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Erdös-Renyi Laws

Suppose (T ,X , µ) is an ergodic dynamical system and φ : X → R
is an observable,

∫
φdµ = 0.

Erdös-Renyi laws give the almost sure behavior of averages over
time windows of varying length. Define

Sn(x) =
n−1∑
j=0

φ ◦ T j(x)

Define the maximum average over a window of length k(n) up to
time n, θ(n, k(n)) , by

θ(n, k(n)) := max
0≤j≤n−k(n)

Sj+k(n) − Sj

k(n)

• If k(n) = 1 then for µ a.e. x , θ(n, k(n))(x)→ essup φ.
• If k(n) = n then by the ergodic theorem for µ a.e. x ,
θ(n, k(n))(x)→ 0.



Erdös-Renyi Law for IID processes

The Erdös-Rényi law was first given for iid random variables by
Erdös and Rényi in “ On a new law of large numbers” (1970):

Proposition (Erdös-Rényi)

Let (Xn)n≥1 be an iid sequence of centered non-degenerate random
variables, and let Sj = X1 + ...+ Xj . Assume that the moment
generating function EetX1 exists in some interval U containing
t = 0. For each α > 0, define ψα(t) = e−αtEetX1 . For those α for
which ψα attains its minimum at a point tα ∈ U, set
I (α) = αtα − log EetαX1 . Then almost surely

lim
n

max{(Sj+[log n/I (α)]−Sj)/[log n/I (α)] : 1 ≤ j ≤ n−[log n/I (α)]} = α.



Example

Suppose Xi is an iid sequence taking the values ±1 with equal
probability 1

2

Recall

θ(n, k(n)) := max
0≤j≤n−k(n)

Sj+k(n) − Sj

k(n)

θ(n, k(n)) is the maximal average gain over a time window of
length k(n).

A calculation using the strong law of large numbers shows that if
limn→∞

k(n)
log n =∞ then P a. s.

lim
n→∞

θ(n, k(n)) = 0



If, however, k(n) ≤ c log2 n with 0 < c < 1 then for large n with
probability one there is at least one j < n − k(n) such that
Xj+1 = Xj+2 = . . . = Xj+k(n) = 1 (an application of the
Borel-Cantelli lemma) so P a. .s.

lim
n→∞

θ(n, k(n)) = 1

So for a fair game the Erdös-Rényi law gives information on the
maximal average gain of a player when the length of the time
window ensures

lim
n→∞

max
0≤j≤n−k(n)

Sj+k(n) − Sj

k(n)

has a non-degenerate limit. In this case I (α) = 1− h( 1+α
2 ) where

h(x) = −x log2 x − (1− x) log2(1− x).



Erdös-Renyi laws for deterministic dynamical systems

Suppose T : (X , µ)→ (X , µ) is an ergodic measuring preserving
map and

φ : X → R

is an integrable function (observable).

The sequence {φ ◦ T j} is a stationary stochastic process.

Is there an almost sure limit for maximal average gain?



Large deviations theory

Suppose ∫
X
φ dµ = 0

.
Let Sn(x) := φ(x) + φ ◦ T + . . .+ φ ◦ T n−1(x).
If (T ,X , µ) is ergodic then

lim
n→∞

Sn(x)

n
= 0

for µ a. e. x ∈ X .
Large deviations theory gives information on the rate of
convergence by estimating

µ(x : Sn(x) ≥ nα)

as a function of n and α > 0.



Definition (Rate function)

A mean-zero observable φ : X → R is said to satisfy a local large
deviation principle with rate function I (α), if there exists a
neighbourhood U of 0 and a strictly convex function I : U → R,
which is non-negative and vanishing only at α = 0, such that

lim
n→∞

1

n
logµ(x : Sn(x) ≥ nα) = −I (α) (1)

for all α > 0 in U and

lim
n→∞

1

n
logµ(x : Sn(x) ≤ nα) = −I (α) (2)

for all α < 0 in U.

For a given ε > 0 for large n

e−n(I (α)+ε) ≤ µ(x : Sn(x) ≥ nα) ≤ e−n(I (α)−ε)



Proposition ( adapted from Erdös and Rényi.)

(a) Suppose that φ satisfies a large deviation principle with rate
function I defined on the open set U. Let α > 0 and let

Ln = Ln(α) =

[
log n

I (α)

]
n ∈ N.

Then the Upper Erdös-Rényi law holds and

lim sup
n→∞

max{SLn(φ) ◦ T j/Ln : 0 ≤ j ≤ n − Ln} ≤ α.

(b) If for each interval A there exists C > 0, τ ≥ 1 such that

µ(
n−Ln⋂
m=0

{SLn(φ) ◦ Tm ∈ A}) ≤ C [µ(SLn ∈ A)]n/(Ln)τ

then the Lower Erdös-Rényi law holds and

lim inf
n→∞

max{SLn(φ) ◦ T j/Ln : 0 ≤ j ≤ n − Ln} ≥ α.



Remark
If both upper and lower Erdös-Rényi laws hold then

lim
n→∞

[ max
0≤m≤n−Ln

SLn ◦ Tm

Ln
] = α

where

Ln = Ln(α) =

[
log n

I (α)

]
n ∈ N.



Earlier results establishing Erdös-Rényi laws include:

(a) Subshifts of finite type (Grigull, 1973)

(b) Uniformly expanding 1-d maps (Chazottes and Collet, 2005)

(c) Gibbs-Markov systems (Denker and Kabluchko, 2007)

(d) Non-uniformly expanding maps with exponential decay of
correlations (Denker and N., 2013)

(e) In certain averaging setups and for nonconventional sums
(Kifer, 2016 and 2017).



Theorem
Suppose that (T ,X , µ) is a dynamical system modeled by a

Young Tower with exponential tails i.e. (i) T admits a Markov
tower extension with properties (P1)-(P5) in Young’s 1998 paper;
(ii) the return time function R satisfies µ(R > n) = O(e−βn) for
some β > 0.
Assume ϕ : X → R is Hölder with

∫
ϕ dµ = 0 and ϕ 6= ψ ◦ T − ψ

for any ψ ∈ L1(µ).
Define Sn(x) =

∑n−1
j=0 ϕ(T jx). It is known that ϕ satisfies a local

large deviation principle with nondegenerate rate function I defined
on an open set U ⊂ R containing 0.
Let α > 0 and define

Ln = Ln(α) =

[
log n

I (α)

]
n ∈ N

Then

lim
n→∞

max
0≤j≤n−Ln

SLn ◦ T j(x)

Ln
= α.

for µ a.e. x ∈ X .



Sketch of proof:
(1) In this setting

lim sup
n→∞

max{SLn(φ) ◦ T j/Ln : 0 ≤ j ≤ n − Ln} ≤ α.

so we need only prove

lim inf
n→∞

max{SLn(φ) ◦ T j/Ln : 0 ≤ j ≤ n − Ln} ≥ α.



(2) A local large deviation with rate function allows us to estimate
µ{SLn < Ln(α− ε)} from below.
For any δ1 > 0 for large n we have

µ{SLn > Ln(α− ε)} ≥ e−Ln(I (α−ε)+δ1) ≥ e
−(

I (α−ε)+δ1
I (α)

) log n
.

For large n this implies

1− µ{SLn ≤ Ln(α− ε)} ≥ e−(1−δ2) log n

for some 0 < δ2 < δ1.
Hence

µ{SLn ≤ ln(α− ε)} ≤ 1− e−(1−δ2) log n



(3) For ε > 0 let

Cm(ε) := {SLn ◦ Tm ≤ Ln(α− ε)}

and

Bn(ε) =
n−Ln⋂
m=0

Cm(ε)

We use decay of correlations and intercalate by blocks of length
(log n)τ , τ > 6. We define

En(ε) :=

[(n−(log n)τ )/(log n)τ )]⋂
m=0

Cm[(log n)τ ](ε)



The proof uses technical approximations e.g. take SLn as constant
on stable manifolds and take Lipschitz approximations to indicator
functions...
In the end we can estimate,

µ(En(ε)) ≤ C
[
1− e−(1−δ2) log n

]n/(log n)τ

= O(exp (−nδ3))

where δ3 is any 0 < δ3 < δ2. This is summable so the
Borel-Cantelli lemma gives

lim inf
n→∞

max{SLn(φ) ◦ T j/Ln : 0 ≤ j ≤ n − Ln} ≥ α.



Local large deviations for unbounded observables.

As an application of Erdös-Rënyi limit laws, the next example
shows that if an observable is unbounded we should not expect
exponential large deviations with a rate function.

Example

Suppose ϕ is a continuous observable on (0, 1] such that
limx→0 ϕ(x) =∞,

∫
ϕdx = 0 and ϕ > −ρ for some ρ > 0. Let

(T ,X ,m) be the tent map

Tx =

{
2x if 0 ≤ x < 1

2 ;
2x − 1 if 1

2 < x ≤ 1.

Then the stationary stochastic process {ϕ ◦ T j} does not satisfy
exponential large deviations with a rate function.



Sketch of proof:
If ϕ satisfies a large deviation principle with rate function I defined
on an open set U then:
if α ∈ U and

Ln = Ln(α) =

[
log n

I (α)

]
n ∈ N

the upper Erdős-Rényi law holds, that is, for µ a.e. x ∈ X

lim sup
n→∞

max{SLn(ϕ) ◦ T j(x)/Ln : 0 ≤ j ≤ n − Ln} ≤ α.

Fix α > 0 in U and let M > 2 log 2(α+ρ)
I (α) . Choose N large enough

that ϕ(x) > M for all x < 1√
N

.



Phillipp showed that the tent map satisfies the Borel Cantelli
property and that T n(x) ∈ [0, 1

n ] infinitely often almost surely since∑∞
n=2

1
n diverges.

If T n(x) ∈ [0, 1
n ] then T n+j(x) ∈ [0, 1√

n
] for at least j ≥ log n

2 log 2

iterates j (this estimate comes from solving 2j 1
n = 1√

n
).

Moreover if T n+j(x) ∈ [0, 1√
n

] and n > N then ϕ(T n+j(x)) ≥ M.

We take now n > N.
If T nx ∈ [0, 1

n ] then SLn(ϕ) ◦ T n(x) > M( log n
2 log 2 )− ρ log(n)

I (α) (as

ϕ ≥ −ρ). As M > 2 log 2(α+ρ)
I (α) this implies that

max{SLn(ϕ) ◦ T j(x)/Ln : 0 ≤ j ≤ n − Ln} > α

which is a contradiction to the upper Erdős-Rényi law.
Hence exponential large deviations with a rate function cannot
hold for this observable.



Exponential local large deviations without a rate function.

Examples exist in the literature (by Bradley, Orey and Pelikan,Bryc
and Smolenski, Chung) of stationary processes which have
exponential large deviations but a rate function does not exist i.e.
defining Sn =

∑n−1
j=0 Xj for all ε > 0, there exists a constant C (ε)

such that P(|Snn | > ε) ≤ C (ε)e−γn, giving exponential convergence
in the strong law of large numbers yet there is no rate function
I (ε) controlling the rate of decay.
In particular there is an example of a mean zero bounded function
f taking only 3 values on an aperiodic recurrent Markov chain (Xn)
with a countable state space such that the system has exponential
large deviations but does not have a rate function.



I Bradley (1989) produced an example of a stationary, pairwise
independent, absolutely regular stochastic process for which
the central limit theorem does not hold.

I Orey and Pelikan (1988) presented this system as an example
of a strongly mixing shift for which the large deviation
principle with rate function failed.

I Bryc and Smolenski (1993) showed that in this example there
is in fact also an exponential convergence in the strong law of
large numbers.

I Bryc and Smolenski’s work was recast by Chung (2011) into
dynamical systems language, and the system was expressed as
a Young Tower (F ,∆, ν).



We recast as a dynamical system and show that f is a coboundary,
in fact f = ψ ◦ F − ψ where ψ is unbounded but ψ ∈ L2. This
seems to have been overlooked in the literature.



Let ∆0 be the base of a Young Tower ∆ with ∆0 partitioned into
intervals Λ0,Λ1, . . . ,Λk ...,.

Take m(Λk) = Ce−
12k

2 where C is a normalization constant.
Define the
return time function R on Λk by RΛk

:= R(k) = (2)12k

We now build the Tower ∆ above the base. We write Λk,0 := Λk

and define, for 0 ≤ j ≤ R(k)− 1 the levels Λk,j of the Tower lying
above Λk by

∆ =
⋃

k∈N+,0≤j≤Rk−1

{(x , j) : x ∈ Λ0,k}

with the tower map F : ∆→ ∆ given by

F (x , j) =

{
(x , j + 1) if x ∈ Λk,0, j < R(k)− 1

(Tkx , 0) if x ∈ Λk,0, j = R(k)− 1
.

where Tk has constant derivative and maps Λk,0 onto ∆0.
F maps Λ0,0 bijectively onto ∆0.



If k 6= 0 we define f : λk,j → {−1, 0, 1} by

f (x , j) =

{
1 if x ∈ Λk , j ≤ 12k − 1

−1 if x ∈ Λk , 12k ≤ j ≤ 2.12k − 1
.

if k = 0 we take f (0, 0) = 0. This is the model of Bradley, Orey,
Pelikan, Bryc and Chung.



Now define a function ψ, which will be a coboundary for f , by

ψ(x , j) =

{
j if x ∈ Λk , 0 ≤ j ≤ 12k

2.12k − j if x ∈ Λk , 12k < j ≤ 2.12k − 1
.

and ψ(0, 0) = 0.
It is easy to check that

f = ψ ◦ F − ψ

As far as we know there is no example of a non-degenerate
bounded observable on a dynamical system which has exponential
large deviations and yet no rate function.



Example

Let ϕ(x) = − log x on the probability space ([0, 1],m). Then∫
ϕdx = 1 and E [etϕ] =

∫∞
0 etxe−xdx exists for t < 1.

If Xi is a sequence of i.i.d random variables with the same
distribution function as ϕ and Sn =

∑n
j=1 Xj then for 0 < ε < 1

lim
n→∞

1

n
logP(

Sn
n
> 1 + ε) = −ε+ log(1 + ε) = I (ε)

This is a simple large deviations calculation.



Example

Let ϕ(x) = − log x be an observable on the tent map (T ,X , µ).
It is possible to show that ϕ(x) = − log x has exponential decay of
autocorrelations.

|
∫

(ϕ ◦ T n − 1)(ϕ− 1) dx | ≤ Ce−βn

However {ϕ ◦ T n} has strictly stretched exponential large
deviations.

-



Sketch of proof:
It is easy to show that for all ε > 0 for all δ > 0 and all sufficiently
large n, µ(Sn − n > nε) > e−n

1/2+δ
.

To see this note that if x ∈ [0, e−n
1/2+δ(log 2+1)] then for

1 ≤ j ≤ n1/2+δ, 2jx ∈ [0, e−n
1/2+δ

], so that
|Sn(x)− n| ≥ n1+2δ − n.
In the other direction, using results of Kessebohmer and Schindler
(2017) on trimmed sums it is possible to show for any δ > 0

m(|Sn − n| > nε) ≤ Ce−n
(1/2−δ)

Does -log |x − p| have exponential large deviations for ‘generic’ p?



Open questions and applications.

• Investigate exponential local large deviations for unbounded
integrable observables on chaotic systems (e.g. -log |DTu| in
systems with singularities).
Applications to time-series.
• We have also proven Erdös-Rényi type fluctuation laws for
α-mixing processes of polynomial rate and a class of intermittent
maps also with polynomial mixing rate.
• This suggests a simple test, based on the Erdös-Rényi limit law,
to estimate the rate of convergence to the ergodic average of a
stationary ergodic time-series of measurements {Xj} on a physical
system.
• The advantage of the test is that it only needs a given
time-series, not a large number of repeat measurements (ensemble
averages) and seems to work well in applications.


