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The Kac Walk on the N -sphere

The Kac walk was introduced by Mark Kac in 1956 as a
model for particles undergoing binary collisions. He was
interested in the rate of equilibration.

In its simplest form, the model concerns N particles with
one dimensional velocities

v1, . . . , vN .

The state of the system will change due to a random
process in which 2 of the velocities are changed at a time.
This is intended to model binary collisions, and it is required

that the total energy E =

N
∑

j=1

v2j is conserved.

Entropy Production Inequalities for the Kac Walk – p. 3/30



Then for an N particle system with total energy N , the state
space SN is the set of all vectors

(v1, v2, . . . , vN )

on the sphere of radius
√
N .

In the Kac walk on SN , at each step one picks a pair i, j at
random (depending on the energies, not uniformly), and
then an angle θ uniformly in [0, 2π), and then moves from
~v = (v1, v2, . . . , vN ) to

(v1, . . . , v
′
i, . . . , v

′
j , . . . , vN ) =: Ri,j,θ~v

where

v′i = cos θvi + sin θvj and v′j = − sin θvi + cos θvj .
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The jumps arrive in a Poisson stream, one for each pair.
Associated to each pair (i, j), i < j, there is an exponential
random variable Ti,j with parameter

λi,j = N

(

N

2

)−1

(1 + v2i + v2j )
γ ,

where 0 ≤ γ ≤ 1, and γ = 1/2 is the case of main interest,
corresponding to “hard-sphere collisions”.

Ti,j is the waiting time for particles i and j to collide, and the

set of these random times is taken to be independent. The
first collision occurs at time T = mini<j{Ti,j}, and then the

process starts over after particles i, j collide.
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Let L be the generator of this process, which is reversible,
so that if the initial probability density for ~v is F , the density

at time t is etLF , where

LF (~v) = N

(

N

2

)−1
∑

i<j

(1 + v2i + v2j )
γ(F i,j − F ) ,

F i,j(~v) :=
1

2π

∫ π

−π

F (Ri,j,θ~v)dθ .
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This form of the generator was discussed by Villani. Ideally,

one would like to replace (1 + v2i + v2j )
γ with (v2i + v2j )

γ , as in

the work on the spectral gap by Carlen, C. and Loss.
However, in the context of entropy production it is not clear
how to do this, and we work with the form studied by Villani.

In terms of scaling, the rate (v2i + v2j )
1/2 corresponds to the

hard-sphere collisions.
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Chaos

∂

∂t
F = LF

is the Kac Master equation. Its connection with the
Boltzmann equation comes through Kac’s notion of chaos.
The coordinate functions on SN are never independent, but
for large N , they are almost pairwise independent.

This is because the unit Gaussian probability measure on

RN is strongly concentrated on SN , the sphere of radius√
N .

In particular, as etLF tends to 1, its single particle marginals
tend to

1√
2π
e−v2/2 .
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Let µ be a probability measure on R. A sequence {µ(N)} of

probability measures on SN is µ chaotic in case

∫

χ(v1, . . . , vk)dµ
(N)(v1, . . . , vN ) →

∫

χ(v1, . . . , vk)dµ(v1) · · · dµ(vk)

That is, as N → ∞, the k particle marginal looks more and
more like a product, in the sense of weak convergence.

This is the “minimal” notion of chaos, as originally
introduced to prove the following theorem:
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Theorem 0.1 (Propagation of Chaos, Kac 1956). Let {F (N)
0 σ(N)} be a

f0(v)dv–chaotic sequence. Then {etLF (N)
0 σ(N)} is a

f(v, t)dv–chaotic sequence and f(v, t) is a solution of the initial value

problem

∂

∂t
f =

1

π

∫ π

−π

dθ

∫

R

dwRγ(v, w)[f(v
∗(θ, t)f(w∗(θ), t)−f(v, t)f(w, t)]

with Rγ(v, w) = (1 + v2 + w2)γ , and

v∗(θ) = cos θv + sin θw and w∗(θ) = − sin θv + cos θw .

for the initial data f(v, 0) = f0(v)

This equation is called the Kac-Boltzmann equation.
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If one wants to prove properties of the solution of the
Kac-Boltzmann equation using an analysis of the N -particle
model, it is useful to know that stronger notions of chaos,
involving convergence to a product in a stronger topology,
are valid. The Kac notion is the minimal one, just enough to
prove his theorem relating the Kac Master Equations and
the Kac Boltzmann equation.
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Existence of Chaotic initial data

Theorem 0.2 (Carlen, C., La Roux, Loss, Villani). Let f be a probability

density on R satisfying, for some p > 1,

∫

R

f(v)v2dv = 1 ,

∫

R

f(v)v4dv <∞ , f ∈ Lp(R)

and let µ(dv) = f(v)dv, and let [µ⊗N ]SN−1(
√
N) be the normalized

restriction of f⊗N to the sphere. Then {[µ⊗N ]SN−1(
√
N)} is µ –chaotic

In this case, [µ⊗N ]SN−1(
√
N) will have a density FN with

respect to the uniform measure on the sphere:

[µ⊗N ]SN−1(
√
N) = FNdσ .
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Approach to Equilibrium

It is easy to see that under the Kac walk, the density tends
to become uniform:

lim
t→∞

etLF = 1 .

Kac proposed to measure this in terms of the spectral gap
of L which is

∆N := inf{〈F,−LF 〉L2(SN ) : ‖F‖2 = 1 , 〈F, 1〉L2(SN ) = 0 } .

‖etLF − 1‖2 = ‖etL(F − 1)‖2 ≤ e−t∆N‖F − 1‖2 .
Kac conjectured that

lim inf
N→∞

∆N > 0 .
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The Kac conjecture was proved by Janvresse with no
estimate on the limiting gap. Carlen, C. and Loss gave the
exact value:

∆N =
1

2

N + 2

N − 1
.

In subsequent work, this was extended to three dimensional
collisions and hard sphere collisions, giving the exact gap
for 3-dimensional Maxwellian molecules (Carlen, Geronimo
and Loss) and bounds for hard sphere collisions (Carlen, C.
and Loss).

We now discuss convergence in relative entropy for the Kac
Master Equation and the Kac-Boltzmann equation, focusing
on the relation between the two.
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Entropy Production

Let f and g be two probability densities on a measure
space (X,F , µ). The relative entropy of fdµ with respect to

gdµ is the quantity H(f |g) =
∫

X f [ln f − ln g]dµ. Pinsker’s

inequality says that

H(f |g) ≥ 1

2

(
∫

X

|f − g|dµ
)2

(1)

Thus, while H(f |g) is not itself a metric, it does control the

L1 distance between f and g.
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The equilibrium solutions of the Kac-Boltzmann equation
are the centered Maxwellian densities
MT (v) = (2πT )−1/2e−v2/2T . The equilibrium to which the
solution with initial data f0 tends is the one with

T =
∫

R
v2f0(v)dv.

Consider a solution f with initial data f0 for which
∫

R
v2f0(v)dv = 1. Since the energy is conserved,

Boltzmann’s H theorem implies that H(f(·, t)|M1) is
monotone decreasing in t. Cercignani’s conjecture for the
Kac-Boltzmann equation was that for some constant
Cγ > 0, all such solutions with initial data and with

H(f0|M1) <∞ satisfy

d

dt
H(f(·, t)|M1) ≤ −CγH(f(·, t)|M1) .
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Pinsker’s inequality would then yield

‖f(·, t)−M1‖1 ≤ [H(f0|M1)]
1/2e−Cγt/2 .

Cercignani’s conjecture is false for all γ < 1 – but it is true
for γ = 1, as shown by Villani, who also showed how this
result could be used to prove non-exponential bounds on
the rate of relaxation for other values of γ and suitable
constraints on the initial data. In this way he proved

d

dt
H(f(·, t)|M1) ≤ −Cγ,ǫ (H(f(·, t)|M1))

1+ǫ
(2)

for ǫ > 0, 0 ≤ γ < 1, for suitable classes of initial data.
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For future reference, we express this as a functional
inequality. Define

Dγ(f(·, t)) := − d

dt
H(f(·, t)|M1)

where f(v, t) is the solution of the Kac-Boltzmann equation
with f(v, 0) = f(v). Then we may restate (2) as

Dγ(f(·, t)) ≥ Cγ,ǫ (H(f(·, t)|M1))
1+ǫ . (3)
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The main question that we address here is the following:

To what extent can one do something similar for the Kac
Master equation?

To investigate this question, let F be a probability density
with respect to dσN . The relative entropy of F with respect

to the uniform density 1 is simply
∫

SN−1(
√
N) F lnFdσN . To

simplify our notation, we define

HN (F ) =

∫

SN−1(
√
N)

F lnFdσN . (4)
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We are thus led to investigate the relative entropy
dissipation under the dynamics generated by LN,γ. This

dissipation, sometimes called the entropy production is the
non-negative quantity DN,γ(F ) that is given by

DN,γ(e
tLN,γF ) = − d

dt
HN (etLN,γF ) .

With ψ(x, y) = (x− y) log
(

x
y

)

,

DN,γ(FN ) =
1

4π

N
(

N
2

)×

∑

i<j

∫

SN−1(
√
N)

∫ 2π

0

(

1 + (v2i + v2j )
)γ
ψ
(

FN , FN ◦Ri,j,θ

)

dσNdθ .

Entropy Production Inequalities for the Kac Walk – p. 20/30



Inequalities relating HN (F ) and DN,γ(F ) are useful for

quantifying the aforementioned rate of convergence. As we
only connect the Kac Walk with the Kac-Boltzmann
equation in the limit N → ∞, we are ultimately only
interested in inequalities that are uniform in N .

In particular, one might hope to find Cγ > 0, independent of
N , such that

DN,γ(F ) ≥ CγHN (F ).

This is known as Cercignani’s Conjecture for the Kac Walk.
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A significant breakthrough in its study was done in 2003 by
Villani who introduced the family of operators {LN,γ}γ∈[0,1]
and showed that

DN,γ(F ) ≥ Cγ
HN (F )

N1−γ
. (5)

Again for γ = 1, we have the conjectured bound, but only for

γ = 1. For γ < 1, this gives a decay rate of order e−CNγ−1t

which is meaningless in the limit N → ∞.

Einav proved that this bound is essentially sharp, as Villani
had conjectured.
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For the Kac Walk, the intuition that chaotic data with a one
particle marginal f behaves like f⊗N is true in some cases,
and one can show (see [CCRLV] for precise statements)

HN (FN )

N
≈ H(f |M),

DN,γ(FN )

N
≈ Dγ(f).

This suggests that we seek inequalities of the form

DN,γ(FN )

N
≥ Cγ,ǫ

(

HN (FN )

N

)1+ǫ

.

Can we estimate DN,γ(FN ) in terms of DN,1(FN ) and

propagated regularity of FN to obtain such a result?
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In this way, Villani used the γ = 1 bounds to control entropy
production in the Boltzmann equation for physical models. It
is not so easy for the Kac Master equation because the two
particle marginal of FN is not exactly a product even for
large N , as it is for Boltzmann.

We present two results in this direction. One requires only a
form of chaos known to be propagated. However, in this
inequality, the constant depends weakly on N , so it cannot
be used to prove results for the Kac-Boltzmann equation.

The second inequality has a constant that is independent of
N , but involves a new notion of chaos that we do not know
to be propagated. Despite this, we show that this inequality
may be used to bound the rate of relaxation to equilibrium
for solutions of the Kac-Boltzmann equation.
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Definition 0.3. Let FN ∈ P (SN−1(
√
N)) be symmetric. We say that

FN is log-scalable if there exists C > 0, independent of N , such that

sup
v∈SN−1(

√
N)

|logFN (v)| ≤ CN. (6)

Theorem 0.4. Let FN ∈ P (SN−1(
√
N)) be symmetric and

log-scalable with associated constant CF > 0. Assume there exists

k > 1 such that M2k = sup
N
M2k(Π1(FN )) <∞. Then,

DN,γ(FN )

N
≥ Ck,γ,N

(

HN (FN )

N

)1+ 1−γ

k−1

, (7)

with Ck,γ,N is a multiple of N ǫ(k), limk→∞ ǫ(k) = 0.
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A strong chaotic condition

Definition 0.5. A symmetric family of probability densities

{FN}N∈N ∈ P (SN−1(
√
N)) has the log-power property of order

β > 0, if there exists C > 0, independent of N , such that

1

2π

∫ 2π

0

∫

SN−1(
√
N)

ψβ(FN , FN ◦ R1,2,θ)dσ
Ndθ ≤ C1+β

where ψβ(x, y) = |x− y|
∣

∣

∣
log x

y

∣

∣

∣

1+β
.

The condition that {FN}N∈N have the log-power property of

order β > 0 is a quantitative chaoticity condition because it
can be easily verified when {FN}N∈N is a family of

normalized tensor product states, as constructed in
[CCRLV] from a suitable probability density f on R.
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Theorem 0.6. Let FN ∈ P (SN−1(
√
N)) have the log-power property

of order β with associated constant CF > 0. If there exists k > 1 + 1
β

such that M2k = supN M2k(Π1(FN )) <∞. Then

DN,γ(FN )

N
≥ Cǫ

(

HN (FN )

N

)1+ǫ

where ǫ = 1 +
(1− γ)(1 + β)

kβ − (1 + β)
and Cǫ is explicitly computable.
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If we knew that our new strong notion of chaos was
propagated by the Kac Master Equation, the previous
theorem would tell us that the relative entropy per particle
decays to zero at a uniform exponential rate.

We do not know this, but the conditions on f that are
required for the normalized products to yield a log power
chaotic family are easily shown to be propagated by the
Kac-Boltzmann equation, and this crucial fact allows us to
side-step the interesting question as to whether the
log-power property of order β might be propagated by the
Kac Master Equation.

This yields:
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Theorem 0.7. Let f ∈ P (R) be such that M2(f) = 1. Assume in

addition that there exists β > 0 and k > 1 + 1/β such that

Mmax{2k,k(1+β),4}(f) <∞,

that I(f) =

∫

R

(f ′(x))2

f(x)
dx <∞ and that

f(v) ≥ Ce−|v|2 ∀v ∈ R.

Then, there exists an explicit constant, C, depending only on the

parameters of the problem such that

Dγ(f) ≥ CH(f |M)1+ǫ where ǫ =
(1− γ)(1 + β)

kβ − (1 + β)
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The last result is the Kac-Boltzmann equation analog of
Vilani’s result for the Boltzmann equation. The interest in
the result is not that it provides new information about this
equation, but that the best currently known estimates on the
entropic rate of convergence can be obtained as corollaries
of an analysis of the Kac Master Equation, thus vindicating
Kac’s purpose in introducing the model.

We have also seen that in order to prove uniform in N
entropic convergence results for the Kac Master equation,
one does not necessarily need better entropy inequalities
per se: Better propagation of chaos results would suffice.
This will be the subject of further research.

Entropy Production Inequalities for the Kac Walk – p. 30/30


	The Kac Walk on the $N$-sphere
	Chaos
	Existence of Chaotic initial data
	Approach to Equilibrium
	Entropy Production
	A strong chaotic condition

