Global-local mixing for one-dimensional intermittent maps

Marco Lenci

Università di Bologna Istituto Nazionale di Fisica Nucleare, Bologna

(joint work with Claudio Bonanno and Paolo Giulietti)

New Developments in Open Dynamical Systems and Their Applications

Banff International Research Station March 18–23, 2018

One-dimensional maps with an indifferent fixed point

We study full-branched 1D expanding maps with an indifferent fixed point, preserving an absolutely continuous infinite measure:

Case (A): Maps $(0,1) \longrightarrow (0,1)$ with C²-regular fixed point at 0

One-dimensional maps with an indifferent fixed point

Case (B): Maps $\mathbb{R}^+ \longrightarrow \mathbb{R}^+$ with fixed point at $+\infty$, preserving the Lebesgue measure

One-dimensional maps with an indifferent fixed point

... and also the Boole map
$$\mathcal{T}:\mathbb{R}\longrightarrow\mathbb{R},\;\mathcal{T}(x):=x-rac{1}{x}.$$

Standard assumptions for case (A):

∃ partition $\{I_j\}_{j \in \mathcal{J}}$, with $I_j := (a_j, a_{j+1})$, $a_0 := 0$ and either $\mathcal{J} := \{0, 1, ..., N - 1\}$ (in which case $a_N = 1$) or $\mathcal{J} := \mathbb{N}$ (in which case $\lim_n a_n = 1$), s.t.

(A1) $T|_{(a_j,a_{j+1})}$ has unique extension $\tau_j : [a_j, a_{j+1}] \longrightarrow [0, 1]$, twice-differentiable, bijective

(A2) $\exists \Lambda > 1 \text{ s.t. } |\tau'_j| \geq \Lambda, \forall j \geq 1$

(A3)
$$\exists K > 0 \text{ s.t. } \left| \frac{\tau_j''}{(\tau_j')^2} \right| \leq K, \forall j \geq 0$$

(A4) au_0 convex, $au_0(0) = 0$, $au_0'(0) = 1$, and $au_0'(x) > 1$, $\forall x \in (0, a_1]$

「日本 く 日本 く 日本 」

Theorem *Thale*

Under (A1)–(A4):

- **9** *T* preserves an infinite invariant measure μ , absolutely continuous w.r.t. *m* (= Lebesgue measure) and unique up to factors. Moreover, $h := \frac{d\mu}{dm} > 0$ and unbounded only near 0
- **2** T is conservative and exact (w.r.t. *m* or μ , which is the same)

Standard assumptions for case (B):

∃ partition $\{I_j\}_{j \in \mathcal{J}}$, with $I_j := (a_{j+1}, a_j)$, $a_0 := +\infty$ and either $\mathcal{J} := \{0, 1, ..., N-1\}$ (in which case $a_N = 0$) or $\mathcal{J} := \mathbb{N}$ (in which case $\lim_n a_n = 0$), s.t.

(B1) $T|_{(a_{j+1},a_j)}$ has unique extension τ_j defined on $[a_{j+1}, a_j)$ or $(a_{j+1}, a_j]$, twice-differentiable, bijective onto \mathbb{R}^+

(B2) $\exists \Lambda > 1 \text{ s.t. } |\tau'_j| \geq \Lambda, \forall j \geq 1$

(B3)
$$\exists K > 0 \text{ s.t. } \left| \frac{\tau_j''}{(\tau_j')^2} \right| \leq K, \forall j \geq 0$$

(B4) $u(x) := x - \tau_0(x)$ is positive, convex and vanishing, as $x \to +\infty$. Also, u'' is decreasing (hence vanishing)

(B5) T preserves the Lebesgue measure m

(B4) $u(x) := x - \tau_0(x)$ is positive, convex and vanishing, as $x \to +\infty$. Also, u'' is decreasing (hence vanishing)

(B5) T preserves the Lebesgue measure m

Theorem

Under (B1)–(B5) T is conservative and exact

→ ∃ → → ∃ →

Types (A) and (B) are of the same nature:

Given $T_o: (0,1) \longrightarrow (0,1)$ preserving μ with $\mu((0,1)) = \infty$, set $\Phi(x) := \mu([x,1])$, for 0 < x < 1.

By construction $\Phi : (0,1) \longrightarrow \mathbb{R}^+$ pushes μ to the Lebesgue measure m on \mathbb{R}^+ . Hence $T := \Phi \circ T_o \circ \Phi^{-1} : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ has an indifferent fixed point at $+\infty$ and preserves m

- * E > * E >

Types (A) and (B) are of the same nature:

Given $T_o: (0,1) \longrightarrow (0,1)$ preserving μ with $\mu((0,1)) = \infty$, set $\Phi(x) := \mu([x,1])$, for 0 < x < 1.

By construction $\Phi : (0,1) \longrightarrow \mathbb{R}^+$ pushes μ to the Lebesgue measure m on \mathbb{R}^+ . Hence $T := \Phi \circ T_o \circ \Phi^{-1} : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ has an indifferent fixed point at $+\infty$ and preserves m

But the two classes are not the same:

Conjugation might not preserve smoothness or expansivity

• • = • • = •

Important example belonging to both classes: Farey map

$$T_o(x) = \left\{ egin{array}{c} rac{x}{1-x}, & ext{for } x \in \left[0, rac{1}{2}
ight]; \ rac{1-x}{x}, & ext{for } x \in \left(rac{1}{2}, 1
ight]. \end{array}
ight.$$

伺 ト く ヨ ト く ヨ ト

э

Important example belonging to both classes: Farey map

$$T_o(x) = \begin{cases} \frac{x}{1-x}, & \text{for } x \in \left[0, \frac{1}{2}\right];\\ \frac{1-x}{x}, & \text{for } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Invariant density:
$$h(x) = \frac{1}{x} \implies \Phi(x) := \int_{x}^{1} h(\xi) d\xi = -\log x$$

$$T(x) := -\ln(F(e^{-x})) = |\ln(e^{x} - 1)|$$

伺 ト く ヨ ト く ヨ ト

э

< 🗇 >

→ Ξ → →

문 🛌 문

Comparison

4 句

Ξ

æ

æ

Global observables

Interested in the mixing/stochastic properties of global observables

Interested in the mixing/stochastic properties of global observables

 $F: (0,1) \longrightarrow \mathbb{C}$ is called global observable if $F \in L^{\infty}((0,1),\mu)$ and $\exists \overline{\mu}(F) := \lim_{a \to 0^+} \frac{1}{\mu([a,1))} \int_a^1 F \, d\mu,$

Definition (case (B))

 $F : \mathbb{R}^+ \longrightarrow \mathbb{C}$ is called global observable if $F \in L^{\infty}(\mathbb{R}^+, m)$ and $\exists \overline{m}(F) := \lim_{a \to +\infty} \frac{1}{a} \int_0^a F \, dm,$

Interested in the mixing/stochastic properties of global observables

 $F: (0,1) \longrightarrow \mathbb{C}$ is called global observable if $F \in L^{\infty}((0,1),\mu)$ and $\exists \overline{\mu}(F) := \lim_{a \to 0^+} \frac{1}{\mu([a,1))} \int_a^1 F \, d\mu,$

Definition (case (B))

 $F: \mathbb{R}^+ \longrightarrow \mathbb{C} \text{ is called global observable if } F \in L^{\infty}(\mathbb{R}^+, m) \text{ and}$ $\exists \overline{m}(F) := \lim_{a \to +\infty} \frac{1}{a} \int_0^a F \, dm,$

 $\overline{\mu}(F)$ or $\overline{m}(F)$ called infinite-volume average

The previous definitions of the global observables are adapted to the systems at hand. Other types of infinite-measure-preserving systems will lead to different choices, without an *a priori* rule. A unifying abstract definition is possible but not particularly illuminating. The previous definitions of the global observables are adapted to the systems at hand. Other types of infinite-measure-preserving systems will lead to different choices, without an *a priori* rule. A unifying abstract definition is possible but not particularly illuminating.

From now on we give definitions and general facts for case (A) only; case (B) analogous: $((0,1), \mu) \rightsquigarrow (\mathbb{R}^+, m)$ and $\overline{\mu} \rightsquigarrow \overline{m}$

Definition

A local observable is any complex-valued function $f \in L^1$

Definition

(GLM2)

< ∃ >

T is global-local mixing if for all global observables F and local observables g

$$\lim_{n\to\infty} \mu((F \circ T^n)g) = \overline{\mu}(F)\mu(g)$$

Definition

(GLM2)

(GLM2)

T is global-local mixing if for all global observables F and local observables g $\lim_{n\to\infty} \mu((F \circ T^n)g) = \overline{\mu}(F)\mu(g)$

In terms of the evolution of measures:

Equivalent definition

T is global-local mixing if for all global observables F and probability measures $\nu \ll \mu$ -n (-)

$$\lim_{n\to\infty} I^n_*\nu(F) = \mu(F)$$

So $\overline{\mu}(\,\cdot\,)$ is a sort of "equilibrium functional" for a form of weak convergence where the global observables are the test functions

So $\overline{\mu}(\cdot)$ is a sort of "equilibrium functional" for a form of weak convergence where the global observables are the test functions

In any event,

Proposition If F is a global observable, so is $F \circ T$, with $\overline{\mu}(F \circ T) = \overline{\mu}(F)$

Global-local mixing, case (A)

Theorem

Let $T : (0,1) \longrightarrow (0,1)$ satisfy (A1)-(A4) with two branches τ_j , (j = 0,1). Set $\phi_j := (\tau_j)^{-1}$, $h := \frac{d\mu}{dm}$ and assume in addition:

(A5) ϕ_1 decreasing (i.e., τ_1 is decreasing);

(A6) $\phi_0 + \phi_1$ increasing and concave;

(A7) $\phi'_0(h \circ \phi_0)/h$ differentiable, strictly decreasing and convex;

(A8)
$$\phi'_0(h \circ \phi_0) + \phi'_1(h \circ \phi_1) \ge 0.$$

Then T is global-local mixing.

Remark

If h is decreasing, (A8) follows from (A6)

Examples, case (A)

Examples: Farey and friends. For $0 < \alpha < 1$ (also $\alpha = 0$)

$$\phi_0(x) := rac{x}{(1+x)^{1-lpha}}$$
 ; $\phi_1(x) := rac{1}{(1+x)^{1-lpha}}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples, case (A)

Examples: Farey and friends. For $0 < \alpha < 1$ (also $\alpha = 0$)

$$\phi_0(x) := rac{x}{(1+x)^{1-lpha}} \quad ; \quad \phi_1(x) := rac{1}{(1+x)^{1-lpha}}$$

 $\alpha = 0.3$

Examples, case (A)

Examples: Farey and friends. For $0 < \alpha < 1$ (also $\alpha = 0$)

$$\phi_0(x) := rac{x}{(1+x)^{1-lpha}}$$
 ; $\phi_1(x) := rac{1}{(1+x)^{1-lpha}}$

 $\alpha = \mathbf{0.6}$

Remark

Theorem generalizes to N-1 increasing convex + 1 decreasing branches with similar assumptions

Theorem

Let $T : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ satisfy (B1)-(B5) (no limit on number of branches) and assume in addition (B6) τ_i is increasing and convex $\forall j \ge 1$.

Then T is global-local mixing.

Global-local mixing, case (B)

Example:

Global-local mixing, case (B)

Example:

Remark

Generalizes to 1 increasing and 1 decreasing full branches, with cumbersome assumptions

Definition

Given

- (\mathcal{M},μ) σ -finite measure space
- $F_n : \mathcal{M} \longrightarrow \mathbb{R}$ measurable $\forall n$
- X random variable on some probability space

one says that $F_n \to X$ strongly in distribution, as $n \to \infty$, if $\forall \nu \ll \mu$, the distribution of F_n w.r.t. ν converges to that of X.

Equidistribution of hitting times in residue classes

Take T global-local mixing of type (A) [or (B)]

 $F_q(x) := ext{hitting time of } x ext{ to } L_0 ext{ mod } q \in \mathbb{Z}^+, ext{ i.e.},$ $F_q|_{L_k} \equiv j \iff k \cong j ext{ (mod } q).$

Equidistribution of hitting times in residue classes

Proposition

 $F_q \circ T^n$ converges strongly in distribution to the uniform random variable on $\{0,1,\ldots,q-1\}$

Proposition

 $\mathit{F_q} \circ \mathit{T^n}$ converges strongly in distribution to the uniform random variable on $\{0,1,\ldots,q-1\}$

Proof. By global-local mixing,

$$\lim_{n\to\infty}\nu(e^{i\theta F_q\circ T^n})=\lim_{n\to\infty}T^n_*\nu(e^{i\theta F_q})=\overline{\mu}(e^{i\theta F_q})=\frac{1}{q}\sum_{j=0}^{q-1}e^{i\theta j},$$

which is the characteristic function of the uniform variable on $\{0, 1, \dots, q-1\}$ (last equality is a simple fact). Q.E.D.

Partial Birkhoff averaging does not tighten variables

On $((0,1),\mu)$ define the distance $d_{\mu}(x,y) := \mu([x,y])$

Proposition

Let T be a global-local mixing map of type (A) [or (B)] and F a real-valued global observable s.t.

• *F* d_{μ} -uniformly continuous w.r.t. μ [or uniformly continuous]

•
$$\overline{\mu}(e^{i heta F})$$
 [or $\overline{m}(e^{i heta F})$] exists for all $heta\in\mathbb{R}$

Then:

- As $n \to \infty$, $F \circ T^n$ converges strongly in distribution to the variable X with characteristic function $\theta \mapsto \overline{\mu}(e^{i\theta F})$
- **2** Fix $k \in \mathbb{Z}^+$, $\frac{1}{k}S_k F \circ T^n \to X$ strongly in distribution

③ ∃
$$(k_n) \subset \mathbb{Z}^+$$
, $k_n \nearrow \infty$, s.t. $\frac{1}{k_n} S_{k_n} F \circ T^n \to X$ strongly in distribution,

Cannot happen for probability-preserving mixing systems!

In fact, given any probability-preserving mixing dynamical system (\mathcal{M}, μ, T) , let f be a non-constant bounded (hence local) observable and call X the random variable defined by f w.r.t. μ :

- As $n \to \infty$, $\frac{1}{k}S_k f \circ T^n$ converges strongly in distribution to a variable that, for large k, has a smaller variance than X
- Ø For any increasing sequence $(k_n) ⊂ ℤ^+$, $\frac{1}{k_n} S_{k_n} f ∘ T^n$ does not converge strongly in distribution to X
- **③** ∃ increasing sequence (k_n) , s.t. $\frac{1}{k_n}S_{k_n}f \circ T^n \to \mu(f) = \text{const.}$, strongly in distribution

白マ くほう くほう

Partial Birkhoff averaging does not tighten variables

Let us show, e.g..

• As $n \to \infty$, $\frac{1}{k}S_k f \circ T^n \to X$ converges strongly in distribution to a variable that, for large k, has a smaller variance than X

Partial Birkhoff averaging does not tighten variables

Let us show, e.g..

• As $n \to \infty$, $\frac{1}{k}S_k f \circ T^n \to X$ converges strongly in distribution to a variable that, for large k, has a smaller variance than X

Take probability $\nu \ll \mu$. By mixing, for all Borel sets A

$$\nu\big(\mathbf{1}_{A} \circ \frac{1}{k} \mathcal{S}_{k} f \circ T^{n}\big) = \mu\Big(\big(\mathbf{1}_{A} \circ \frac{1}{k} \mathcal{S}_{k} f \circ T^{n}\big) \frac{d\nu}{d\mu}\Big) \to \mu\big(\mathbf{1}_{A} \circ \frac{1}{k} \mathcal{S}_{k} f\big)$$

I.e., $\operatorname{distr}_{\nu}(\frac{1}{k}\mathcal{S}_k f \circ T^n) \to \operatorname{distr}_{\mu}(\frac{1}{k}\mathcal{S}_k f)$. Again by mixing, for all sufficiently large j,

$$\left|\mu([f \circ T^{j} - \mu(f)][f - \mu(f)])\right| < \mu([f - \mu(f)]^{2}) > 0$$

whence, for k large enough,

$$\mu\left(\left[\frac{1}{k}\mathcal{S}_k f - \mu(f)\right]^2\right) < \mu\left([f - \mu(f)]^2\right)$$
Q.E.D.

Thank you!

Marco Lenci Global-local mixing 1D maps

r P Ξ

æ

≣ ।•

Thank you! Happy Birthday, Lyonia!

★ Ξ →

ヨート