Entropy production in random billiards and the second law of thermodynamics

Renato Feres (joint with Tim Chumley)

Washington University, St. Louis
Banff - 3/22/2018

$$
\Delta S=\frac{Q}{T_{\text {cold }}}-\frac{Q}{T_{\mathrm{hot}}} \geq 0
$$

Plan of talk

- Entropy production rate and irreversibility
- Random billiard dynamical systems
- Billiard systems with wall temperature
- Entropy production in random billiards
- The second law of thermodynamics
- Billiard heat engines

Entropy production rate in a simple Markov chain

A system consisting of a token and two chambers can be in 4 states:

$$
\mathcal{S}=\{\text { Blue-Left, Blue-Right, Red-Left, Red-Right }\} .
$$

It can transition between states with the following probabilities:

Transition matrix and stationary probabilities

- The transition probabilities matrix is:

$$
P={ }_{\mathrm{RL}}^{\mathrm{RL}} \underset{\mathrm{RR}}{\mathrm{BR}}\left[\begin{array}{cccc}
\mathrm{BL} & \mathrm{BR} & \mathrm{RL} & \mathrm{RR} \\
0 & 1-p & p & 0 \\
p & 0 & 0 & 1-p \\
1-p & 0 & 0 & p \\
0 & p & 1-p & 0
\end{array}\right]
$$

- The stationary probability vector $\pi=\pi P$, where

$$
\pi=[\pi(\mathrm{BL}), \pi(\mathrm{RL}), \pi(\mathrm{RL}), \pi(\mathrm{RR})]
$$

is given by

$$
\pi=\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]
$$

for all values of $p \neq 0,1$.

Time irreversibility

- Suppose the Markov chain is stationary and defined by (π, P).
- We wish to compare the probabilities of forward chain segments

$$
S_{1}, S_{2}, \ldots, S_{n-1}, S_{n}
$$

and backward chain segments

$$
S_{n}, S_{n-1}, \ldots, S_{1}, S_{0}
$$

Time irreversibility

- Suppose the Markov chain is stationary and defined by (π, P).
- We wish to compare the probabilities of forward chain segments

$$
S_{1}, S_{2}, \ldots, S_{n-1}, S_{n}
$$

and backward chain segments

$$
S_{n}, S_{n-1}, \ldots, S_{1}, S_{0}
$$

- The probabilities of forward chains are

$$
\mathbb{P}_{n}^{+}\left(s_{1}, \ldots, s_{n}\right)=\pi\left(s_{1}\right) P\left(s_{1}, s_{2}\right) \cdots P\left(s_{n-1}, s_{n}\right)
$$

and of backward chains are

$$
\mathbb{P}_{n}^{-}\left(s_{1}, \ldots, s_{n}\right)=\pi\left(s_{n}\right) P\left(s_{n}, s_{n-1}\right) \cdots P\left(s_{2}, s_{1}\right)
$$

How to compare probability distributions?

- The Kullback-Leibler divergence (or relative entropy):

$$
D_{K L}\left(\mathbb{P}_{n}^{+} \| \mathbb{P}_{n}^{-}\right)=-\sum_{s} \mathbb{P}_{n}^{+}(s) \log \frac{\mathbb{P}_{n}^{-}(s)}{\mathbb{P}_{n}^{+}(s)}
$$

- This is a kind of (non-symmetric) distance between distributions.
- It is always non-negative and equals zero exactly when $\mathbb{P}_{n}^{+}=\mathbb{P}_{n}^{-}$.

Definition (Entropy production rate)

$$
e_{p}=\lim _{n \rightarrow \infty} \frac{1}{n} D_{K L}\left(\mathbb{P}_{n}^{+} \| \mathbb{P}_{n}^{-}\right) .
$$

How to compare probability distributions?

- The Kullback-Leibler divergence (or relative entropy):

$$
D_{K L}\left(\mathbb{P}_{n}^{+} \| \mathbb{P}_{n}^{-}\right)=-\sum_{s} \mathbb{P}_{n}^{+}(s) \log \frac{\mathbb{P}_{n}^{-}(s)}{\mathbb{P}_{n}^{+}(s)}
$$

- This is a kind of (non-symmetric) distance between distributions.
- It is always non-negative and equals zero exactly when $\mathbb{P}_{n}^{+}=\mathbb{P}_{n}^{-}$.

Definition (Entropy production rate)

$$
e_{p}=\lim _{n \rightarrow \infty} \frac{1}{n} D_{K L}\left(\mathbb{P}_{n}^{+} \| \mathbb{P}_{n}^{-}\right) .
$$

- A calculation for Markov chains gives:

$$
e_{p}=\frac{1}{2} \sum_{i, j}\left(\pi\left(s_{i}\right) P\left(s_{i}, s_{j}\right)-\pi\left(s_{j}\right) P\left(s_{j}, s_{i}\right)\right) \log \frac{\pi\left(s_{i}\right) P\left(s_{i}, s_{j}\right)}{\pi\left(s_{j}\right) P\left(s_{j}, s_{i}\right)} \geq 0 .
$$

Entropy production rate

- $e_{p}=0 \Leftrightarrow$ chain satisfies the detailed balance property:

Definition (Detailed balance)
π and P are in detailed balance if $\pi\left(s_{i}\right) P\left(s_{i}, s_{j}\right)=\pi\left(s_{j}\right) P\left(s_{j}, s_{i}\right)$ for all s_{i}, s_{j}.

Entropy production rate

- $e_{p}=0 \Leftrightarrow$ chain satisfies the detailed balance property:

Definition (Detailed balance)
π and P are in detailed balance if $\pi\left(s_{i}\right) P\left(s_{i}, s_{j}\right)=\pi\left(s_{j}\right) P\left(s_{j}, s_{i}\right)$ for all s_{i}, s_{j}.

- For the example: $e_{p}=(2 p-1) \log \frac{p}{1-p}$.

- For the example, if $p>1 / 2$, there is overall rotation counterclockwise.

Random billiards

- In ordinary billiard, particle velocity at collision undergoes mirror-reflection.

standard billiard system

random billiard system
- In random billiard, velocity scatters randomly upon collision with wall.
- Post-collision velocity has probability distribution $P_{q, v}=P_{q}(\cdot \mid v)$.
- Given initial (q, v), we obtain a Markov chain

$$
\left(Q_{0}, V_{0}\right),\left(Q_{1}, V_{1}\right),\left(Q_{2}, V_{2}\right), \ldots
$$

Introducing boundary temperature

- Define the surface Maxwell-Boltzman distribution of velocities as

$$
\mu_{q}(\mathcal{U})=\int_{U} C_{q}\left\langle\mathrm{~m}_{q}, u\right\rangle \exp \left\{-\frac{1}{2} \frac{m|u|^{2}}{\kappa T_{q}}\right\} d \operatorname{Vol}(u) .
$$

Introducing boundary temperature

- Define the surface Maxwell-Boltzman distribution of velocities as

$$
\mu_{q}(U)=\int_{U} C_{q}\left\langle\mathrm{~m}_{q}, u\right\rangle \exp \left\{-\frac{1}{2} \frac{m|u|^{2}}{\kappa T_{q}}\right\} d \operatorname{Vol}(u) .
$$

- Define probability measure ζ on pairs:

$$
d \zeta_{q}(v, w)=d \mu_{q}(v) d P_{q, v}(w)
$$

Introducing boundary temperature

- Define the surface Maxwell-Boltzman distribution of velocities as

$$
\mu_{q}(U)=\int_{u} C_{q}\left\langle\mathrm{~m}_{q}, u\right\rangle \exp \left\{-\frac{1}{2} \frac{m|u|^{2}}{\kappa T_{q}}\right\} d \operatorname{Vol}(u) .
$$

- Define probability measure ζ on pairs:

$$
d \zeta_{q}(v, w)=d \mu_{q}(v) d P_{q, v}(w) .
$$

- Detailed balance:

$$
d \zeta_{q}(v, w)=d \zeta_{q}(-w,-v)
$$

Introducing boundary temperature

- Define the surface Maxwell-Boltzman distribution of velocities as

$$
\mu_{q}(U)=\int_{U} C_{q}\left\langle\mathrm{~m}_{q}, u\right\rangle \exp \left\{-\frac{1}{2} \frac{m|u|^{2}}{\kappa T_{q}}\right\} d \operatorname{Vol}(u) .
$$

- Define probability measure ζ on pairs:

$$
d \zeta_{q}(v, w)=d \mu_{q}(v) d P_{q, v}(w) .
$$

- Detailed balance:

$$
d \zeta_{q}(v, w)=d \zeta_{q}(-w,-v)
$$

Definition (Boundary has temperature T_{q} at point q)
P_{q} and the Maxwell-Boltzmann distribution μ_{q} satisfy detailed balance.

- P is said to satisfy reciprocity (in Boltzmann Equation literature.)

Physical definition of boundary temperature

- Enclose particle m in perfectly reflecting and rigid small cup open at q.
- Velocity distribution eventually becomes stationary.
- Stationary distribution is Maxwell-Boltzmann with temperature T_{q}.
- We also assume equilibrium is time-reversible.

Side remark: deriving P from microstructure

- Sample pre-collision condition of wall system from fixed Gibbs state
- Compute trajectory of deterministic Hamiltonian system
- Obtain post-collision state of molecule system.

Side remark: deriving P from microstructure

- Sample pre-collision condition of wall system from fixed Gibbs state
- Compute trajectory of deterministic Hamiltonian system
- Obtain post-collision state of molecule system.

Theorem (Cook-F)
Resulting P satisfies reciprocity. The stationary distribution is given by Gibbs state of molecule system with same parameter β as the wall system.

Example: One-dimensional billiard thermostat

- Mass m_{1} is bound to wall. It moves freely within short interval.
- Mass m_{2} can freely enter domain of m_{1}.

Let masses interact deterministically

Reset velocity of m_{1} from $\mathcal{N}\left(0, \sigma^{2}\right)$

Example: Maxwell-Smolukowski reflection model

- μ_{q} Maxwell-Boltzmann distribution of velocities with temperature $T(q)$.
- $\alpha(q)$ probability of diffuse reflection.
- Define

$$
P_{q, v}=\left\{\begin{array}{l}
\text { diffuse reflection }\left(\sim \mu_{q}\right) \text { with probability } \alpha(q) \\
\text { specular reflection with probability } 1-\alpha(q)
\end{array}\right.
$$

Time reversal in random billiard Markov chains

- States: (Q, V) specifies position and post-collision velocity.
- Forward chain segment:

$$
\left(Q_{0}, V_{0}\right) \mapsto\left(Q_{1}, V_{1}\right) \mapsto \cdots \mapsto\left(Q_{n}, V_{n}\right)
$$

- Time-reversal is a sequence of pre-collision states (velocities flipped):

$$
\left(Q_{n},-V_{n}\right) \mapsto\left(Q_{n-1},-V_{n-1}\right) \mapsto \cdots \mapsto\left(Q_{0},-V_{0}\right)
$$

Irreversibility and entropy production

Given the random billiard map and stationary probability measure ν define

- $\mathbb{P}_{[0, n]}^{+}$probability measure on space of chain segments
- $\mathbb{P}_{[0, n]}^{-}$probability measure on space of reversed chain segments

Definition (Entropy production rate)
$e_{\rho}:=\lim _{n \rightarrow \infty} \frac{1}{n} D_{K L}\left(\mathbb{P}_{[0, n]}^{+} \| \mathbb{P}_{[0, n]}^{-}\right)$where the relative entropy $D_{K L}$ is defined by

$$
D_{K L}\left(\mathbb{P}_{[0, n]}^{+} \| \mathbb{P}_{[0, n]}^{-}\right):=\int_{\mathcal{D}} \log \left(\frac{d \mathbb{P}_{[0, n]}^{+}}{d \mathbb{P}_{[0, n]}^{-}}\right) d \mathbb{P}_{[0, n]}^{+}
$$

Irreversibility and entropy production

- Define measure η on $\mathcal{D}=\left\{(Q, V),\left(Q^{\prime}, W\right): Q^{\prime}=Q+t V\right\}$ by

$$
d \eta(x, y):=d \nu(x) d \mathcal{B}_{x}(y)
$$

where \mathcal{B} is the random billiard map, $x=(Q, V), y=\left(Q^{\prime}, W\right)$.

- Define $\eta^{-}:=\mathcal{R}_{*} \eta$ where \mathcal{R} is the proper reversal map (flip velocities!).

Proposition

The entropy production rate for the random billiard chain satisfies

$$
e_{p}=\frac{1}{2} \int_{\mathcal{D}}\left[d \eta-d \eta^{-}\right] \log \left(\frac{d \eta}{d \eta^{-}}\right) \geq 0 .
$$

- This is the continuous state counterpart of

$$
e_{p}=\frac{1}{2} \sum_{i, j}\left(\pi\left(s_{i}\right) P\left(s_{i}, s_{j}\right)-\pi\left(s_{j}\right) P\left(s_{j}, s_{i}\right)\right) \log \frac{\pi\left(s_{i}\right) P\left(s_{i}, s_{j}\right)}{\pi\left(s_{j}\right) P\left(s_{j}, s_{i}\right)}
$$

for countable states Markov chains.

Bringing in temperature. Recall:

Definition (Maxwellian at temperature T)

The Maxwell-Boltzmann distribution at $q \in \partial M$ at temperature $T(q)$ is the probability measure $\mu_{q}^{ \pm} \in \mathcal{P}\left(N_{q}^{ \pm}\right)$having density

$$
\rho_{q}(v)=2 \pi\left(\frac{\beta(q) m}{2 \pi}\right)^{\frac{n+1}{2}}\left|\left\langle v, \mathbb{m}_{q}\right\rangle\right| \exp \left\{-\beta(q) \frac{m|v|_{q}^{2}}{2}\right\}
$$

with respect to the volume measure $d V_{q}(v)$, where $\beta(q)=1 / \kappa T(q)$.

- Define $\zeta_{q} \in \mathcal{P}\left(N_{q}^{-} \times N_{q}^{+}\right)$by

$$
d \zeta_{q}(u, v):=d \mu_{q}^{-}(u) d P_{(q, u)}(v)
$$

Definition (Reciprocity)

The reflection operator P has the property of reciprocity if at each $q \in \partial M$ the probability measure ζ_{q} is invariant under the proper time-reversal map.

Main result

- Given stationary $\nu \in \mathcal{P}\left(N^{+}\right)$define $m:=\pi_{*} \nu \in \mathcal{P}(\partial M)$.

- Let $\nu_{q} \in \mathcal{P}\left(N_{q}^{+}\right)$be obtained by disintegrating ν along π, so that

$$
\nu(\cdot)=\int_{\partial M} \nu_{q}(\cdot) d m(q) .
$$

- Let V_{q} be the Riemannian volume measure on N_{q}.
- Let $\mathcal{T}: N^{+} \rightarrow N^{-}$be the free-motion part of billiard map.
- Let $\nu^{-}:=\mathcal{T}_{*} \nu$ and $\nu^{+}:=\nu$ pre- and post-collision velocity distributions.
- $E(q, v):=\frac{1}{2} m\|v\|_{q}^{2}$ particle kinetic energy.

Main result

Theorem (Chumley-F.)
Let $\nu \in \mathcal{P}\left(N^{+}\right)$be the stationary measure for the random billiard map. Suppose the associated measures η and η^{-}on \mathcal{D} are equivalent. Then

$$
e_{p}=-\frac{1}{m(\partial M)} \int_{\partial M} \frac{1}{\kappa T(q)}\left[\nu_{q}^{+}(E)-\nu_{q}^{-}(E)\right] d m(q) \geq 0
$$

where $m:=\pi_{*} \nu$.

- That is, e_{p} is the average over boundary of M of

- Core problem: given a random billiard system, obtain ν.

Example: Two plates

- $M=\mathbb{T}^{2} \times[0,1]$; boundary given Maxwell-Smolukowski thermostat.

Example: Two plates

- Q: the heat flow (mean energy tranfer per collision) from plate 1 to 2 .
- Then $e_{p}=Q\left(\frac{1}{\kappa T_{2}}-\frac{1}{\kappa T_{1}}\right)>0$.
- We recover Clausius form of second law: Heat flows from hot to cold.

- $Q=C\left(\kappa T_{1}-\kappa T_{2}\right)$ where $C:=\frac{\alpha_{1} \alpha_{2}}{2\left[1-\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\right]}=$ thermal conductivity.

Carnot's theory of heat engines

Need good examples to study entropy production, heat flow, work, efficiency, ...

Carnot's theory of heat engines

Need good examples to study entropy production, heat flow, work, efficiency, ...

Carnot's theory of heat engines

Need good examples to study entropy production, heat flow, work, efficiency, ...

Carnot's theory of heat engines

A thermophoretic motor.

Carnot's theory of heat engines

Billiard system for the thermophoretic motor.

No-slip billiards

- Richard L. Garwin's 1969 paper Kinematics of an Ultraelastic Rough Ball.
- No-slip condition was used to explain bouncing of a Wham-O Super Ball ${ }^{\circledR}$
- Further work by Wojtkowski and Broomhead-Gutkin 1993.
- No-slip dynamics being developed with Hongkun Zhang and Chris Cox.
- Conservative, reversible planar billiards: only the standard and no-slip.

A billiard heat engine with no-slip contact

- We assume contact between disc and moving wedge is no-slip (rubbery).

The corresponding billiard system

(scaled) angular displacement of disc

Numerical results

Thank you!

