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Examples of collective behavior

• Biology – swarming of insects, bird flocking, fish schools;

• Social science – opinion dynamics, social networks, economics
• Traffic dynamics, crowds, swarming of robots, material production,
cosmology

• Gossiping, phases of Tour de France...
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Agent-based models of collective behavior describe dynamics of a number
of objects:

xi ∈ Ω ⊂ Rn, i = 1, . . . , N

vi = ẋi

governed by mutual communication - adjustment of velocity or position to
that of nearby neighbors.

x1

x2

xN

v1

v2

vN
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Emergent dynamics

From local self-organization to global emergence:
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x1 x2

xN

The long time dynamics is characterized by three phenomena:

- alignment: limt→∞maxi |vi − v̄| = 0,
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The long time dynamics is characterized by three phenomena:

- alignment: limt→∞maxi |vi − v̄| = 0,

- flocking: supi,j |xi − xj | ≤ D0 <∞,
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x1 x2

xN

D0

The long time dynamics is characterized by three phenomena:

- alignment: limt→∞maxi |vi − v̄| = 0,

- flocking: supi,j |xi − xj | ≤ D0 <∞,

- strong flocking: xi − xj → xij , as t→∞,
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Environmental averaging models

Vicsek discrete model, 1995:
vi(n+ 1) = v0

∑
j:|xj−xi|<r0 vj∣∣∣∑j:|xj−xi|<r0 vj

∣∣∣ + perturbation

xi(n+ 1) = xi(n) + vi(n+ 1).

Kuramoto synchronization model, θi ∈ T1:

θ̇i =
λ

N

∑
j

sin(θj − θi) + ωi.

Dynamic alignment:

ṗi = λ
∑
j∈Ni

aij(t)(pj − pi),
∑
j

aij(t) = 1.

where Ni is a set of ’active’ agents in local proximity, pi ∈ Rn, e.g. p = x
or p = v.
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Alignment relies on propagation of connectivity:

• Analysis: Jadbabaie, Lin, Morse (2003)
• Numerics: by Gomez-Serrano, Graham, Le Boudec (2010),
• Analysis and Numerics: Motsch, Tadmor (2014).
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Cucker-Smale model (2007)


ẋi = vi,

v̇i =
λ

N

N∑
j=1

φ(|xi − xj |)(vj − vi),
(xi,vi) ∈ Ω× Rn (1)

Here, φ is a positive, non-increasing influence function which regulates
communication between agents in Ω.

Theorem (Cucker, Smale)

Let φ(r) = H
(1+r2)β/2

. Then every solution aligns exponentially and flocks

strongly for β ≤ 1, and conditionally if β > 1.

S.-Y. Ha, J.-G. Liu (2009); E. Tadmor, C. Tan (2014): generally any
kernel with ”fat tail”

∫∞
0 φ(r)dr =∞ implies exponential alignment and

strong flocking.
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ESA: Darwin mission

L. Perea, P. Elosegui, and G. Gomez. Extension of the Cucker-Smale
control law to space flight formations. Journal of Guidance, Control, and
Dynamics, 32:526 – 536, 2009.

β = 0.4
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Quest for locality: part I

– Motsch, Tadmor, (2011–2014)
ẋi = vi,

v̇i =
λ

Φi

N∑
j=1

φ(|xi − xj |)(vj − vi), Φi =

N∑
j=1

φ(|xi − xj |)

Alignment under the same conditions. No symmetry.

– S.-Y. Ha, J.-G. Liu (2009); Peszek (2014-15); Carrillo, Choi, Mucha,
Peszek, (2017): singular communication kernel

φ(r) =
1

rβ
, β > 0.

– Tadmor, RS (2016); Do, Kiselev, Ryzhik, Tan (2017): hydrodynamic
models with fractional dissipation: β = n+ α, 0 < α < 2.
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From microscopic to kinetic to macroscopic

S.-Y. Ha, E. Tadmor (2008); S.-Y. Ha , J.-G. Liu (2009); T. Karper, A.
Mellet and K. Trivisa (2015): kinetic version of CS-MT model

∂tf + v · ∇xf + λ∇v ·Q(f, f) +
1

ε
∇v · ((u− v)f) = 0,

where

Q(f, f)(x, v, t) =

∫
R2n

φ(|x− y|)(v∗ − v)f(x, v, t)f(y, v∗, t)dv∗dy.

Evolution of macroscopic density and momentum

ρ(x, t) =

∫
Rn
f(x, v, t)dv, ρu(x, t) =

∫
Rn
vf(x, v, t)dv

can be derived from kinetic formulation via hydrodynamic limit ε→ 0
(Kang, Vasseur (2014); Figalli, Kang, (2018)):

f(x, v, t)→ ρ(x, t)δ(v − u(x, t))
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We obtain the following coupled system
ρt +∇ · (ρu) = 0,

ut + u · ∇u =

∫
Rn
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t) dy

(x, t) : Rn × [0,∞). The velocity equation is Burgers with commutator
forcing:

ut + u · ∇u = Lφ(ρu)− Lφ(ρ)u

where

Lφf =

∫
Rn
φ(|x− y|)(f(y)− f(x))dy, or Lφf = φ ? f.

All g.w.p. results are in 1D: the system in 1D has a special conserved
quantity

e = ux + Lφρ, et + (ue)x = 0.
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Logistic: d
dte = (φ ? ρ− e)e.

Theorem

Case of smooth φ > 0 on R (Carrillo, Choi, Tadmor, Tan, 2014): If
e0(x0) < 0, then blow-up. If e0 ≥ 0, then global solution
(u, ρ) ∈W 1,∞ × L∞, and provided

∫∞
0 φ(r)dr =∞, then

|u(t)− ū|∞ ≤ Ce−δt, diamx supp ρ(·, t) ≤ D∞ <∞,

Case of smooth φ > 0 on T (Tadmor, S, 2017): if e0 > 0 and

(u, ρ) ∈W 2,∞ ×W 1,∞, then

|u(t)− ū|∞ + |ux|∞ ≤ Ce−δt, ρ(·, t)→ ρ∞(· − ūt).

In multi-D (Ha, Kang, Kwon, 2014; He, Tadmor, 2017): smooth solutions
flock and align, but s.i.d. for global existence.
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In multi-D (Ha, Kang, Kwon, 2014; He, Tadmor, 2017): smooth solutions
flock and align, but s.i.d. for global existence.

Roman Shvydkoy (University of Illinois at Chicago)Topological models of emergent dynamics BIRS; August 20, 2018 15 / 31



Theorem (Tadmor, RS, 2016-2017)

Case of singular φ on T: Let 0 < α < 2 on the periodic torus T. For any
non-vacuous initial condition (u0, ρ0) ∈ H4 ×H3+α, ∃! global solution:

|u(t)− ū|∞ + |uxxxx(t)|2 ≤ Ce−δt, (2)

and there is exponential strong flocking towards (ū, ρ̄), where and
ρ̄ = ρ∞(x− tū) ∈ H3+α,

|ρ(t)− ρ̄(t)|H3+α−ε ≤ Ce−δt, t > 0. (3)

In multi-D smooth solutions align as well, but s.i.d. for global existence
(RS, 2018 (Hölder); Danchin,Mucha,Peszek,Wroblewski, 2018 (Besov)).

In the particular case 0 < α < 1 the result was proved in parallel by T. Do,
A. Kiselev, L. Ryzhik, and C. Tan (2017) by construction of the modulus
of continuity.
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|ρ(t)− ρ̄(t)|H3+α−ε ≤ Ce−δt, t > 0. (3)

In multi-D smooth solutions align as well, but s.i.d. for global existence
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The nature of the system is fractional parabolic:

ρt + uρx + eρ = ρΛαρ

mt + umx + em = ρΛαm, m = uρ.

u satisfies maximum principle.

The e-quantity
e = ux + Λαρ,

relates higher order terms while itself being of lower order. Indeed,

D

Dt

e

ρ
= 0.

So, |e| ≤ Cρ. One can lift this to higher order |e(k)| ≤ C|ρ(k)|.
If 0 < α < 2, the density remains bounded above and below uniformly
in time:

c ≤ ρ(x, t) ≤ C
hence

|e(x, t)| ≤ C.
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Equations fall into a general class of forced fractional parabolic equations
with L∞ drift

vt + b · ∇xv =

∫
K(x, h, t)(v(x+ h)− v(x))dh+ f

where

K(x, h, t) = ρ(x)
1

|h|1+α
.

The kernel falls under Silverstre (2012): there exists a γ > 0 such that

|ρ, u|Cγ(T×[t+1,t+2)) ≤ C(|ρ, u|L∞(t,t+2) + |e|L∞(t,t+2)).

Bootstrapping to higher classes via enhancement of dissipation
(inhomogeneous Constantin-Vicol nonlinear maximum principle).

Theorem (T. Leslie, 2018)

Existence and uniqueness of solutions to forced system in classes

u, ρ, e ∈ L∞ (weak) ; u, ρ, e ∈W 1,∞ (strong)

+ Hölder regularization (towards theory of attractors and stability).
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Quest for Locality: part II

Suppose the agents can interact only locally (Vicsek protocol):

φ(r) =
1

rn+α
χ{r<R0}.

Static kernels may not define flocking dynamics:
• The bound of the density in 1D is only polynomial:

ρ(x, t) &
1

1 + t
.

• The best assumption under which alignment can be established is

ρ(x, t) &
1√

1 + t
.
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Topological v.s. Metric Model

Figure: By Murphd84 - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=6524538
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New communication protocol

b b
yx

Ω(x, y)

Figure: Communication domains between agents

1. Every agent xi has a finite influence range, B(xi, r0).

2. Agent xi influences agent xj via intermediaries in domain Ωxi,xj

3. The quantity mij =
∑

k:xk∈Ωij
mk measures collective power of the

intermediaries.

Based on the outlined principles, we make the following choice:

φij(x) =
1

mτ
ij

ψ(|xi − xj |), (4)
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
ẋi = vi,

v̇i = λ

N∑
j=1

mjφij(x)(vj − vi).
(5)

In the macroscopic approximation, mij is replaced by ”mass”

d(x, y, t) =

[∫
Ω(x,y)

ρ(z, t) dz

] 1
n

.

The kernel adopts a hybrid metric and topological distance:

φ(x, y) =
1

d(x, y, t)τ |x− y|n+α−τ χ|x−y|<R0
, where τ > 0.

The hydrodynamic topological model reads
ρt +∇ · (ρu) = 0,

ut + u · ∇u =

∫
R
φ(x, y)(u(y, t)− u(x, t))ρ(y, t) dy
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Theorem (Strong solutions align. Tadmor, RS (2018))

Let (u, ρ) be a global smooth solution to the topological model on Tn
with τ ≥ n and

ρ(x, t) &
1

1 + t
. (6)

Then
|u(t)− ū|∞ → 0.

• Why τ ≥ n?

lim
α→2

(2− α)[Lφ(ρu)− uLφ(ρ)] =
1

ργ−1
∆u+

2− γ
γ
∇u∇ρ, γ =

τ

n
.

• In 1D, the density bound holds automatically due to a remarkable
”survival” of the e-quantity:

e = ux + Lφρ; et + (ue)x = 0.

ρt ≥ −Cρ2.

Hence, (6).
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Elements of the proof

x

y

u−

u+

x−

x+

Let us fix a δ > 0 and consider the sets

G+
δ (t) = {y : u(y, t) < u+(1− δ)}

G−δ (t) = {y : u(y, t) > u−(1 + δ)}

These sets are small that w.r.t to density measure dmt = ρ dx∫ ∞
0

Et(G±δ (t)|B(x±, r)) dt <∞. (7)
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We consider the averages with respect to mt-measure:

ux,r =
1

mt(B(x, r))

∫
B(x,r)

u(z, t) dmt(z).

We use the weighted Campanato semi-norm:

[u]2ρ = sup
x0,r<r0

∫
|x−x0|<r/10

|u(x)− ux0,r|2ρ(x) dx.
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x0

x

x′

Ω(x, x′)

B(x0, r/10)

B(x0, r)

b

b

b

Crucial estimate:

[u]2ρ ≤
∫
|x−x0|< 1

10
r

|x′−x0|<r

1

mt(B(x0, r))
|u(x)− u(x′)|2ρ(x)ρ(x′) dx′ dx

≤
∫
|x−x′|< 11

10
r

1

dn(x, x′)
|u(x)− u(x′)|2ρ(x)ρ(x′) dx′ dx

≤
∫
|x−x′|< 11

10
r
φ(d(x, x′), x, x′)|u(x)− u(x′)|2ρ(x)ρ(x′) dx′ dx
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b b b bb b b

x− x1 xK x+

B0 B1 BK BK+1

ℓ

Combined flattening-enstrophy bound:∫ ∞
0

(Et(G±δ (t)|B(x±, r)) + [u(t)]2ρ) dt <∞.

Thus, for any ε > 0 there exists a time t > 0 as large as we like so that

Et(G±δ (t)|B(x±, r)) + [u(t)]2ρ <
ε

t
. (8)

Hence

sup
x0,r<r0

∫
|x−x0|<r/10

|u(x)− ux0,r|2 dx < ε

Slide x0 from x+(t) to x−(t) in finite number of steps, hence

|u+ − u−| < ε+ δ

Roman Shvydkoy (University of Illinois at Chicago)Topological models of emergent dynamics BIRS; August 20, 2018 27 / 31



Theorem (Global existence on T1. Tadmor, RS (2018))

Let 0 < α < 2, and suppose a given initial condition u0 ∈ H4,
ρ0 ∈ H3+α/2 satisfies the following assumptions:

(i) no vacuum c0 < ρ0(x) < C0, and

(ii) if τ > α then, in addition, Mτ
∣∣∣ e0ρ0 ∣∣∣∞ <

Rτ−α0
τ−α .

Then there exists a global in time solution to the (τ, α)-model in the same
class.

• Reduces to propagation of a modulus continuity of ρ:

ρt + uρx + eρ = LK [ρ].

where

K(x, y, t) =
ρ(x)

d(x, y, t)τ |x− y|n+α−τ χ|x−y|<R0

χ|x−y|<R0

Λ|x− y|n+α
≤ K(x, y, t) ≤ Λ

|x− y|n+α
.
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• For 1 < α < 2, we apply fractional Schauder estimates:

e = ux + Lφρ, ∂−1
x Lφρ = −u+ ∂−1

x e ∈ L∞.∫
[f(x+ z) + f(x− z)− 2f(x)]H(x, z, t) dz = g(x) ∈ L∞,

where f = ∂−1
x (ρ−M). Schauder (Tianling Jin and Jingang Xiong, 2015)

implies f ∈ C1+γ .

• For 0 < α < 1, we apply Silvestre regularization theorem.

u = −∂−1
x Lφρ+ ∂−1

x e ∈ C1−α.

• For α = 1:

ρt + uρx + eρ = ρLsym[ρ],

ωt + uωx + e = Lsym[eω], ω = log ρ.

DeGiorgi method in nonlinear forced settings (Caffarelli, Vasseur (2008)
SQG; Caffarelli, Chen, Vasseur (2011) with symmetry; Vazquez, de Pablo,
Rodriguez, Quiros (2017) nonlinear but no drift; Golse, Imbert, Mouhot,
Vasseur (2018), kinetic Fokker-Plank).
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Theorem (Unconditional flocking for 1D local topological kernels)

Consider the one-dimensional system on T with local (τ, α)-kernel with
topological singularity of order 1 ≤ τ ≤ α < 2. Then any non-vacuous
smooth initial data ρ0 > 0, u0 gives rise to a unique global solution which
aligns

|u(t, ·)− u∞|∞ → 0.
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Thank you!
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