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One-dimensional maps with an indifferent fixed point

We study full-branched 1D expanding maps with an indifferent
fixed point, preserving an absolutely continuous infinite measure:

Case (A): Maps (0, 1) −→ (0, 1) with C 2-regular fixed point at 0

L0L1L2L3
...
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One-dimensional maps with an indifferent fixed point

Case (B): Maps R+ −→ R+ with fixed point at +∞, preserving
the Lebesgue measure

1
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One-dimensional maps with an indifferent fixed point

... and also the Boole map T : R −→ R, T (x) := x − 1

x
.
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Maps of the interval

Standard assumptions for case (A):

∃ partition {Ij}j∈J , with Ij := (aj , aj+1), a0 := 0 and
either J := {0, 1, . . . ,N − 1} (in which case aN = 1)
or J := N (in which case limn an = 1), s.t.

(A1) T |(aj ,aj+1) has unique extension τj : [aj , aj+1] −→ [0, 1],
twice-differentiable, bijective

(A2) ∃Λ > 1 s.t. |τ ′j | ≥ Λ, ∀j ≥ 1

(A3) ∃K > 0 s.t.

∣∣∣∣∣ τ ′′j(τ ′j )
2

∣∣∣∣∣ ≤ K , ∀j ≥ 0

(A4) τ0 convex, τ0(0) = 0, τ ′0(0) = 1, and τ ′0(x) > 1, ∀x ∈ (0, a1]
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Maps of the interval

Theorem Thaler ’80–’83

Under (A1)–(A4):

1 T preserves an infinite invariant measure µ, absolutely
continuous w.r.t. m (= Lebesgue measure) and unique up to
factors. Moreover, h := dµ

dm > 0 and unbounded only near 0

2 T is conservative and exact (w.r.t. m or µ, which is the same)
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Maps of the half-line

Standard assumptions for case (B):

∃ partition {Ij}j∈J , with Ij := (aj+1, aj), a0 := +∞ and
either J := {0, 1, . . . ,N − 1} (in which case aN = 0)
or J := N (in which case limn an = 0), s.t.

(B1) T |(aj+1,aj ) has unique extension τj defined on [aj+1, aj) or
(aj+1, aj ], twice-differentiable, bijective onto R+

(B2) ∃Λ > 1 s.t. |τ ′j | ≥ Λ, ∀j ≥ 1

(B3) ∃K > 0 s.t.

∣∣∣∣∣ τ ′′j(τ ′j )
2

∣∣∣∣∣ ≤ K , ∀j ≥ 0
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Maps of the half-line

(B4) u(x) := x − τ0(x) is positive, convex and vanishing, as
x → +∞. Also, u′′ is decreasing (hence vanishing)

(B5) T preserves the Lebesgue measure m

Theorem

Under (B1)–(B5) T is conservative and exact
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Comparison

Types (A) and (B) are of the same nature:

Given To : (0, 1) −→ (0, 1) preserving µ with µ((0, 1)) =∞, set
Φ(x) := µ([x , 1]), for 0 < x < 1.

By construction Φ : (0, 1) −→ R+ pushes µ to the Lebesgue
measure m on R+. Hence T := Φ ◦ To ◦ Φ−1 : R+ −→ R+ has an
indifferent fixed point at +∞ and preserves m

But the two classes are not the same:

Conjugation might not preserve smoothness or expansivity
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Comparison

Important example belonging to both classes: Farey map

To(x) =


x

1− x
, for x ∈

[
0, 1

2

]
;

1− x

x
, for x ∈

(
1
2 , 1
]
.

Invariant density: h(x) =
1

x
=⇒ Φ(x) :=

∫ 1

x
h(ξ) dξ = − log x

T (x) := − ln(F (e−x)) = | ln(ex − 1)|
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Comparison
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Comparison
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Global observables

Interested in the mixing/stochastic properties of global observables

Definition (case (A))

F : (0, 1) −→ C is called global observable if F ∈ L∞((0, 1), µ) and

∃µ(F ) := lim
a→0+

1

µ([a, 1))

∫ 1

a
F dµ,

Definition (case (B))

F : R+ −→ C is called global observable if F ∈ L∞(R+,m) and

∃m(F ) := lim
a→+∞

1

a

∫ a

0
F dm,

µ(F ) or m(F ) called infinite-volume average
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Global and local observables

The previous definitions of the global observables are adapted to
the systems at hand. Other types of infinite-measure-preserving
systems will lead to different choices, without an a priori rule.
A unifying abstract definition is possible but not particularly
illuminating.

From now on we give definitions and general facts for case (A)
only; case (B) analogous: ((0, 1), µ) (R+,m)) and µ m

Definition

A local observable is any complex-valued function f ∈ L1

Marco Lenci Global-local mixing 1D maps



Global and local observables

The previous definitions of the global observables are adapted to
the systems at hand. Other types of infinite-measure-preserving
systems will lead to different choices, without an a priori rule.
A unifying abstract definition is possible but not particularly
illuminating.

From now on we give definitions and general facts for case (A)
only; case (B) analogous: ((0, 1), µ) (R+,m)) and µ m

Definition

A local observable is any complex-valued function f ∈ L1

Marco Lenci Global-local mixing 1D maps



Global-local mixing

Definition (GLM2)

T is global-local mixing if for all global observables F and local
observables g

lim
n→∞

µ((F ◦ T n)g) = µ(F )µ(g)

In terms of the evolution of measures:

Equivalent definition (GLM2)

T is global-local mixing if for all global observables F and
probability measures ν � µ

lim
n→∞

T n
∗ ν(F ) = µ(F )
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Global-local mixing

So µ( · ) is a sort of “equilibrium functional” for a form of weak
convergence where the global observables are the test functions

In any event,

Proposition

If F is a global observable, so is F ◦ T , with µ(F ◦ T ) = µ(F )
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Global-local mixing, case (A)

Theorem

Let T : (0, 1) −→ (0, 1) satisfy (A1)-(A4) with two branches τj ,

(j = 0, 1). Set φj := (τj)
−1, h := dµ

dm and assume in addition:

(A5) φ1 decreasing (i.e., τ1 is decreasing);

(A6) φ0 + φ1 increasing and concave;

(A7) φ′0 (h ◦ φ0)/h differentiable, strictly decreasing and convex;

(A8) φ′0 (h ◦ φ0) + φ′1 (h ◦ φ1) ≥ 0.

Then T is global-local mixing.

Remark

If h is decreasing, (A8) follows from (A6)
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Examples, case (A)

Examples: Farey and friends. For 0 < α < 1 (also α = 0)

φ0(x) :=
x

(1 + x)1−α ; φ1(x) :=
1

(1 + x)1−α
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Examples, case (A)

Remark

Theorem generalizes to N − 1 increasing convex + 1 decreasing
branches with similar assumptions
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Global-local mixing, case (B)

Theorem

Let T : R+ −→ R+ satisfy (B1)-(B5) (no limit on number of
branches) and assume in addition

(B6) τj is increasing and convex ∀j ≥ 1.

Then T is global-local mixing.

Marco Lenci Global-local mixing 1D maps



Global-local mixing, case (B)

Example:

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Remark

Generalizes to 1 increasing and 1 decreasing full branches, with
cumbersome assumptions
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Global-local mixing, case (B)

Example:
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Remark

Generalizes to 1 increasing and 1 decreasing full branches, with
cumbersome assumptions
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Applications

Definition

Given

(M, µ) σ-finite measure space

Fn :M−→ R measurable ∀n
X random variable on some probability space

one says that Fn → X strongly in distribution, as n→∞, if
∀ν � µ, the distribution of Fn w.r.t. ν converges to that of X .
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Equidistribution of hitting times in residue classes

Take T global-local mixing of type (A) [or (B)]

L0L1L2L3
...

1

Fq(x) := hitting time of x to L0 mod q ∈ Z+, i.e.,

Fq|Lk ≡ j ⇐⇒ k ∼= j (mod q).
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Equidistribution of hitting times in residue classes

Proposition

Fq ◦ T n converges strongly in distribution to the uniform random
variable on {0, 1, . . . , q − 1}

Proof. By global-local mixing,

lim
n→∞

ν(e iθFq◦T n
) = lim

n→∞
T n
∗ ν(e iθFq) = µ(e iθFq) =

1

q

q−1∑
j=0

e iθj ,

which is the characteristic function of the uniform variable on
{0, 1, . . . , q − 1} (last equality is a simple fact). Q.E.D.
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Partial Birkhoff averaging does not tighten variables

On ((0, 1), µ) define the distance dµ(x , y) := µ([x , y ])

Proposition

Let T be a global-local mixing map of type (A) [or (B)] and F a
real-valued global observable s.t.

F dµ-uniformly continuous w.r.t. µ [or uniformly continuous]

µ(e iθF ) [or m(e iθF )] exists for all θ ∈ R
Then:

1 As n→∞, F ◦ T n converges strongly in distribution to the
variable X with characteristic function θ 7→ µ(e iθF )

2 Fix k ∈ Z+, 1
kSkF ◦ T

n → X strongly in distribution

3 ∃(kn) ⊂ Z+, kn ↗∞, s.t. 1
kn
SknF ◦ T n → X strongly in

distribution,
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Partial Birkhoff averaging does not tighten variables

Cannot happen for probability-preserving mixing systems!

In fact, given any probability-preserving mixing dynamical system
(M, µ,T ), let f be a non-constant bounded (hence local)
observable and call X the random variable defined by f w.r.t. µ:

1 As n→∞, 1
kSk f ◦ T

n converges strongly in distribution to a
variable that, for large k , has a smaller variance than X

2 For any increasing sequence (kn) ⊂ Z+, 1
kn
Skn f ◦ T n does not

converge strongly in distribution to X

3 ∃ increasing sequence (kn), s.t. 1
kn
Skn f ◦ T n → µ(f ) = const.,

strongly in distribution
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Partial Birkhoff averaging does not tighten variables

Let us show, e.g..

1 As n→∞, 1
kSk f ◦ T

n → X converges strongly in distribution
to a variable that, for large k, has a smaller variance than X

Take probability ν � µ. By mixing, for all Borel sets A

ν
(
1A ◦ 1

kSk f ◦ T
n
)

= µ
((

1A ◦ 1
kSk f ◦ T

n
)

dν
dµ

)
→ µ

(
1A ◦ 1

kSk f
)

I.e., distrν
(

1
kSk f ◦ T

n
)
→ distrµ

(
1
kSk f

)
. Again by mixing, for all

sufficiently large j ,∣∣µ([f ◦ T j − µ(f )] [f − µ(f )]
)∣∣ < µ

(
[f − µ(f )]2

)
> 0

whence, for k large enough,

µ
([

1
kSk f − µ(f )

]2)
< µ

(
[f − µ(f )]2

)
Q.E.D.
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Thank you!

Happy Birthday, Lyonia!
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