for v since n is known

But scalar eq. for a vector quantity v: requires more conditions

Note $\Pi(x,t) = P(W(x,t),t) = \#$ of particles in domain limited by level set $\Sigma_p(t) = \{y | W(y,t) = W(x,t)\}$ with $p = \Pi(x,t)$ $\Sigma_p(t) = \{y | \Pi(y,t) = p\} = \partial \Omega_(t), \quad \Omega_p(t) = \{y | \Pi(y,t) \le p\}$

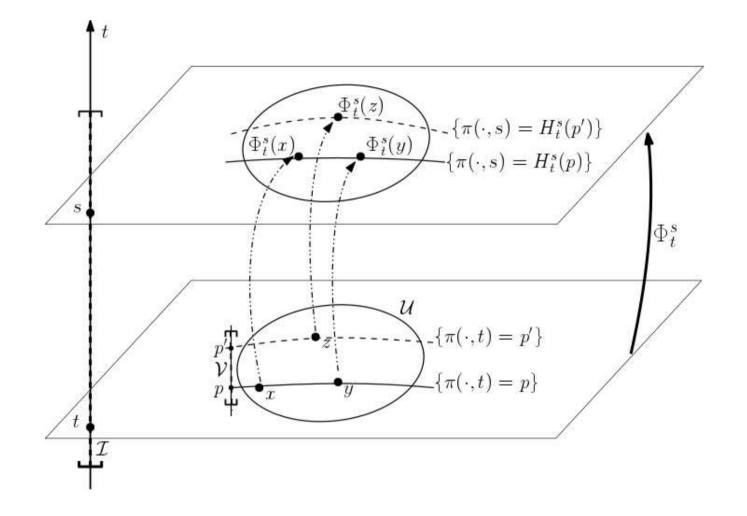
Non-swapping condition:

Two close particles are on the same level set $\Sigma_{p_0}(t_0)$ at time t_0 iff they are on the same level set $\Sigma_{p(t)}(t)$ for all t close to t_0

In dimension d = 1: non-swapping condition trivially satisfied v uniquely determined by continuity condition

In dimension $d \ge 2$: non-swapping condition non-trivial determines the component of v normal to $\Sigma_p(t)$

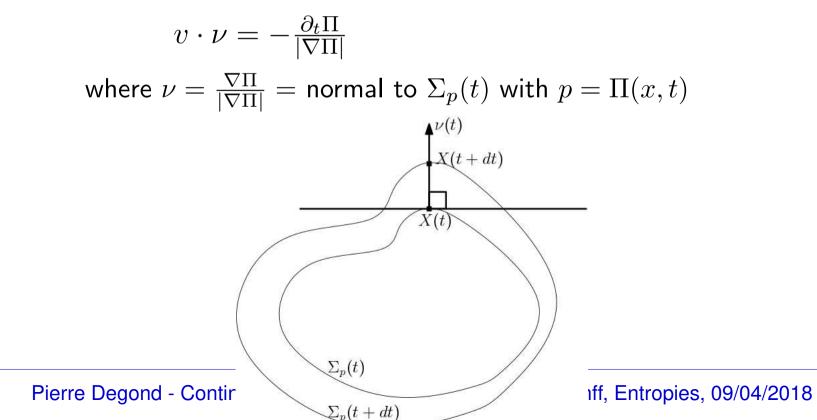
Graphical view of non-swapping condition 18



Non-swapping determines normal velocity 19

Thm $(d \ge 2)$: Non-swapping condition \Leftrightarrow For each particle, \exists unique p s.t. particle $\in \Sigma_p(t)$, $\forall t$ \Leftrightarrow let X(t) satisfy $\dot{X}(t) = v(X(t), t)$ with v satisfying continuity eq. Then $\exists p \ge 0$ such that $\Pi(X(t), t) = p$, $\forall t$

 \Rightarrow Normal velocity to $\Sigma_p(t)$ uniquely determined



 \downarrow

1

5. Movement: minimal displacement condition

Existence of parallel velocity

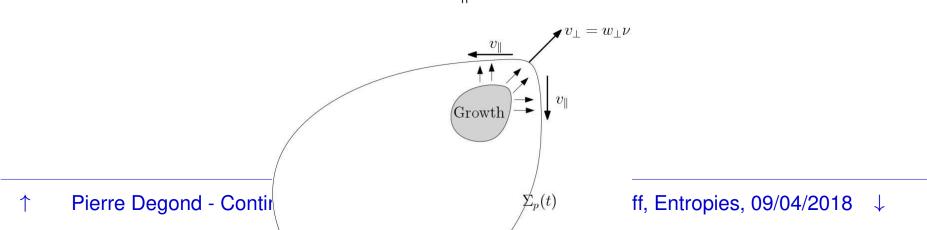
$$v = v_{\perp} + v_{\parallel}$$
, $v_{\perp} = (v \cdot \nu)\nu = -\frac{\partial_t \Pi}{|\nabla \Pi|} \frac{\nabla \Pi}{|\nabla \Pi|}$, in general $v_{\parallel} \neq 0$

$$v_{\parallel}$$
 satisfies continuity eq. (with $n = \tau^{-1}$)
 $\nabla_{\cdot}(\tau^{-1}v_{\parallel}) = f$, $f = -\partial_t \tau^{-1} - \nabla \cdot (\tau^{-1}v_{\perp})$ known from above

Lemma (solvability condition)

Suppose a tangent vector field A to Σ_p is such that $\nabla_{\parallel} \cdot A = f$ Then, f must satisfy the constraint $\int_{\Sigma_p} f(x) \frac{d\Sigma_p(x)}{|\nabla \Pi|} = 0$

Theorem: $f = -\partial_t \tau^{-1} - \nabla \cdot (\tau^{-1} v_\perp)$ satisfies this constraint guarantees the existence of v_{\parallel} satisfying the continuity eq.



Uniqueness: principle of minimal displacement 22

 v_{\parallel} not unique: uniqueness requires additional rule

principle of minimal displacements

 $\begin{array}{l} v_{\parallel} \text{ minimizes kinetic energy } T[w_{\parallel}] = \int_{\Sigma_p} |w_{\parallel}(x)|^2 \, g(\tau(x)) \, \frac{d\Sigma_p(x)}{|\nabla\Pi|} \\ \text{ with } g \text{ appropriate weight (standard KE: } g(\tau) = \tau^{1-\frac{1}{d}}) \\ \text{ among fields } w_{\parallel} \text{ s.t. } \nabla_{\parallel} \cdot (\tau^{-1} w_{\parallel}) = f \end{array}$

 $v_{\parallel} = \arg\min\{T[w_{\parallel}]\,,\ w_{\parallel} \text{ s.t. } \nabla_{\parallel} \cdot (\tau^{-1}w_{\parallel}) = f\}$

Minimization problem has a unique solution

 $v_{\parallel} = -(g\tau)^{-1} \, \nabla_{\parallel} \theta$

where $\theta =$ unique solution in $H_0^1(\Sigma_p)$ of

$$\begin{split} -\nabla_{\parallel}(\tau^{-2}g^{-1}(\tau)\nabla_{\parallel}\theta) &= f \quad \text{on } \Sigma_p, \, \forall p \\ \text{with } H^1_0(\Sigma_p) &= \{\theta \in H^1(\Sigma_p) \mid \int_{\Sigma_p} \theta(x) \, \frac{d\Sigma_p(x)}{|\nabla\Pi|} = 0 \} \end{split}$$

6. Determination of volumic growth

Summary of model

24

Equilibrium under non-overlapping constraint: at any time t $n(x,t) = \begin{cases} \tau^{-1}(x,t) & \text{if } x \in \Omega_N(t) \\ 0 & \text{otherwise} \end{cases}$ $\Omega_p(t) = \{x \mid 0 \le \Pi(x,t) \le p\}, \quad \Sigma_p(t) = \{x \mid \Pi(x,t) = p\}$ $\Pi(x,t) = \int_{0 \le W(y,t) \le W(x,t)} \tau^{-1}(y,t) \, dy$

Movement: normal velocity to Σ_p (non-swapping condition)

$$v_{\perp} = -\frac{\partial_t \Pi}{|\nabla \Pi|} \frac{\nabla \Pi}{|\nabla \Pi|}$$

Movement: parallel velocity (minimal displacement rule):

 $v_{\parallel} = -(g\tau)^{-1} \nabla_{\parallel} \theta$ and $\theta =$ unique (average zero) solution of $-\nabla_{\parallel}(\tau^{-2}g^{-1}(\tau)\nabla_{\parallel}\theta) = f$ on Σ_p , $\forall p$

In practice, τ not given a priori. Depends on v instead

Determination of τ

Swelling rate = Lagrangian quantity attached to each particle $(\partial_t + v \cdot \nabla)\tau = q(x, t, \tau)$ with q = swelling rate \Rightarrow nonlinear coupling between τ and v

v must be smooth enough to make sense of eq. for τ Suppose V and $\tau_0 := \tau|_{t=0}$ are C^{∞} . Denote $\mathbb{R}^d_* = \mathbb{R}^d \setminus \{0\}$ Lemma: $\tau \in C^{\infty}(\mathbb{R}^d_* \times [0,T]) \Rightarrow v \in C^{\infty}(\mathbb{R}^d_* \times [0,T])$ Note: possible singularity at x = 0 as x = 0 critical for W

Conversely

 $\tau \in C^{\infty}(\mathbb{R}^d_* \times [0,T]) \Rightarrow v \in C^{\infty}(\mathbb{R}^d_* \times [0,T]) \text{ if characteristics}$ issued from $x \neq 0$ do not reach x = 0 or ∞ in finite time

Lemma: Assume $q(x, t, \tau) = \overline{q}(x, t)\tau$ and $\exists C > 0$ s.t. $|\overline{q}| \leq C$, and $C^{-1} \leq \tau_0 \leq C$. Then, no characteristics issued from $x \neq 0$ reaches x = 0 or ∞ in finite time

7. Conclusion and perspectives

Discussion

New rule-based model for swelling materials

non-overlapping / non-swapping / minimal displacements

 \neq from Darcy law and Hele-Shaw model:

in HS / Darcy, $v_{\parallel}=0$ at the domain boundary. Here $v_{\parallel}\neq 0$

```
Perspectives (modelling)
```

contact interactions between nearby particles

cell division

fuzzy tumor boundary (\approx finite temperature) coupling to chemical signaling or nutrient transport statistical description of particle sizes multiple particle species

```
Perspective (theory)
```

existence / uniqueness

derivation from micro model

derivation from singular limits of other macro models