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Background

Thermodynamics plays a major role in many applications
of hydrodynamics; from combustion to meteorology to
plasma physics.

The Navier-Stokes-Fourier (NSF) system
is a comprehensive model for thermal hydrodynamics;
see [Feireisl, 2003]. The full NSF system is given by

∂tρ + divx (ρu) = 0
∂t(ρu) + divx (ρu ⊗ u) +∇xp = divxS
∂t(ρe) + divx (ρeu) + divxq = S : ∇xu − pdivxu

where p is the pressure, q is the heat flux, S is the viscous
stress tensor, and e is the internal energy.
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Navier-Stokes-Fourier system

The viscous stress tensor is given by Newton’s law:

S(θ,∇xu) = µ(ρ, θ)

(
∇xu + (∇xu)T − 2

3
Idivxu

)
+η(ρ, θ)Idivxu.

The heat flux is given by Fourier’s law:

q(ρ, θ,∇xθ) = −κ(ρ, θ)∇xθ.

Various constitutive laws give an expression for p, but
often introduce extra quantities (such as the specific
entropy s).

See the lecture notes of [Novotny, 2012].
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Navier-Stokes-Fourier system

The full NSF system is very complicated and generally only
weak (and admissible) solutions are known to exist for all time.
[Lions, 1993] proved existence of weak solutions for barotropic
flows (no temperature, very restrictive assumptions).

Existence
of weak solutions in general contexts was shown in
[Bresch-Desjardins, 2006]; see also [Feireisl-Malek, 2006] and
[Matsumura-Nishida, 1983].

Many assumptions are made on the coefficients µ and κ (and
the absence/presence of radiation in the equations), and even
proving the (intuitively expected) lower bound on the
temperature takes great effort; see [Baer-Vasseur, 2013].

Recent work also focuses on ‘’dissipative measure-valued
solutions” for the NSF system, and their stability properties; see
[Brezina-Feireisl-Novotny, 2018].
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Thermally enhanced dissipation

But we wish to investigate one property of the system
very closely: the viscous dissipation is locally stronger in
hot spots.

Heat is produced by the local kinetic energy dissipation,
which grows roughly like |∇u|2. If µ(θ) is allowed to grow
abritrarily with θ, then “turbulent” regions self-regularize
by increasing the local viscosity.

Short-circuited model [Ladyzhenskaya, 1970]
[Du-Gunzburger, 1991]:

∂tu + u · ∇u +∇p −∇ · (A(u)∇u) = f

A(u) = ν0 + ν1|∇u|r , r > 0.
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Simplified thermal fluid equations
To explore the effect of enhanced thermal dissipation, we
would like to analyze a simplified model (no density, but
also entirely local).

A starting point is the multi-dimensional viscous Burgers’
equation:

∂tu + u · ∇u − ν∆u = 0.

This equation is globally well-posed since it satisfies a
maximum principle; see [Unterberger 2015]. A similar
bound would hold for the “thermal” version of the above
equation. To work in a context where we have no better
initial energy estimate, we introduce the reduced Burgers’
equation

∂tu + u · ∇u +
1
2

(∇ · u)u − ν∆u = 0.
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Simplified thermal fluid equations

From this we build the thermal reduced Burgers’ equation:

∂tu + u · ∇u +
1
2

div(u)u − νdiv(θ∇u) = 0 (1)

∂t(θ
2) + div(uθ2)− κdiv(θ∇(θ2)) = νθ|∇u|2 (2)

on the domain T3 with initial data u0 and θ0 ≥ 1.

Note the similarities with the NSF system. Here θ2

represents the “heat energy density”, which is roughly like
ρe (the density and specific heat capacity are constant).
Also, νθ∇u models the viscous stress tensor S.

The choice of thermal viscosity is motivated by an
empirical formula for gases [Lautrup, 2011].
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Simplified thermal fluid equations

As long as the heat-density remains positive, we can write
(2) as

∂tθ + u · ∇θ +
1
2
θdivu − κθ∆θ − 2κ|∇θ|2 =

ν

2
|∇u|2. (3)

Let K = κ/ν + 1 be (a shift of) the inverse Prandtl number.
This is dimensionless and will frequently appear in the
calculations that follow.

In order to justify (3), we need to know θ2 stays positive.
But compressibility allows for an expanding gas to
become colder (refrigeration).
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Initial thermodynamic estimates
Assume that u and θ2 are classical solutions of the model
(1)-(2) on T3 × [0,T ] with initial data u0 and θ0 ≥ 1.

Define Et = 1
2‖u(·, t)‖2

L2 + ‖θ(·, t)‖2
L2.

Lemma (T 3.1)

For u and θ2 as above, we have
infT3 θ2(·, t) ≥ 1/(3t/(8ν) + 1)2 and Et = E0 for all
t ∈ [0,T ].

Intuitively, if θ(·, t) has a minimum at x̄ , then (3) implies

∂tθ(x̄ , t) ≥ ν

2
|∇u|2 − 1

2
|div(u)|θ(x̄ , t) ≥ − 3

8ν
θ(x̄ , t)2.

Rigorously, we prove a minimum principle for
v(x , t) := (1 + 3t/(8ν))θ(x , t).
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Thermally weighted enstrophy estimates

The main result is the following improved a priori estimate.

Theorem (T 1.2)

Assume that K ≥ 2. For u and θ as above with
u0 ∈ H1(T3) and θ0 ∈ L2(T3), there exist constants
C = C(ν,K ,E0) > 0 and M = M(K ) > 0 such that,∫

θ−1/K |∇u|2dx ≤
∫
θ
−1/K
0 |∇u0|2dx + C(tM + 1),

for all t ∈ [0,T ]. Moreover, the quantities

θ(K−1)/K |∇2u|2, θ−(K+1)/K |∇u|4, θ−(K+1)/K |∇u|2|∇θ|2

are L1
[0,T ]L

1
T3 (with bounds depending on E0, ν, and K ).
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Thermally weighted enstrophy estimates

To prove this, let f : R→ R+ be a weight function.

Integrating (1) against −div(f (θ)∇u) yields:∫
f
∂t

2
|∇u|2dx︸ ︷︷ ︸
I0

−
∫

ui∂iuj∂k (f∂kuj)dx − 1
2

∫
udiv(u)∂k (f∂kuj)dx︸ ︷︷ ︸

IA

+ν

∫
∂i(θ∂iuj)∂k (f∂kuj)dx︸ ︷︷ ︸

ID

= 0. (4)

Note that I0 is not a time derivative of a weighted norm.
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Thermally weighted enstrophy estimates
The advection term becomes

IA ≥ −
∫

f |∇u|3dx − 1
2

∫
f ′|∇u|2ui∂iθdx

− 1
2

∫
f |∇2u||∇u||u|dx .

The viscosity term becomes

ID = ν

∫
(∂kθ∂iuj + θ∂2

kiuj)(f ′∂iθ∂kuj + f∂2
ikuj)dx

= ν

∫
f ′|∇θ · ∇u|2dx︸ ︷︷ ︸

J1

+J2 + ν

∫
θf |∇2u|2dx︸ ︷︷ ︸

J3

with
J2 = ν

∫
(f + θf ′)∂kθ∂iuj∂

2
ikujdx .
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Thermally weighted enstrophy estimates

One final integration by parts gives

J2 =
ν

2κ

∫
f + θf ′

θ
(−κθ∆θ)|∇u|2dx − K0

=
1
2

∫
F
(ν

2
|∇u|2 + 2κ|∇θ|2 − u · ∇θ − ∂tθ

)
|∇u|2dx − K0

with
K0 =

ν

2

∫
(2f ′ + θf ′′)|∇θ|2|∇u|2dx

and
F =

ν

κ

f + θf ′

θ
.
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Thermally weighted enstrophy estimates

These calculations generate many terms with a definite
sign.

Choosing f such that

f ′(θ) = −ν
κ

f (θ) + θf ′(θ)

θ

yields f (θ) = K θ−1/K (the desired weight) and produces
two cancellations. Note that f ′ is always negative.

The improvement in the enstrophy estimate is then seen
in J2. It produces a positive (weighted) term with the
gradient of u appearing to the fourth power. This is
ultimately what allows the estimate to close in a novel way.
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Initial thermodynamic estimates (and gap)
Putting it all together, (4) becomes

∂t

2

∫
K θ−1/K |∇u|2dx + νK

∫
θ(K−1)/K |∇2u|2dx︸ ︷︷ ︸

U1

+ ν
2K 2 − 3K − 1

2K

∫
θ−(K+1)/K |∇θ|2|∇u|2dx︸ ︷︷ ︸

U2

+
ν

4

∫
θ−(K+1)/K |∇u|4dx︸ ︷︷ ︸

U3

≤ CK
∫
θ−1/K |∇u|3dx︸ ︷︷ ︸

R1

+ CK
∫
θ−1/K |u||∇u||∇2u|dx︸ ︷︷ ︸

R2

.
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Thermally weighted enstrophy estimates

The first term (which usually defeats such an estimate for
non-thermal Navier-Stokes in 3D) is bounded by Holder’s
inequality, Sobolev embedding, and Young’s inequality:

R1 .

(∫
|∇u|6dx

) 1
9
(∫

θ−(K+1)/K |∇u|4dx
) 7

12
(∫

θ2dx
) 7K−5

12K

.

(∫
|∇2u|2dx

) 1
3
(∫

θ−(K+1)/K |∇u|4dx
) 7

12

E(0)
7K−5
12K

≤ 1
4

U1 +
1
4

U3 + C
K 8

ν11 (1 + T M)E
7K−5

K
0
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Thermally weighted enstrophy estimates

The last term, by Holder’s and Young’s inequalities, is
bounded as

R2 ≤
1
4

U1 +
1
3

U2 + C
K
ν3

(
1 + T M) ∫ |u|4dx .

We then use Agmon’s inequality on T3 to write

‖u‖4
L4 ≤ ‖u‖5/2

L2

(∫
θ

K−1
K |∇2u|2dx + (1 + T M)‖u‖2

L2

)3/4

so that

C
K
ν3 (1 + T M)‖u‖4

L4 ≤
1
4

U1 + C
K
ν15 (1 + T M)E5

0 .
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Thermally weighted enstrophy estimates

We then have that (4) becomes

∂t

2

∫
K θ−1/K |∇u|2dx +

1
4

(U1 + U2 + U3)

≤ C(ν,K , ‖u0‖L2 , ‖θ0‖L2)(1 + T M(K )).

Integrating then gives the main result.

Observe that the bound holds for all K sufficiently large.
Hence ν can be arbitrarily small and κ can be arbitrarily
large (both counterintuitive to regularity); the constants
degenerate in those limits, though.
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The incompressible version

Instead of (1)-(2), it is possible to thermalize the
Navier-Stokes equations directly, yielding

∂tu + u · ∇u +∇p − νdiv(θ∇u) = 0, (5)

∂t(θ
2) + u · ∇(θ2)− κdiv(θ∇(θ2)) = νθ|∇u|2 (6)

div(u) = 0 (7)

However, the divergence-free condition leads to an exotic
pressure term:

p = (−∆)−1∂i(uj∂jui − ν∂jθ∂iuj). (8)

The initial thermodynamic estimate is much simpler. The
minimum of θ2 is nondecreasing in time.
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The incompressible version

If u and θ are classical solutions of (5)-(7) on T3 × [0,T ],
we get a conditional improved enstrophy bound.

Theorem (T 1.1)

For u and θ as above with u0 ∈ H1(T3) and θ0 ∈ L2(T3)
and θ a Muckenhoupt weight∗ uniformly in t, there exists a
constant K0 > 0 such that for all K ≥ K0 and all t ∈ [0,T ]∫

θ−1/K |∇u|2dx ≤
∫
θ
−1/K
0 |∇u0|2dx + t

C(K )

ν15 E7
0 .

Moreover, the following quantities are in L1
[0,T ]L

1
T3:

θ(K−1)/K |∇2u|2, θ−(K+1)/K |∇u|4, θ−(K+1)/K |∇u|2|∇θ|2.
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The incompressible version
The argument proceeds in the same way, but the
pressure term becomes

IP = −
∫

RlRk [um∂mul − ν∂mθ∂lum]f ′∂jθ∂kujdx ,

where Rj = ∂j(−∆)−1/2 is a Riesz operator.

Assuming θ(·, t)
K+1
2K is a Muckenhoupt weight uniformly,

IP =

∫
RkRl(um∂mul − ν∂mθ∂lum)θ−(K+1)/K∂jθ∂kujdx

.
1
ν

∫
θ−

K+1
K |u|2|∇u|2dx + (M2 + 1)ν

∫
θ−

K+1
K |∇θ|2|∇u|2dx

≤ 1
ν

∫
θ−

K+1
K |u|2|∇u|2dx +

1
2

U2.
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True well-posedness (work in progress)

The previous results were all a priori; given a smooth
solution on T3 × [0,T ], we have an enstrophy inequality
that closes independently of higher-regularity properties
of solutions.

The standard approach is then to regularize the problem
and pass to the limit to get existence of weak solutions
that satisfy the same bounds.

Unfortunately, the proofs above used the structure of the
equations in very precise ways.

A. Tarfulea Thermal regularization in fluid equations.



True well-posedness (work in progress)

The previous results were all a priori; given a smooth
solution on T3 × [0,T ], we have an enstrophy inequality
that closes independently of higher-regularity properties
of solutions.

The standard approach is then to regularize the problem
and pass to the limit to get existence of weak solutions
that satisfy the same bounds.

Unfortunately, the proofs above used the structure of the
equations in very precise ways.

A. Tarfulea Thermal regularization in fluid equations.



True well-posedness (work in progress)

The previous results were all a priori; given a smooth
solution on T3 × [0,T ], we have an enstrophy inequality
that closes independently of higher-regularity properties
of solutions.

The standard approach is then to regularize the problem
and pass to the limit to get existence of weak solutions
that satisfy the same bounds.

Unfortunately, the proofs above used the structure of the
equations in very precise ways.

A. Tarfulea Thermal regularization in fluid equations.



The iteration scheme

For ε > 0, we consider the following system of equations:

∂tu + uε · ∇u +
1
2

v εu − νdiv(S∇u) + ε|u|10u = 0

∂tθ + uε · ∇θ +
1
2

v εθ − κ
(

S
θ

+ S′
)
|∇θ|2 =

νS
2θ
|∇u|2

uε := ρε ∗ u, v ε := div(uε)

S = Sγ,ε(θ) := γ +
θ

1 + ε8θ
.

There are four regularizations taking place here. We will
take a limit as ε→ 0.
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Recovering the a priori estimate

Following the same strategy (with f = KS−1/K ), we get an
analog of (4):

∂t
K
2

∫
S−

1
K |∇u|2dx + νK

∫
S

K−1
K |∇2u|2dx

+
κ

2

∫
S−

K+1
K
|∇θ|2|∇u|2

(1 + ε8θ)3 dx +
ν

4

∫
S−

K+1
K
|∇u|4

(1 + ε8θ)3 dx

≤ 2K
∫

S−
1
K
(
|∇u|2|∇uε|+ |u||∇uε||∇2u|

)
dx

+
1
2

∫
S−

K+1
K
|u||∇uε||∇u||∇θ|

(1 + ε8θ)2 dx
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Recovering the a priori estimate

Sobolev embedings are trickier, since we cannot assume
that S is a Muckenhoupt weight. Nevertheless, we
essentially have∫

S
K−1

K |∇2u|2dx &

(∫
S

3K−3
K |∇u|6

) 1
3

The W 1,4-term is much weaker, so we must split the
integrals into {θ < ε−8} and {θ ≥ ε−8}.

Furthermore, all integrals have weights, and we cannot
bound

∫
Sβ|∇uε|α by

∫
Sβ|∇u|α in general. Instead, we

deal with error terms and use the fact that

‖hε − h‖L2 ≤ Cε‖h‖H1 .
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Improved bounds for the temperature

In the end, the inequality closes independently of ε
(though still depending on γ). Mollifying the advection
ruined the pointwise lower bound on the temperature,
which is why γ must be sent to zero later.

Using the new bounds, we would like to obtain new
estimates on θ. The hope is to get θ ∈ L∞. We can easily
get θ ∈ L∞t L11

x , which is not quite enough.

The right-hand-side of the θ-equation is still not regular
enough to complete the bootstrap, indicating that an
analogous estimate (i.e., thermally-weighted H1) must be
performed for θ.
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