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Consider a smooth map f ∶M →M.

Definition (Informal)

We say f is predominantly expanding (resp. hyperbolic) if
there exists C ⊂M (possibly noninvariant) such that

f ∣M∖C is uniformly expanding (resp. hyperbolic), and

C is “small” (e.g., Leb(C) ≪ 1).

Question

What is the asymptotic dynamical regime of f ?
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Examples I have in mind: dynamics on C harms/reverses
hyperbolicity.

(a) 1D maps with critical points, e.g. quadratic family
qc(x) = x2 + c , c ∈ [−1

4 ,2], C = neighborhood of 0

Derivative growth reversed near critical point

(b) 2D maps with ‘cone twisting’, e.g., Standard map family
w. large parameter: C = two thin strips

Critical strip ‘twists’ unstable cone towards contracting
directions.
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(a) 1D maps with critical points, e.g. quadratic family
qc(x) = x2 + c , c ∈ [−1

4 ,2], C = neighborhood of 0

Existence of a.c.i.m., positive exponent under (typically)
uncheckable infinite-time conditions

(b) 2D maps with ‘cone twisting’, e.g., Standard map family
w. large parameter: C = two thin strips

Open whether standard map has positive exponent on
positive volume set (“stochastic sea”)
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Subject of this talk: add small IID random perturbations to
such systems at each timestep.

Main idea: sufficient amount of randomness “shakes
loose” hyperbolicity

Part 1: 1D dynamics with arbitrarily small noise
amplitudes (joint with Yun Yang, in prep.)

Part 2: 2D dynamics with sufficiently large perturbations

Standard map (B.-Xue-Young ’17, Ann. Math.)
Possibly dissipative maps with ‘Henon flavor’
(B.-Xue-Young ’17, CMP)
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Part 1: One-dimensional
dynamics
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Chaos in 1D

1D: Prototypical example: family fa ∶ S1 → S1,

fa(x) = 10 sin(2πx) + a(mod1) .

For which a is fa chaotic? (i.e., a.c.i.m., positive exponent, decay of

correlations)

fa is predominantly expanding away from neighborhood of
{f ′a = 0} = {1

4 ,
3
4}.

Primary obstruction: formation of sinks when postcritical
orbit f na (x̂), x̂ ∈ {1

4 ,
3
4} comes too close to x̂ .
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Mechanism for chaos for map w critical points

fa(x) = 10 sin(2πx) + a(mod1)

A mechanism for positive Lypaunov exponents: assume f = fa
satisfies Misiurewicz condition

(H) min
n≥1

dist(f n{f ′ = 0},{f ′ = 0}) ≥ c > 0 .

Given x ∈ S1 ∖ {f ′a = 0}, show ∣(f na )′(x)∣ ≳ eλn:

f = fa is predominantly expanding away from neighborhood
C of {f ′ = 0} = {1

4 ,
3
4}.

If xi ∶= f i(x) falls in C, then ∣f ′(xi)∣ ≪ 1.

Orbit of xi shadows postcritical orbit {f n(x̂)} for p
timesteps, where p ≈ − log ∣f ′a (xi)∣ (a.k.a. “bound period”)
(H) ⇒ f j(x̂) ∈ {∣f ′∣ ≥ 5} for all j , hence f j(xi) ∈ {∣f ′∣ ≥ 4}
for j ≤ p.
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Structural instability/ “comingled regimes”

fa(x) = 10 sin(2πx) + a(mod1) ,
(H) min

n≥1
dist(f nx̂ ,{f ′ = 0}) ≥ c > 0 .

Condition (H) rules out sinks, but...
(H) not a stable property w.r.t. parameter a
(H) typically not checkable.

Issues are real: for real quadratic family qc(x) = x2 + c ,
c ∈ [−1

4 ,2],
A.e. qc is ‘regular’ (sinks) or ‘stochastic’ (a.c.i.m., positive
exponent) ; see Lyubich ’97 and others
{c ∈ [0,1) ∶ qc has a sink} is open and dense
“Stochastic” parameters have convoluted Cantor-like
structure, positive Lebesgue measure

E.g., Jakobson ’81, Benedicks & Carleson ’85 (these use a
weaker form of (H))
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Random perturbations

Introduce small, IID random perturbations at each timestep:

Roughly speaking, chaotic regimes of such random
dynamics tend to be robust / structurally stable, unlike
deterministic dynamics

Conceptually, should be possible to find checkable
conditions for chaos

Not so unnatural: real world inherently noisy!
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Random perturbations

Our model:

f (x) = fa,L(x) ∶= L sin(2πx) + a (mod1)
where L≫ 1 fixed and a ∈ [0,1) a parameter.

Introduce IID random perturbations of small amplitude at each
timestep:

Fix “noise amplitude” ε > 0
IID ω1, ω2,⋯ uniformly distributed in [−ε, ε], ω ∶= (ωi)i≥1.

Given f = fa,L, at time i perturb to fωi = f (⋅ + ωi).

Question

For given a ∈ [0,1), what is the asymptotic dynamical regime of

f nω = fωn ○ ⋯ ○ fω1 ?

Focus on Lyapunov exponents: λ(x) ∶= limn→∞ 1
n log ∣(f nω )′(x)∣,

when lim exists.
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f = fa ∶ S1 → S1, fωi = f (⋅ + ωi) f nω = fωn ○ ⋯ ○ fω1

f (x) = fa,L(x) ∶= L sin(2πx) + a (mod1),L≫ 1

Low period sinks (fixed, periodic) for fa persist as random
sinks for ε sufficiently small

High period sinks destroyed by noise if ε large enough.

Given fixed ε > 0, asymptotic regime of (f nω ) should depend on
only finitely many iterates of f = fa.

Question:

Given ε > 0, how many iterates of f = fa determine asymptotic
behavior of (f nω )?
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Checkable, finite-time condition:

f = fa ∶ S1 → S1, fωi = f (⋅ + ωi) f nω = fωn ○ ⋯ ○ fω1

f (x) = fa,L(x) ∶= L sin(2πx) + a (mod1),L≫ 1

Sinks of period ≤ k ruled out when parameter a satisfies
finite-time Misiurewicz condition

(H)c,k dist(f i x̂ ,{f ′ = 0}) ≥ c for all 1 ≤ i ≤ k , x̂ ∈ {f ′ = 0}

for fixed c > 0, k ∈ Z≥1.

(H)c,k is checkable! Satisfied by open set of a of mass
≈ (1 − c)k .

No assumptions made about k + 1-th iterate. Sink of
period k + 1 possible.
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Results:

f (x) = fa,L(x) ∶= L sin(2πx) + a (mod1)
(H)c,k : dist(f i x̂ ,{f ′ = 0}) ≥ c for all 1 ≤ i ≤ k, x̂ ∈ {f ′ = 0}
Perturbations fωi ∶= f (⋅ + ωi), Markov chain Xi ∶= fωi (Xi−1)

Fix c > 0, β ∈ (0,1). Let L ≥ L0 where L0 = L0(c , β).

Theorem

For any k and any ε ≥ L−(2k+1)(1−β)+β, the following holds:

(i) Markov chain (Xi) admits unique stationary measure µ,
everywhere-supported (hence λ = limn→∞ 1

n log ∣(f nω )′(x)∣
exists and is constant for all x ∈ S1 w.p.1)

(ii) λ ≥ γ0 logL, where

γ0 ∶= min{(2k + 1)(1 − β) − α
k + 1

,
1

2
− β} and ε = L−α
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f (x) = fa,L(x) ∶= L sin(2πx) + a (mod1)
(H)c,k : dist(f i x̂ ,{f ′ = 0}) ≥ c for all 1 ≤ i ≤ k, x̂ ∈ {f ′ = 0}
Perturbations fωi ∶= f (⋅ + ωi), Markov chain Xi ∶= fωi (Xi−1)

Boundary ε = L−(2k+1) is essentially sharp:

Proposition

Assume f satisfies (H)c,k , f k+1(x̂) = x̂ for some x̂ ∈ {f ′ = 0}
and ε = L−(2k+1). Then, the Markov chain (Xi) has a stationary
measure µ supported on a ≈ L−(k+1)-neighborhood of the orbit
{f i x̂}ki=0. Moreover, the Lyapunov exponent of µ satisfies
λ ≤ − log 2 (i.e., µ is a random sink).
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Part II: 2D dynamics
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2D dynamics

Parameters b ∈ (0,1],L≫ 1. Consider (possibly discontinous)
model F = Fb,L ∶ T2 → T2,

F (x , y) ∶= (2x + L sin(2πx) − y , bx) .

↷
For L≫ 1, F is predominantly hyperbolic with expansion
∼ L along x-axis on unshaded region

Shaded region C is O(L−1) neighborhood of {x = 1
4 ,

3
4}
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Obstructions to hyperbolicity in 2D

F(x , y) ∶= (2x + L sin(2πx) − y , bx)

Estimating LE is a delicate cancellation problem:

Growing vectors ‘twisted’ into contracting directions

Conservative (b = 1): elliptic islands

Dissipative (b < 1): presence of sinks of high period

Obstructions are real:

Conservative: For Chirikov standard map, proliferation of
elliptic islands for large set of L (Duarte 95)

Dissipative: coexistence of wild hyperbolic sets and
infinitely many sinks (Newhouse 74)
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Existing positive results

Conservative:

(Gorodetski 12) Chirikov standard map: λ1 > 0 on set of
Hausdorff dimension 2 (zero volume)

Dissipative:

Dynamics of Hénon map in
(Benedicks & Carleson 91)

One direction of instability
(Wang & Young 01, 08)

Results entail intensive parame-
ter exclusion to rule out bad be-
havior, e.g., formation of sinks.
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Random perturbations

F(x , y) ∶= (2x + L sin(2πx) − y , bx)

Add IID random perturbations at each timestep:

ωi , i ≥ 1 IID, distributed uniformly in [−ε, ε]
Perturb to Fωi (x , y) = F (x + ωi , y)
Compositions F n

ω = Fωn ○ ⋯ ○ Fω1 ; ω = (ω1,⋯, ωn).

For “large” ε, clear that top Lyapunov exponent
λε1 = limn→∞ 1

n log ∥(dF n
ω)x∥ exists, λε1 ∼ logL.

Question

How large to take ε to “shake loose” hyperbolicity, i.e.,
λ1ε ∼ logL?
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Results: volume-preserving (b = 1)

F(x , y) ∶= (2x + L sin(2πx) − y , x), Fωi (x , y) = F(x + ωi , y),
F n
ω = Fωn ○ ⋯ ○ Fω1

Theorem (Joint with JX, LSY; Ann. Math. 2017)

There exists L0, c > 0 such that for any L ≥ L0 and

ε > L−cL
9/10

,

the top Lyapunov exponent λε1(p) = limn→∞ 1
n log ∥(dF n

ω)p∥
exists, is almost surely constant over p, ω, and satisfies

λε1 ≥
9

10
logL .
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Comments on Theorem

F(x , y) ∶= (2x + L sin(2πx) − y , x)

No assumptions made on detailed dynamics of F :

Elliptic fixed points and periodic points allowed.
Typical length T of sojourn to vicinity of elliptic fixed
point:

T ≈ ε−1 = LcL
9/10

.

By precluding elliptic periodic points of period ≤ 3, we can
allow

ε > L−cL
19/10

.
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LE and decay of correlations (b ≤ 1)

F(x , y) ∶= (2x + L sin(2πx) − y , x), Fωi (x , y) = F(x + ωi , y),
F n
ω = Fωn ○ ⋯ ○ Fω1

Note: sinks possible! Need ε larger.

Theorem (Joint with JX and LSY; CMP 2017)

Let b ∈ (0,1]. Then there exists L0 = L0(b) > 0 such that for
any L ≥ L0 and ε ≥ L−9/10, we have

the top Lyapunov exponent λε1 exists almost surely and
satisfies λε1 ≥ 9

10 logL; and

There exists K0 ∈ N, σ > 0 such that

∣∫ φd(µ1Pn) − ∫ φd(µ2Pn)∣ ≤ L−σ(n−K0) .

for all φ ∈ L∞, µ1, µ2 Borel probabilities, n ≥ K0.
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Comments on Theorem

F(x , y) ∶= (2x + L sin(2πx) − y , bx)

No assumptions on detailed dynamics of F– sinks could
exist!

Sinks have basins of size O(L−1); perturbations are just
large enough to escape with high probability

Precluding sinks of period ≤ 3 permits us to take
ε ≥ L−19/10 instead.
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Comments on Theorem

F(x , y) ∶= (2x + L sin(2πx) − y , bx)

No assumptions on detailed dynamics of F– sinks could
exist!

Sinks have basins of size O(L−1); perturbations are just
large enough to escape with high probability

Precluding sinks of period ≤ 3 permits us to take
ε ≥ L−19/10 instead.
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Additional work:

“Shaking loose” hyperbolicity / expansion for predominantly
hyperbolic systems:

Lian-Stenlund ’12 : 1D maps (essentially our model with
k = 0)

Ledrappier-Shub-Simo-Wilkinson ’03 : Random
perturbations of twist maps on sphere

“à là Furstenberg”: typical random cocycles have simple
Lyapunov spectrum

Closely related 1D work:

Katok-Kifer ’86: zero noise limits of Misurewicz maps

Baladi, Benedicks, Maume-Deschamps ’00: quenched
correlation decay for small random perturbations of
Misurewicz maps
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Conclusions

Small random perturbations simplify estimation of
Lyapunov exponents

Methods rely only on checkable dynamical properties.

Amenable to broad generalization (e.g. higher dimension)

Not so unnatural from modeling standpoint: the real world
is inherently noisy!
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Thank you!
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