Erdös-Rényi laws for dynamical systems and large deviations.

Nicolai Haydn (USC), Holger Kantz (MPIKS), Mozhdeh Massah (MPIKS) and Matthew Nicol (UH). Partly supported by NSF-DMS 1600780

> New Developments In Open Dynamical Systems. March 21, 2018

Erdös-Renyi Laws

Suppose (T, X, μ) is an ergodic dynamical system and $\phi : X \to \mathbb{R}$ is an observable, $\int \phi d\mu = 0$.

Erdös-Renyi laws give the almost sure behavior of averages over time windows of varying length. Define

$$S_n(x) = \sum_{j=0}^{n-1} \phi \circ T^j(x)$$

Define the maximum average over a window of length k(n) up to time n, $\theta(n, k(n))$, by

$$\theta(n,k(n)) := \max_{0 \le j \le n-k(n)} \frac{S_{j+k(n)} - S_j}{k(n)}$$

If k(n) = 1 then for μ a.e. x, θ(n, k(n))(x) → essup φ.
If k(n) = n then by the ergodic theorem for μ a.e. x, θ(n, k(n))(x) → 0.

Erdös-Renyi Law for IID processes

The Erdös-Rényi law was first given for iid random variables by Erdös and Rényi in " On a new law of large numbers" (1970):

Proposition (Erdös-Rényi)

Let $(X_n)_{n\geq 1}$ be an iid sequence of centered non-degenerate random variables, and let $S_j = X_1 + ... + X_j$. Assume that the moment generating function Ee^{tX_1} exists in some interval U containing t = 0. For each $\alpha > 0$, define $\psi_{\alpha}(t) = e^{-\alpha t} Ee^{tX_1}$. For those α for which ψ_{α} attains its minimum at a point $t_{\alpha} \in U$, set $I(\alpha) = \alpha t_{\alpha} - \log Ee^{t_{\alpha}X_1}$. Then almost surely

$$\lim_{n} \max\{(S_{j+\lceil \log n/I(\alpha)\rceil} - S_j) / \lceil \log n/I(\alpha)\rceil : 1 \le j \le n - \lceil \log n/I(\alpha)\rceil\} = \alpha.$$

Example

Suppose X_i is an iid sequence taking the values ± 1 with equal probability $\frac{1}{2}$

Recall

$$\theta(n,k(n)) := \max_{0 \le j \le n-k(n)} \frac{S_{j+k(n)} - S_j}{k(n)}$$

 $\theta(n, k(n))$ is the maximal average gain over a time window of length k(n).

A calculation using the strong law of large numbers shows that if $\lim_{n\to\infty}\frac{k(n)}{\log n}=\infty$ then P a. s.

 $\lim_{n\to\infty}\theta(n,k(n))=0$

If, however, $k(n) \leq c \log_2 n$ with 0 < c < 1 then for large n with probability one there is at least one j < n - k(n) such that $X_{j+1} = X_{j+2} = \ldots = X_{j+k(n)} = 1$ (an application of the Borel-Cantelli lemma) so P a. .s.

$$\lim_{n\to\infty}\theta(n,k(n))=1$$

So for a fair game the Erdös-Rényi law gives information on the maximal average gain of a player when the length of the time window ensures

$$\lim_{n\to\infty}\max_{0\leq j\leq n-k(n)}\frac{S_{j+k(n)}-S_j}{k(n)}$$

has a non-degenerate limit. In this case $I(\alpha) = 1 - h(\frac{1+\alpha}{2})$ where $h(x) = -x \log_2 x - (1-x) \log_2(1-x)$.

Erdös-Renyi laws for deterministic dynamical systems

Suppose $T: (X, \mu) \rightarrow (X, \mu)$ is an ergodic measuring preserving map and

 $\phi: X \to \mathbb{R}$

is an integrable function (observable).

The sequence $\{\phi \circ T^j\}$ is a stationary stochastic process.

Is there an almost sure limit for maximal average gain?

Large deviations theory

Suppose

$$\int_{X} \phi \, d\mu = 0$$

Let $S_n(x) := \phi(x) + \phi \circ T + \ldots + \phi \circ T^{n-1}(x)$. If (T, X, μ) is ergodic then

$$\lim_{n\to\infty}\frac{S_n(x)}{n}=0$$

for μ a. e. $x \in X$.

Large deviations theory gives information on the rate of convergence by estimating

$$\mu(x:S_n(x)\geq n\alpha)$$

as a function of *n* and $\alpha > 0$.

Definition (Rate function)

A mean-zero observable $\phi: X \to \mathbb{R}$ is said to satisfy a local large deviation principle with rate function $I(\alpha)$, if there exists a neighbourhood U of 0 and a strictly convex function $I: U \to \mathbb{R}$, which is non-negative and vanishing only at $\alpha = 0$, such that

$$\lim_{n \to \infty} \frac{1}{n} \log \mu(x : S_n(x) \ge n\alpha) = -I(\alpha)$$
(1)

for all $\alpha > 0$ in U and

$$\lim_{n\to\infty}\frac{1}{n}\log\mu(x:S_n(x)\leq n\alpha) = -I(\alpha)$$
(2)

for all $\alpha < 0$ in U.

For a given $\epsilon > 0$ for large *n*

$$e^{-n(I(\alpha)+\epsilon)} \le \mu(x:S_n(x) \ge n\alpha) \le e^{-n(I(\alpha)-\epsilon)}$$

Proposition (adapted from Erdös and Rényi.)

(a) Suppose that ϕ satisfies a large deviation principle with rate function I defined on the open set U. Let $\alpha > 0$ and let

$$L_n = L_n(\alpha) = \left[\frac{\log n}{I(\alpha)}\right] \qquad n \in \mathbb{N}.$$

Then the Upper Erdös-Rényi law holds and

$$\limsup_{n\to\infty} \max\{S_{L_n}(\phi) \circ T^j/L_n : 0 \le j \le n-L_n\} \le \alpha.$$

(b) If for each interval A there exists $C > 0, \tau \ge 1$ such that

$$\mu(\bigcap_{m=0}^{n-L_n} \{S_{L_n}(\phi) \circ T^m \in A\}) \leq C[\mu(S_{L_n} \in A)]^{n/(L_n)^{\tau}}$$

then the Lower Erdös-Rényi law holds and

$$\liminf_{n\to\infty}\max\{S_{L_n}(\phi)\circ T^j/L_n: 0\leq j\leq n-L_n\}\geq\alpha.$$

Remark If both upper and lower Erdös-Rényi laws hold then

$$\lim_{n \to \infty} [\max_{0 \le m \le n - L_n} \frac{S_{L_n} \circ T^m}{L_n}] = \alpha$$

where

$$L_n = L_n(\alpha) = \left[\frac{\log n}{I(\alpha)}\right] \qquad n \in \mathbb{N}.$$

Earlier results establishing Erdös-Rényi laws include:

- (a) Subshifts of finite type (Grigull, 1973)
- (b) Uniformly expanding 1-d maps (Chazottes and Collet, 2005)
- (c) Gibbs-Markov systems (Denker and Kabluchko, 2007)
- (d) Non-uniformly expanding maps with exponential decay of correlations (Denker and N., 2013)
- (e) In certain averaging setups and for nonconventional sums (Kifer, 2016 and 2017).

Theorem

Suppose that (T, X, μ) is a dynamical system modeled by a Young Tower with exponential tails i.e. (i) T admits a Markov tower extension with properties (P1)-(P5) in Young's 1998 paper; (ii) the return time function R satisfies $\mu(R > n) = O(e^{-\beta n})$ for some $\beta > 0$.

Assume $\varphi : X \to \mathbb{R}$ is Hölder with $\int \varphi \ d\mu = 0$ and $\varphi \neq \psi \circ T - \psi$ for any $\psi \in L^1(\mu)$.

Define $S_n(x) = \sum_{j=0}^{n-1} \varphi(T^j x)$. It is known that φ satisfies a local large deviation principle with nondegenerate rate function I defined on an open set $U \subset \mathbb{R}$ containing 0.

Let $\alpha > 0$ and define

$$L_n = L_n(\alpha) = \left[\frac{\log n}{I(\alpha)}\right] \qquad n \in \mathbb{N}$$

Then

$$\lim_{n\to\infty}\max_{0\leq j\leq n-L_n}\frac{S_{L_n}\circ T^j(x)}{L_n}=\alpha.$$

for μ a.e. $x \in X$.

Sketch of proof: (1) In this setting

$$\limsup_{n\to\infty} \max\{S_{L_n}(\phi)\circ T^j/L_n: 0\leq j\leq n-L_n\}\leq \alpha.$$

so we need only prove

$$\liminf_{n\to\infty}\max\{S_{L_n}(\phi)\circ T^j/L_n: 0\leq j\leq n-L_n\}\geq \alpha.$$

(2) A local large deviation with rate function allows us to estimate $\mu\{S_{L_n} < L_n(\alpha - \epsilon)\}$ from below. For any $\delta_1 > 0$ for large *n* we have $\mu\{S_{L_n} > L_n(\alpha - \epsilon)\} \ge e^{-L_n(I(\alpha - \epsilon) + \delta_1)} \ge e^{-(\frac{I(\alpha - \epsilon) + \delta_1}{I(\alpha)})\log n}$.

 $\mu\{S_{L_n} > L_n(\alpha - \epsilon)\} \ge e^{-L_n(I(\alpha - \epsilon) + \delta_1)} \ge e^{-(\frac{I(\alpha)}{I(\alpha)}) \log I}$ For large *n* this implies

$$1 - \mu \{ S_{L_n} \leq L_n(\alpha - \epsilon) \} \geq e^{-(1 - \delta_2) \log n}$$

for some $0 < \delta_2 < \delta_1$. Hence

$$\mu\{S_{L_n} \leq I_n(\alpha - \epsilon)\} \leq 1 - e^{-(1-\delta_2)\log n}$$

(3) For $\epsilon > 0$ let

$$C_m(\epsilon) := \{S_{L_n} \circ T^m \leq L_n(\alpha - \epsilon)\}$$

and

$$B_n(\epsilon) = \bigcap_{m=0}^{n-L_n} C_m(\epsilon)$$

We use decay of correlations and intercalate by blocks of length $(\log n)^{\tau}$, $\tau > 6$. We define

$$E_n(\epsilon) := \bigcap_{m=0}^{\left[(n-(\log n)^{\tau})/(\log n)^{\tau}\right]} C_{m[(\log n)^{\tau}]}(\epsilon)$$

The proof uses technical approximations e.g. take S_{L_n} as constant on stable manifolds and take Lipschitz approximations to indicator functions...

In the end we can estimate,

$$\mu(E_n(\epsilon)) \leq C \left[1 - e^{-(1-\delta_2)\log n}\right]^{n/(\log n)^{\tau}}$$
$$= O(\exp(-n^{\delta_3}))$$

where δ_3 is any $0 < \delta_3 < \delta_2$. This is summable so the Borel-Cantelli lemma gives

 $\liminf_{n\to\infty}\max\{S_{L_n}(\phi)\circ T^j/L_n: 0\leq j\leq n-L_n\}\geq \alpha.$

Local large deviations for unbounded observables.

As an application of Erdös-Rënyi limit laws, the next example shows that if an observable is unbounded we should not expect exponential large deviations with a rate function.

Example

Suppose φ is a continuous observable on (0, 1] such that $\lim_{x\to 0} \varphi(x) = \infty$, $\int \varphi dx = 0$ and $\varphi > -\rho$ for some $\rho > 0$. Let (T, X, m) be the tent map

$$Tx = \begin{cases} 2x & \text{if } 0 \le x < \frac{1}{2}; \\ 2x - 1 & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

Then the stationary stochastic process $\{\varphi \circ T^j\}$ does not satisfy exponential large deviations with a rate function.

Sketch of proof:

If φ satisfies a large deviation principle with rate function I defined on an open set U then: if $\alpha \in U$ and

$$L_n = L_n(\alpha) = \left[\frac{\log n}{I(\alpha)}\right] \qquad n \in \mathbb{N}$$

the upper Erdős-Rényi law holds, that is, for μ a.e. $x \in X$

$$\limsup_{n\to\infty} \max\{S_{L_n}(\varphi) \circ T^j(x)/L_n : 0 \le j \le n-L_n\} \le \alpha.$$

Fix $\alpha > 0$ in U and let $M > \frac{2 \log 2(\alpha + \rho)}{I(\alpha)}$. Choose N large enough that $\varphi(x) > M$ for all $x < \frac{1}{\sqrt{N}}$.

Phillipp showed that the tent map satisfies the Borel Cantelli property and that $T^n(x) \in [0, \frac{1}{n}]$ infinitely often almost surely since $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges. If $T^n(x) \in [0, \frac{1}{n}]$ then $T^{n+j}(x) \in [0, \frac{1}{\sqrt{n}}]$ for at least $j \ge \frac{\log n}{2\log 2}$ iterates j (this estimate comes from solving $2^{j} \frac{1}{n} = \frac{1}{\sqrt{n}}$). Moreover if $T^{n+j}(x) \in [0, \frac{1}{\sqrt{n}}]$ and n > N then $\varphi(T^{n+j}(x)) \ge M$. We take now n > N. If $T^n x \in [0, \frac{1}{n}]$ then $S_{L_n}(\varphi) \circ T^n(x) > M(\frac{\log n}{2\log 2}) - \rho \frac{\log(n)}{l(\alpha)}$ (as $\varphi \geq -\rho$). As $M > \frac{2 \log 2(\alpha + \rho)}{l(\alpha)}$ this implies that $\max\{S_{L_n}(\varphi) \circ T^j(x)/L_n : 0 \le j \le n - L_n\} > \alpha$

which is a contradiction to the upper Erdős-Rényi law. Hence exponential large deviations with a rate function cannot hold for this observable. Examples exist in the literature (by Bradley, Orey and Pelikan,Bryc and Smolenski, Chung) of stationary processes which have exponential large deviations but a rate function does not exist i.e. defining $S_n = \sum_{j=0}^{n-1} X_j$ for all $\epsilon > 0$, there exists a constant $C(\epsilon)$ such that $P(|\frac{S_n}{n}| > \epsilon) \le C(\epsilon)e^{-\gamma n}$, giving exponential convergence in the strong law of large numbers yet there is no rate function $I(\epsilon)$ controlling the rate of decay.

In particular there is an example of a mean zero bounded function f taking only 3 values on an aperiodic recurrent Markov chain (X_n) with a countable state space such that the system has exponential large deviations but does not have a rate function.

- Bradley (1989) produced an example of a stationary, pairwise independent, absolutely regular stochastic process for which the central limit theorem does not hold.
- Orey and Pelikan (1988) presented this system as an example of a strongly mixing shift for which the large deviation principle with rate function failed.
- Bryc and Smolenski (1993) showed that in this example there is in fact also an exponential convergence in the strong law of large numbers.
- Bryc and Smolenski's work was recast by Chung (2011) into dynamical systems language, and the system was expressed as a Young Tower (F, Δ, ν).

We recast as a dynamical system and show that f is a coboundary, in fact $f = \psi \circ F - \psi$ where ψ is unbounded but $\psi \in L^2$. This seems to have been overlooked in the literature. Let Δ_0 be the base of a Young Tower Δ with Δ_0 partitioned into intervals $\Lambda_0, \Lambda_1, \ldots, \Lambda_k$...,.

Take $m(\Lambda_k) = Ce^{-\frac{12^k}{2}}$ where C is a normalization constant. Define the

return time function R on Λ_k by $R_{\Lambda_k} := R(k) = (2)12^k$

We now build the Tower Δ above the base. We write $\Lambda_{k,0} := \Lambda_k$ and define, for $0 \le j \le R(k) - 1$ the levels $\Lambda_{k,j}$ of the Tower lying above Λ_k by

$$\Delta = \bigcup_{k \in \mathbb{N}^+, 0 \le j \le R_k - 1} \{ (x, j) : x \in \Lambda_{0, k} \}$$

with the tower map $F: \Delta \to \Delta$ given by

$$F(x,j) = \begin{cases} (x,j+1) & \text{if } x \in \Lambda_{k,0}, j < R(k) - 1\\ (T_k x, 0) & \text{if } x \in \Lambda_{k,0}, j = R(k) - 1 \end{cases}$$

.

where T_k has constant derivative and maps $\Lambda_{k,0}$ onto Δ_0 . F maps $\Lambda_{0,0}$ bijectively onto Δ_0 . If $k \neq 0$ we define $f : \lambda_{k,j} \rightarrow \{-1,0,1\}$ by

$$f(x,j) = \begin{cases} 1 & \text{if } x \in \Lambda_k, j \leq 12^k - 1 \\ -1 & \text{if } x \in \Lambda_k, 12^k \leq j \leq 2.12^k - 1 \end{cases}.$$

if k = 0 we take f(0, 0) = 0. This is the model of Bradley, Orey, Pelikan, Bryc and Chung.

Now define a function ψ , which will be a coboundary for f, by

$$\psi(x,j) = egin{cases} j & ext{if } x \in \Lambda_k, 0 \leq j \leq 12^k \ 2.12^k - j & ext{if } x \in \Lambda_k, 12^k < j \leq 2.12^k - 1 \end{cases}.$$

and $\psi(0,0) = 0$. It is easy to check that

 $f = \psi \circ F - \psi$

As far as we know there is no example of a non-degenerate bounded observable on a dynamical system which has exponential large deviations and yet no rate function.

Example

Let $\varphi(x) = -\log x$ on the probability space ([0,1], m). Then $\int \varphi dx = 1$ and $E[e^{t\varphi}] = \int_0^\infty e^{tx} e^{-x} dx$ exists for t < 1. If X_i is a sequence of i.i.d random variables with the same distribution function as φ and $S_n = \sum_{j=1}^n X_j$ then for $0 < \epsilon < 1$

$$\lim_{n\to\infty}\frac{1}{n}\log P(\frac{S_n}{n}>1+\epsilon)=-\epsilon+\log(1+\epsilon)=I(\epsilon)$$

This is a simple large deviations calculation.

Example

Let $\varphi(x) = -\log x$ be an observable on the tent map (T, X, μ) . It is possible to show that $\varphi(x) = -\log x$ has exponential decay of autocorrelations.

$$|\int (\varphi \circ T^n - 1)(\varphi - 1) dx| \leq Ce^{-\beta n}$$

However $\{\varphi \circ T^n\}$ has strictly stretched exponential large deviations.

Sketch of proof:

It is easy to show that for all $\epsilon > 0$ for all $\delta > 0$ and all sufficiently large n, $\mu(S_n - n > n\epsilon) > e^{-n^{1/2+\delta}}$. To see this note that if $x \in [0, e^{-n^{1/2+\delta}(\log 2+1)}]$ then for $1 \le j \le n^{1/2+\delta}$, $2^j x \in [0, e^{-n^{1/2+\delta}}]$, so that $|S_n(x) - n| \ge n^{1+2\delta} - n$. In the other direction, using results of Kessebohmer and Schindler (2017) on trimmed sums it is possible to show for any $\delta > 0$

$$m(|S_n-n|>n\epsilon)\leq Ce^{-n^{(1/2-\delta)}}$$

Does $-\log |x - p|$ have exponential large deviations for 'generic' p?

Open questions and applications.

• Investigate exponential local large deviations for unbounded integrable observables on chaotic systems (e.g. $-\log |DT_u|$ in systems with singularities).

Applications to time-series.

• We have also proven Erdös-Rényi type fluctuation laws for α -mixing processes of polynomial rate and a class of intermittent maps also with polynomial mixing rate.

• This suggests a simple test, based on the Erdös-Rényi limit law, to estimate the rate of convergence to the ergodic average of a stationary ergodic time-series of measurements $\{X_j\}$ on a physical system.

• The advantage of the test is that it only needs a given time-series, not a large number of repeat measurements (ensemble averages) and seems to work well in applications.