Recent results for the 3D Quasi-Geostrophic Equation

Alexis F. Vasseur
Joint work with Matthew Novack (UT Austin)

The University of Texas at Austin

BIRS worshop, Banff, August 22, 2018

Table of contents

(1) The equation
(2) The main results
(3) Global weak solutions (the inviscid case)

- A new formulation of the problem
- Idea of the proof

4 Global smooth solutions (case with Ekman pumping)

- Main difficulties
- Main ideas of the proof
(5) A remark on the lateral boundary conditions

Physical model

- The Quasi-Geostrophic system of equations models the evolution of the temperature in the atmosphere.
- It can be rigorously derived from the Primitive Equations (Euler equation with Coriolis force and Boussinesq approximation, see Bourgeois Beale (94) and Desjardins Grenier 98)
- At large scale, this Rossby effect is very important. Asymptotically, this leads to the so-called geostrophic balance which enforces the wind velocity to be orthogonal to the gradient of the pressure in the atmosphere (see Pedlosky).
- This model is extensively used in computations of oceanic and atmospheric circulation, for instance, to simulate global warming.

The unknown and parameters

- The dynamic is encoded in Ψ, the stream function for the geostrophic flow.
- That is, the 3D velocity $(w, U)=(0, u, v)$ has its horizontal component verifying

$$
(u, v)=\left(-\partial_{x_{2}} \Psi, \partial_{x_{1}} \Psi\right), \text { or in short }: U=\bar{\nabla}^{\perp} \Psi
$$

where we denote

$$
\bar{\nabla} \Psi=\left(0, \partial_{x_{1}} \Psi, \partial_{x_{2}} \Psi\right)
$$

- From the model, the buoyancy is given by

$$
\Theta=\partial_{z} \psi
$$

- We denote

$$
\nabla_{\lambda} \phi=\left(\lambda \partial_{z} \phi, \partial_{x_{1}} \phi, \partial_{x_{2}} \phi\right), \quad L_{\lambda} \phi=\operatorname{div}\left(\nabla_{\lambda} \phi\right)
$$

where $\lambda=-1 / \Theta_{z}^{0}$, is a given function, of z only, associated to the buoyancy of a reference state.

The equation

The function Ψ is solution to the following Initial Boundary value problem:

$$
\begin{aligned}
& \left(\partial_{t}+\bar{\nabla}^{\perp} \psi \cdot \nabla\right)\left(L_{\lambda} \Psi+\beta_{0} x_{2}\right)=0, \quad t>0, \quad z>0, \quad x \in \mathbb{R}^{2}, \\
& \left(\partial_{t}+\bar{\nabla}^{\perp} \psi \cdot \nabla\right) \gamma_{\nu}\left(\nabla_{\lambda} \Psi\right)=\nu \bar{\Delta} \psi, \quad t>0, \quad z=0, \quad x \in \mathbb{R}^{2} \\
& \Psi(0, z, x)=\Psi^{0}(z, x) . \quad t=0, \quad z>0, \quad x \in \mathbb{R}^{2} .
\end{aligned}
$$

The parameter β_{0} comes from the usual β-plane approximation. The term $\gamma_{\nu}\left(\nabla_{\lambda} \Psi\right)$ stands for the Neumann condition at $z=0$ associated to the operator $L_{\lambda} \Psi$. If λ is regular, this coincides with $-\lambda(0) \partial_{z} \psi(0, \cdot)$. The ν term is due to the Ekman pumping. $\nu=0$ corresponds to the inviscid case.

- Both, the value of the elliptic operator $L_{\lambda} \Psi$, and the Neumann condition $\gamma_{\nu}\left(\nabla_{\lambda} \Psi\right)$ at the boundary $z=0$, are advected by the stratified flow with velocity $U=\bar{\nabla}^{\perp} \Psi$. At each time, Ψ can be recovered, solving the boundary value elliptic equation.
- Main difficulty: treatment of the boundary condition.

The inviscid case

We assume that $\nu=0$, and that there exists $\Lambda>0$ such that

$$
\frac{1}{\Lambda} \leq \lambda(z) \leq \Lambda, \quad \text { for } z \in \mathbb{R}^{+}
$$

Theorem (Puel-V.)

Consider an initial value Ψ^{0} such that

$$
L_{\lambda} \Psi^{0} \text { and } \nabla_{\lambda} \psi^{0} \text { are in } L^{2}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right), \quad \gamma_{\nu}\left(\nabla_{\lambda} \Psi^{0}\right) \in L^{2}\left(\mathbb{R}^{2}\right) .
$$

Then, there exists Ψ weak solution to the Quasi-Geostrophic equation on $(0, \infty) \times \mathbb{R}^{+} \times \mathbb{R}^{2}$, such that for every $T>0$, $\nabla_{\lambda} \Psi \in L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)\right) \cap C^{0}\left(0, T ; L_{\text {loc }}^{2}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)\right)$.

Novack recently extended the theory to general L^{p}.

Lateral boundary conditions

We consider a domain of the form $\mathbb{R}^{+} \times \Omega$, where $\Omega \subset \mathbb{R}^{2}$ is bounded. Think, for instance about a rotating box filled with a fluid.

Theorem (Novack-V.)

The natural lateral boundary conditions on $\mathbb{R}^{+} \times \partial \Omega$ are

$$
\begin{aligned}
& \Psi \text { depends only on } z \text { on } \mathbb{R}^{+} \times \partial \Omega, \\
& \frac{d}{d t} \int_{\partial \Omega} \partial_{\nu} \Psi d \hat{x}=0 .
\end{aligned}
$$

We can also construct global weak solutions of $Q G$ with the addition of these boundary conditions.

This corresponds to a partial Dirichlet condition (up to the dependency on z), together with a mean value of Neumann condition on $\partial \Omega$.

The case with Ekman pumping

We assume that $\lambda(z)=1$, and $\nu>0$.

Theorem (Novack-V.)

Consider an initial value $\nabla \psi^{0} \in L^{2}\left(\mathbb{R}_{+}^{3}\right) \cap H^{p}\left((0, \infty) \times \mathbb{R}^{2}\right)$ with $p \geq 3$.
Then, there exists a unique global solution $\nabla \psi$ to the Quasigeostrophic equation on $(0, \infty) \times \mathbb{R}^{+} \times \mathbb{R}^{2}$, such that for every $T>0, \nabla_{\lambda} \Psi \in C^{0}\left(0, T ; H^{p}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)\right)$.

Especially, if the initial is smooth $\left(C^{\infty}\right)$, then the unique solution is also smooth.

Main difficulty

To simplify the exposition, let us consider the case with out forcing with $\beta=0$, and $\lambda=1$.

$$
\begin{aligned}
& \left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \nabla\right)(\Delta \Psi)=0, \quad \text { for } z>0, \\
& \left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \nabla\right)\left(\partial_{z} \Psi\right)=0, \quad \text { for } z=0, \\
& \Psi(0, z, x)=\Psi^{0}(z, x) . \quad t=0 .
\end{aligned}
$$

- A priori estimates: for any $1 \leq p \leq \infty$:

$$
\begin{aligned}
& \|\Delta \Psi(t)\|_{L \rho\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)} \leq\|\Delta \Psi(0)\|_{L \rho_{\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)},}, \\
& \left\|\partial_{z} \Psi(t, 0)\right\|_{L \rho_{\left(\mathbb{R}^{2}\right)}} \leq\left\|\partial_{z} \Psi(0,0)\right\|_{L \rho\left(\times \mathbb{R}^{2}\right)},
\end{aligned}
$$

- No compactness on the trace of $\partial_{z} \psi$ at $z=0$!

A special case: the Surface Quasi Geostrophic Equation

- If $\Delta \Psi(0)=0$, then $\Delta \Psi(t)=0$ for all $t \geq 0$.
- Denote $\theta=\partial_{z} \Psi$ defined at $z=0$. Then θ is solution to

$$
\begin{align*}
& \partial_{t} \theta+U . \nabla \theta=0, \quad t>0,(x, y) \in \mathbb{R}^{2} \tag{1}\\
& \theta=\theta_{0}, \quad t=0,(x, y) \in \mathbb{R}^{2} \tag{2}
\end{align*}
$$

and the velocity U can be expressed in \mathbb{R}^{2}, via a nonlocal operator, as

$$
U=\nabla^{\perp} \Delta^{-1 / 2} \theta
$$

- This model has been popularized as a toy problem for 3D fluid mechanics (see Constantin, Majda, Held, Pierrehumbert, Garner, Swanson ...).
- Our theorem extends to QG the result of Tabak for SQG, using different techniques.

A new formulation (1)

- The proof does NOT use (and does not show) compactness on the trace of $\partial_{z} \psi$ at $z=0$.
- It is based on a reformulation of the problem into a system of equations (without equation on the trace).
- The stability (and compactness) for this problem is pretty simple.
- We then have to show the equivalence between the two formulations.

A new formulation (2)

- Consider the Hodge decomposition in $L^{2}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)$:

$$
u=\nabla_{\lambda} \phi+\operatorname{curl} v=\mathbb{P}_{\lambda} u+\mathbb{P}_{\text {curl }} u
$$

with curlv $\cdot \nu=0$ at $z=0$.

- The QG problem can be reformulated as

$$
\partial_{t} \nabla_{\lambda} \Psi+\mathbb{P}_{\lambda}\left(\bar{\nabla} \Psi^{\perp} \cdot \bar{\nabla} \nabla_{\lambda} \Psi\right)=0, \quad \text { on } \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+} .
$$

A new formulation (2)

- Consider the Hodge decomposition in $L^{2}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)$:

$$
u=\nabla_{\lambda} \phi+\operatorname{curl} v=\mathbb{P}_{\lambda} u+\mathbb{P}_{\text {curl }} u
$$

with curlv $\cdot \nu=0$ at $z=0$.

- The QG problem can be reformulated as

$$
\partial_{t} \nabla_{\lambda} \Psi+\mathbb{P}_{\lambda}\left(\bar{\nabla} \Psi^{\perp} \cdot \bar{\nabla} \nabla_{\lambda} \Psi\right)=0, \quad \text { on } \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+} .
$$

- Taking the div of the equation gives the first QG equation, thanks to

$$
\operatorname{div}\left(\mathbb{P}_{\lambda} \cdot\right)=\operatorname{div}(\cdot), \quad \partial_{i}(\bar{\nabla} \Psi)^{\perp} \cdot \bar{\nabla} \partial_{i} \Psi=0 .
$$

A new formulation (2)

- Consider the Hodge decomposition in $L^{2}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)$:

$$
u=\nabla_{\lambda} \phi+\operatorname{curl} v=\mathbb{P}_{\lambda} u+\mathbb{P}_{\text {curl }} u
$$

with curlv $\cdot \nu=0$ at $z=0$.

- The QG problem can be reformulated as

$$
\partial_{t} \nabla_{\lambda} \Psi+\mathbb{P}_{\lambda}\left(\bar{\nabla} \Psi^{\perp} \cdot \bar{\nabla} \nabla_{\lambda} \Psi\right)=0, \quad \text { on } \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+} .
$$

- Taking the div of the equation gives the first QG equation, thanks to

$$
\operatorname{div}\left(\mathbb{P}_{\lambda} \cdot\right)=\operatorname{div}(\cdot), \quad \partial_{i}(\bar{\nabla} \Psi)^{\perp} \cdot \bar{\nabla} \partial_{i} \Psi=0 .
$$

- Taking the trace of the system a $z=0$ gives (formally) the trace condition of QG, since formally, at $z=0$

$$
\mathbb{P}_{\lambda}(f) \cdot \nu=f \cdot \nu
$$

Similarity with the Euler equation

- There is a strong similarity with the 2D Euler equation in the half plane.

Similarity with the Euler equation

- There is a strong similarity with the 2D Euler equation in the half plane.
- QG equation:

$$
\partial_{t} \nabla_{\lambda} \Psi+\mathbb{P}_{\lambda}\left(\bar{\nabla} \Psi^{\perp} \cdot \bar{\nabla} \nabla_{\lambda} \Psi\right)=0, \quad \text { on } \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+}
$$

Note that we have $\mathbb{P}_{\text {curl }}\left(\nabla_{\lambda} \Psi\right)=0$.

Similarity with the Euler equation

- There is a strong similarity with the 2D Euler equation in the half plane.
- QG equation:

$$
\partial_{t} \nabla_{\lambda} \Psi+\mathbb{P}_{\lambda}\left(\bar{\nabla} \Psi^{\perp} \cdot \bar{\nabla} \nabla_{\lambda} \Psi\right)=0, \quad \text { on } \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+}
$$

Note that we have $\mathbb{P}_{\text {curl }}\left(\nabla_{\lambda} \Psi\right)=0$.

- Euler Equation:

$$
\begin{aligned}
& \quad \partial_{t} \text { curlv }+\mathbb{P}_{\text {curl }}[\text { curlv } \cdot \nabla \text { curlv }]=0, \quad(t, x, z) \in \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+} . \\
& \text {with } \mathbb{P}_{\lambda}(\text { curlv })=0 \text { (that is curlv } \cdot \nu=0 \text { at } z=0 \text {). }
\end{aligned}
$$

Similarity with the Euler equation

- There is a strong similarity with the 2D Euler equation in the half plane.
- QG equation:

$$
\partial_{t} \nabla_{\lambda} \Psi+\mathbb{P}_{\lambda}\left(\bar{\nabla} \Psi^{\perp} \cdot \bar{\nabla} \nabla_{\lambda} \Psi\right)=0, \quad \text { on } \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+}
$$

Note that we have $\mathbb{P}_{\text {curl }}\left(\nabla_{\lambda} \Psi\right)=0$.

- Euler Equation:

$$
\partial_{t} \text { curlv }+\mathbb{P}_{\text {curl }}[\text { curlv } \cdot \nabla \text { curlv }]=0, \quad(t, x, z) \in \mathbb{R}^{+} \times \mathbb{R}^{2} \times \mathbb{R}^{+} .
$$

with \mathbb{P}_{λ} (curlv) $=0$ (that is curlv $\cdot \nu=0$ at $z=0$).

- The first equation of QG is equivalent to the vorticity equation of Euler:
- QG:

$$
\partial_{t} \operatorname{div} \nabla_{\lambda} \Psi+\bar{\nabla} \Psi^{\perp} \cdot \bar{\nabla}\left(\operatorname{div} \nabla_{\lambda} \Psi\right)=0
$$

- Euler:

$$
\partial_{t} \text { curlcurl } v+\text { curlv } \cdot \nabla(\text { curlcurl } v)=0 .
$$

Proof of the Theorem

- Compactness holds for the reformulated problem.

Note that \mathbb{P}_{λ} commutes with $\bar{\nabla}$, and is continuous in L^{p}.

- The two formulation of QG are equivalent.

A special case: the Surface Quasi Geostrophic Equation

- If $\Delta \Psi(0)=0$, then $\Delta \Psi(t)=0$ for all $t \geq 0$.
- Denote $\theta=\partial_{z} \Psi$ defined at $z=0$. Then θ is solution to

$$
\begin{align*}
& \partial_{t} \theta+U . \nabla \theta=\nu \bar{\Delta} \Psi, \quad t>0,(x, y) \in \mathbb{R}^{2} \tag{3}\\
& \theta=\theta_{0}, \quad t=0,(x, y) \in \mathbb{R}^{2} \tag{4}
\end{align*}
$$

and the velocity U and the Ekman pumping term $\nu \bar{\Delta} \psi$ can be expressed in \mathbb{R}^{2}, via a nonlocal operator, as

$$
U=\nabla^{\perp} \Delta^{-1 / 2} \theta, \quad \nu \bar{\Delta} \Psi=\nu \Delta^{1 / 2} \theta
$$

- The propagation of regularity for this equation has first been proved by Kiselev, Nazarov and Volberg. The global regularity of solutions with initial values in L^{2} has been proved first by Caffarelli V. Several other proofs has been proposed by Kiselev and Volberg, and Constantin and Vicol.

The 3D case

- In the 3D case, the equation in $z>0$ is hyperbolic. We can have only propagation of regularity.
- We need the propagation of almost Lipschitz norm (possible log Lipschitz).
- The regularization effects on the boundary are only C^{α}.

Sketch of the proof (1)

We decompose the solution $\Psi=\Psi_{1}+\Psi_{2}$ into two components as follows:

$$
\left\{\begin{array} { l }
{ \Delta \psi _ { 1 } = 0 } \\
{ \partial _ { \nu } \psi _ { 1 } = \partial _ { \nu } \psi }
\end{array} \quad \left\{\begin{array}{l}
\Delta \Psi_{2}=\Delta \psi \\
\partial_{\nu} \psi_{2}=0 .
\end{array}\right.\right.
$$

- The bulk of the proof is centered around verifying a version of the Beale-Kato-Majda criterion.

Sketch of the proof (1)

We decompose the solution $\Psi=\Psi_{1}+\Psi_{2}$ into two components as follows:

$$
\left\{\begin{array} { l }
{ \Delta \psi _ { 1 } = 0 } \\
{ \partial _ { \nu } \psi _ { 1 } = \partial _ { \nu } \psi }
\end{array} \quad \left\{\begin{array}{l}
\Delta \Psi_{2}=\Delta \psi \\
\partial_{\nu} \psi_{2}=0 .
\end{array}\right.\right.
$$

- The bulk of the proof is centered around verifying a version of the Beale-Kato-Majda criterion.
- The equation on the boundary of $\theta=\partial_{\nu} \Psi_{1}$ is of the form

$$
\partial_{t} \theta+u \cdot \bar{\nabla} \theta+(-\bar{\Delta})^{\frac{1}{2}} \theta=f,
$$

with $f=\bar{\Delta} \Psi_{2}$.

- The natural a priori bound for f is in $B_{\infty, \infty}^{0}$.
- Using De Giorgi techniques, we get θ bounded in C^{α}.

Sketch of the proof (2)

- Bootstrapping an increase of regularity on the C^{α} on the drift-diffusion equation on the boundary gives that $\partial_{\nu} \psi \in L^{\infty}\left(0, T ; B_{\infty, \infty}^{1}\right)$ on the boundary.
- Using that the flow is stratified, this gives the "almost Lipschitz" bound needed on the velocity in $z>0$ generated by the boundary.

Remark on the lateral boundary conditions

- In the case of the inviscid SQG, defined on a Bounded domain $\Omega \subset \mathbb{R}^{2}$, we need to define the velocity U.
- Constantin and Nguyen (17) proposed to define it through the Operator $\bar{\Delta}_{D}^{-1 / 2}$ with Dirichlet boundary condition 0 on $\partial \Omega$:

$$
U=\bar{\nabla}^{\perp} \bar{\Delta}_{D}^{-1 / 2} \theta
$$

- This corresponds to a Dirichlet condition $\Psi=0$ on $\mathbb{R}^{+} \times \partial \Omega$ for the 3D QG.
- This is not the boundary condition derived from the primitive equation.
- The corresponding boundary condition for SQG can be retrieved using the Extension Operator of Caffarelli-Silvestre.

Thank you

Thank You !!

