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The Lorentz gas

• P — locally finite subset of Rd with
constant density
• scatterers are fixed open balls of

radius r centered at the points in P
• the particles are assumed to be

non-interacting
• each test particle moves with con-

stant velocity v(t) between colli-
sions
• the scattering is specular reflection
• we assume w.l.o.g. ‖v(t)‖ = 1
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Diffusion in the classical periodic Lorentz gas (dimension two)

In the case of fixed scattering radius r, proofs of CLT for the Lorentz gas are
currently restricted to the 2-dim periodic setting.

Finite horizon:

• Bunimovich & Sinai (Comm Math Phys 1980): Standard CLT for finite horizon
• Melbourne & Nicol (Annals Prob 2009): More general invariance principles

Infinite horizon:

• Bleher (J Stat Phys 1992): Heuristics for CLT with t log t mean square dis-
placement
• Szász & Varjú (J Stat Phys 2007): Proof of CLT for billiard map
• Dolgopyat & Chernov (Russ Math Surveys, 2009): Proof of CLT & invariance

principle in continuous time
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Diffusion in the classical periodic Lorentz gas (higher dimension)

The problem in higher dimensions is control of complexity of singularities

• Chernov (J Stat Phys 1994)
• Balint & Toth (AHP 2008, Nonlinearity 2012)

and in the case of infinite horizon the subtle geometry of free flight channels

• Dettmann (J Stat Phys 2012)
• Nadori, Szasz & Varju (CMP 2014)

As we will see, the problem becomes tractable if we consider the small scatterer
(Boltzmann-Grad) limit r → 0. In particular (taking first r → 0 then t→∞)

• JM & Balint Toth (CMP 2017): CLT with t log t mean square displacement
in any dimension (with time t measured in units of the mean collision time);
builds on JM & Strömbergsson (Annals Math 2010 & 2011, GAFA 2011)
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Diffusion in the classical aperiodic/random Lorentz gas

For fixed r, still a major open problem–no CLT established so far.

• Liverani’s talk
• Dolgopyat, Szasz & Varju (Duke 2009): finite local perturbations
• Lenci (ETDS 2003/06); Christadoro, degli Esposti, Lenci & Seri (Chaos 2010,

J Stat Phys 2011); Lenci & Troubetzkoy (Phys D 2011): recurrence properties

What can be said in the Boltzmann-Grad limit r → 0?
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The Boltzmann-Grad limit

• Consider the dynamics in the limit of small scatterer radius r

•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A dimensional argument shows that, in the limit r → 0, the mean free
path length (i.e., the average time between consecutive collisions) scales
like r−(d−1) (= 1/total scattering cross section)

• We thus measure position and time the “macroscopic” coordinates(
Q(t),V (t)

)
=
(
rd−1q(r−(d−1)t), v(r−(d−1)t)

)

• Time evolution of initial data (Q,V ):(
Q(t),V (t)

)
= Φtr(Q,V )
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The linear Boltzmann equation

• Time evolution of a particle cloud with initial density f ∈ L1:

f
(r)
t (Q,V ) := f

(
Φ−tr (Q,V )

)

In his 1905 paper Lorentz suggested that f(r)
t is governed, as r → 0, by the

linear Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V

′)− ft(Q,V )
]
σ(V ,V ′)dV ′

where σ(V ,V ′) is the differential cross section of the individual scatterer.
E.g.: σ(V ,V ′) = 1

4‖V − V
′‖3−d for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, . . .
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The linear Boltzmann equation—rigorous proofs

Classical:

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterer configuration P
• Spohn (Comm Math Phys 1978): extension to more general random scatterer

configurations P and potentials
• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for

almost every scatterer configuration P (w.r.t. the Poisson random measure)
• Implies CLT for limit process (standard CLT for Markovian random flight pro-

cess)
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The linear Boltzmann equation—rigorous proofs

Quantum:

• Spohn (J Stat Phys 1977): Gaussian random potentials, weak coupling limit
& small times
• Erdös and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General

random potentials, weak coupling limit
• Eng and Erdös (Rev Math Phys 2005): smooth potentials, Boltzmann-Grad

limit
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Part I: Boltzmann-Grad limit of classical Lorentz gas
for general scatterer configurations

(joint with A. Strömbergsson)

Part II: Boltzmann-Grad limit of quantum Lorentz gas
for periodic scatterer configurations

(joint with J. Griffin)
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Part I: Boltzmann-Grad limit of classical Lorentz gas
for general scatterer configurations

(joint with A. Strömbergsson)

Part II: Boltzmann-Grad limit of quantum Lorentz gas
for periodic scatterer configurations

(joint with J. Griffin)
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Intercollision flights

rsn

yn

vn

2r 2r

rbn+1

r−(d−1)tn+1

forbidden scatterer

particle trajectory

exclusion zone

Intercollision flight in the Lorentz gas between the nth and (n + 1)st collision.
The exclusion zone is a long and thin cylinder of radius r with spherical caps.
Scatterers are centered at P.
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Rescaling

• Define R(v) : Sd−1
1 → SO(d) such that vR(v) = e1 = (1,0, . . . ,0) and

Dr =

(
rd−1 0

t0 r−11d−1

)
∈ SL(d,R)

• Applying R(v)Dr to the above this cylinder orients it along the e1-axis and
makes it well proportioned.

• If at nth scattering event scatterer is located at yn ∈ P, and particle velocity
is vn, consider

Ξ(n)
r = (P − yn)R(vn)Dr

• Since vn and yn are random (they are functions of the initial random position
and velocity of the particle) we may think of Ξ(n)

r as a random point set
(random point process)
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Assumptions on the scatterer configuration P (I)

• Assume point set P has constant density, i.e., there is cP > 0 such that

lim
R→∞

#(P ∩RD)

Rd
= cP volD

for all bounded sets D ⊂ Rd with vol ∂D = 0

• For y fixed and v random, limit distribution of (P−y)R(v)Dr can in general
depend on y ∈ P ; in order to keep track of this, need to assign a mark to
each y; we want the space of marks to be nice
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Assumptions on the scatterer configuration P (II)

• Let Σ compact metric space with Borel probability measure m, and map
ς : P → Σ (the marking)

• Set X = Rd ×Σ, µX = vol×m
• P̃ = {(y, ς(y)) : y ∈ P)} ⊂ X (the marked point set)
• for M ∈ SL(d,R) set (y, ς(y))M = (yM, ς(y))

• Assumption 1 (density)

lim
R→∞

#(P̃ ∩RD)

Rd
= cPµX (D)

for all bounded sets D ⊂ X with µX (∂D) = 0
• Assumption 2 (spherical equidistribution) For v random according to λ a.c.

w.r.t. vol measure on Sd−1
1

Ξ̃r,y = (P̃ − y)R(v)Dr
d−→ Ξ̃ς(y) (r → 0)

uniformly for all y ∈ P in balls of radius � r−(d−1), where Ξ̃ς depends
only on ς ∈ Σ
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Examples for admissible P

Example 1: P = a realization of the Poisson process in Rd with intensity 1, and
Σ = {1}; proof non-trivial, follows ideas of Boldrighini, Bunimovich and Sinai (J
Stat Phys 1983)

Example 2: P = Zd and Σ = {1} (periodic Lorentz gas); proof uses spher-
ical equidistribution on space of lattices (JM & Strömbergsson, Annals of Math
2010/11)

Example 3: P = Zd and Σ = {1} (periodic Lorentz gas with random defects);
proof uses spherical equidistribution on space of marked lattices (JM & Vino-
gradov, Geom. Dedicata 2017)

Example 4: P = Euclidean cut-and-project set (e.g. the vertex set of a Penrose
tiling) and Σ = Rk (the internal space in the c&p construction); proof uses uses
equidistribution of lower dimensional spheres in space of lattices and Ratner’s
theorem (JM & Strömbergsson, CMP 2014)
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A limiting random process

Recall: a cloud of particles with initial density f(Q,V ) evolves in time t to

[Ltrf ](Q,V ) = f
(
Φ−tr (Q,V )

)
.

Theorem A [JM & Strömbergsson 2018; for P = Zd Annals of Math 2011].
Assume P is as above (+ more). Then for every t > 0 there exists a linear
operator

Lt : L1(T1(Rd))→ L1(T1(Rd))

such that for every f ∈ L1(T1(Rd)) and any setA ⊂ T1(Rd) with boundary
of Liouville measure zero,

lim
r→0

∫
A

[Ltrf ](Q,V ) dQ dV =
∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit r → 0.

Note: The family {Lt}t≥0 does in general not form a semigroup.
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A generalized linear Boltzmann equation

Consider extended phase space coordinates (Q,V , ς, ξ,V +):

(Q,V ) ∈ T1(Rd) — usual position and momentum
ς ∈ Σ — the mark of current scatterer location
ξ ∈ R+ — flight time until the next scatterer
V + ∈ Sd−1

1 — velocity after the next hit

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ς, ξ,V +)

=
∫

Σ

∫
Sd−1

1

ft(Q,V
′, ς ′,0,V ) p0(V ′, ς ′,V , ς, ξ,V +)dV ′dm(ς ′).

with a collision kernel p0(V ′, ς ′,V , ς, ξ,V +), which can be expressed as a prod-
uct of the scattering cross section of an individual scatterer and a certain transi-
tion probability for hitting a given point on the next scatterer with mark ς after time
ξ, given the present scatterer has mark ς ′.

18



Part II: Boltzmann-Grad limit of quantum Lorentz gas
for periodic scatterer configurations

(joint with J. Griffin)

19



The setting

• Schrödinger equation

i h2π ∂tf(t,x) = Hh,λf(t,x), f(0,x) = f0(x)

• quantum Hamiltonian

Hh,λ = −
h2

8π2
∆ + λV (x)

• potential

V (x) = Vr(x) =
∑
m∈Zd

W (r−1(x+m)), W ∈ S(Rd)

• solution

f(t,x) = Uh,λ(t)f0(x), Uh,λ(t) = e−2πiHh,λt/h
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Observables

• time evolution of linear operators A(t) (“quantum observables”) given by
Heisenberg evolution A(t) = Uh,λ(t)AUh,λ(t)−1.

• L2 inner product on classical phase space

〈a, b〉 =
∫
Rd×Rd

a(x,y) b(x,y) dxdy,

• Hilbert-Schmidt inner product 〈A,B〉HS = TrAB†.
• semiclassical Boltzmann-Grad scaling

Dr,ha(x,y) = rd(d−1)/2hd/2 a(rd−1x, hy),

• standard Weyl quantisation of a ∈ S(Rd × Rd),

Op(a)f(x) =
∫
Rd×Rd

a(1
2(x+ x′),y) e((x− x′) · y) f(x′) dx′dy

• Set Opr,h = Op ◦Dr,h and Oph = Op1,h.
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A limiting transport process?

Conjecture. There exists a family of operators L(t) : L1(Rd × Rd) →
L1(Rd × Rd) such that (i) for all a, b ∈ S(Rd × Rd), A = Opr,h(a),
B = Opr,h(b), λ > 0 and t > 0,

lim
r→0
〈A(tr−(d−1)), B〉HS = 〈L(t)a, b〉

and (ii) L(t)a(x,y) is in general not a solution to the linear Boltzmann equa-
tion.

For random scatterer configurations Eng and Erdös (Rev Math Phys 2005) have
proved convergence to a limit L(t)a(x,y), which in fact is a solution to the linear
Boltzmann equation with the standard quantum mechanical collision kernel

Σ(y,y′) = 8π2 δ(‖y‖2 − ‖y′‖2) |T (y,y′)|2.

Here T (y,y′) is the kernel of the T -matrix in momentum representation.
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Evidence for conjecture up to order λ2

• Consider the formal expansion L(t) ∼
∑∞
n=0Ln(t)λn,

• L0(t)a(x,y) = a(x− ty,y), L1(t)a(x,y) = 0,

• L2(t)a(x,y)

=
∫ t

0

∫
Rd

Σ2(y,y′)[a(x− sy − (t− s)y′,y′)− a(x− ty,y)]dy′ds.

• These are consistent with L(t) generating solutions of the linear Boltzmann
equation.
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Evidence for conjecture up to order λ2

Theorem B [JM & Griffin 2018] Let t > 0 and a, b ∈ S(Rd × Rd), A =

Opr,h(a), B = Opr,h(b). Then there exist linear operators A(r)
0 (t), A(r)

1 (t),

A
(r)
2 (t), such that

〈A(tr−(d−1)), B〉HS =
2∑

n=0

〈A(r)
n (tr−(d−1)), B〉HS λ

n+
6∑

n=3

O(r−nd/2λn).

and

lim
r→0
〈A(r)

n (tr−(d−1)), B〉HS = 〈Ln(t)a, b〉 (n = 0,1,2).

• We expect terms of order 4 and higher to not match the expansion for the
linear Boltzmann equation (hence the conjecture)
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Key steps in proof

• Use Floquet-Bloch decomposition to reduce problem to L2 subspaces of
functions

ψ(x+ k) = e(k ·α)ψ(x), ∀k ∈ Zd

with fixed α ∈ [0,1)d

• Prove first Theorem for almost every α (in fact under explicit Diophantine
conditions) and use dominated convergence
• Use Duhamel expansion for quantum propagator up to order 3

Uλ,h(t) = U0,h(t)− 2πiλ
∫ t

0
Uλ,h(t− s) Op(V )U0,h(s)ds

• Exploit a phase-space extension of the convergence of the pair correlation
statistics of

‖m+α‖2, m ∈ Zd

to that of a Poisson process (JM, Duke Math J 2002, Annals of Math 2003)
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Thank you!
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