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Euler equations

Consider the Euler equation
Ow +u-Vw=0

with either

m periodic boundary conditions on the 2D torus, or

m Dirichlet boundary conditions on a bounded regular domain.
Here

m u is the velocity, u = V1),

m 7 is the stream function, with —Ay = w

The equation has a infinite number of conserved quantities. The
most relevant are

m kinetic energy [ |ul?dz,

m enstrophy [ |w|? dz.



Dynamics of point vortices

A (exact) measure valued solution is given by point vortices,

N
WN = Z §50x;
j=1
where the point vortex positions evolve according to
X =Y §(VIG)(Xk - X))
J#i

Here G is the Green function, VG is the Biot-Savart kernel, and
the self-interaction has been neglected.
This is a Hamiltonian system with Hamiltonian

1
Hy(z1,22,...,2N) = 5 Zgjka(xj - k)
JF#k

with invariant distribution p5 n = Zﬁ_}v e PHN(z) qn.



Dynamics of point vortices
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Onsager'’s theory (in a nutshell)

Onsager's theory is a statistical theory of the formation of large
scale vortex structures in 2D turbulence, where vorticity is replaced
by a dilute gas of point vortices.

m Not relevant for homogeneous turbulence.
m Relevant at large scales (so viscositya2 0 and Euler).

m long time distribution of point vortices governed by equilibrium

statistics
In R2, )
Hy(z) = s ij’fk log |z; —
J7#k
therefore,

m at 5 > 0: attractive for non concordant vortices,

m at 5 < 0: attractive for concordant vortices



Mean field theory
The energy spectrum, averaged over pg v has the leading order
&N
A

(due to self-interaction, yields infinite kinetic energy).
To obtain finite energy and a non—trivial limit one expects

EN~1,  B/N~1,

E(k)

and the corresponding Gibbs measure is
1
Zp.N

o™ W Lk §i6nGlag—ai) drydxs ... dry
of mean field type. The vorticity
1
N Z §0x;-
J

obeys a LLN.

[Frahlich, Ruelle] [Caglioti, Lions, Marchioro, Pulvirenti]



Mean field theory with random intensities

Consider the mean field model with random intensities

1

e—% 22k &€k G (=) qpON 1, ON
Z/B7N

Hp N =

in the neutral case (only for Dirichlet boundary conditions),
E [¢] =0.
with v probability supported on a bounded interval K.
We have that
m The partition function log Zg v = N,
m Finite dimensional distributions pl are bounded in L? for all p.

m Existence of limit points that are (by exchangeability) mixture of
independent vortices: [ p®N7(dp).

[Joyce, Montgomery] [Bodineau, Guionnet] [Kiessling] [Neri]



Random intensities — variational description

Consider the free energy for probabilities on Ty x K,

() =5 [ [ H@ 0 mn@ oo+ [ o6 ogole.o)

then
m 7 is supported over minimizers of F,
m p solves the mean field equation
o= BEB()
pl&,x) = T e Beb@) dzu(dg)’

where 1) is the averaged (in &) stream function for p.

m 3> 0 (or 8 <0 small enough): F' has a unique minimizer ~~
propagation of chaos.

m 3 < 0: in general non-unique minimizers.



Random intensities — deviations

Large deviations
A large deviation principle holds for the distribution of vortices,

1
N Z 0¢;.X;
J
with speed N and rate function

Fi) = EuLeb™ ")+ [ [ 66 ta,autds (s de)

Central limit theorem
In the special case of a disk, Bernoulli +-£; neutral intensities, and
B > 0, the central limit theorem holds (for a restricted class of
observables) with limit Gaussian measure
1 _
—e

Z

Enstrophy/£2—BKinetic energy

[Bodineau, Guionnet]



CLT for point vortices

Theorem
Assume

m either periodic boundary conditions on the torus,

m or Dirichlet boundary conditions on a bounded regular domain,
and

m (5>0,

m Bernoulli +£&y (neutral) intensities.

If BE2 is small enough then the Central limit theorem holds with
limit Gaussian measure

l e—Enstrophy/fg—ﬁKinetic energy

Z

[R., Grotto]




Remarks and ideas for the proof

m why 8 > 0 and neutral case. Recall the mean field equation:

e—B&Y(x)
P&T) =TT R dzv(dg)

m The proof is based on two main ideas,

m Gaussian integration: the exponential in g n reformulated as a
expectation wrt to a mean zero centred Gaussian random field with

covariance G,
o™ BN i GERCXXp) _ (3BEGCO0 | [eﬁ z; w(Xj)}

m Spectral decomposition: G = Gr + Gs.

m The condition on 8¢2 due to a poor estimate of the partition
function corresponding to G’s.

VIRl EMuations for point vortex models - 12 / 19



Summary

m Mean field limit for every 3 (Lions et al.)

m CLT (unconditional for the torus, in the neutral case in a bounded
domain) for 8 > 0.
m Open problems:

® non-neutral circulations (bounded domain)

m 3<0?
existence unique B’yg small
of ug N minimizer enough

0 B&s

integrability Gaussian
of the energy fluctuations



Universality

m LLN gives (deterministic) stationary solutions,
m CLT gives (statistical) stationary solutions

m Connections with the Gaussian invariant measures of
Albeverio-Cruzeiro.

m Connections with other turbulent regimes: re-interpret the vorticity

as y ., 5%6)(1..
m CLT gives universality of fluctuations.

m Other models with similar features (point vortices

m Euler equation,
m surface quasi-geostrophic,

m (a version of) plasma turbulence
equation.

[Bernard, Boffetta, Celani, Falkovich]
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Other models
We look at a slightly more general version of the model on the torus

8t9 +v-Vo = 0,
with v = VLw, and

b(t,z) = / Gz — y)0(y) dy,

with Gy = |k|™™, thus G(z — y) ~ |z — y|™ 2 for m < 2.
m m = 2 Euler equation,
m m = 1 surface quasi-geostrophic,
m m = —2 plasma turbulence.
Two conserved quantities
w2 lo* o~ [10()
@ DI - [ o))
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Other models — mean field
A similar vortex dynamics

Xp =) &(VIG)(X; — Xp)
7k
Interaction too singular. Replace G by G,
e—clkl?
ek — W
At finite € one can obtain,

m existence of a limit distribution of a infinite number of vortices, as
N — oo,

m propagation of chaos for 8 > 0 (or 8 < 0 and small),
m characterization of limit points as solutions of a mean field equation,

m and as minima of the free energy,

m 1
%”(_A)T e He=8) 2, ¢ 3 1og</ )

¥
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Limit results

Consider 8 > 0, and recall the empirical pseudo—vorticity
| N
0= &,
j=1

Theorem
There is a choice € = ¢(N) such that ¢(N) | 0 as N 1 oo and

m Propagation of chaos holds and the law of (X, &) converges to
Lebr, ® v.

m (LLN) 6 converges in probability to 0,

m (CLT) /NO converges in law to a Gaussian distribution with
covariance (oI + B(—A)~%)7L.

Here vo = 1/E,[¢?], where the expectation is computed with
respect to the prior v.

[R., Geldhauser]



Ideas for proof

A few ideas

m It is sufficient to prove convergence on exponential functionals
E [ei<\/ﬁa,f>]
HB,e,N

m The exponential in pg . v reformulated as a expectation wrt to a
mean zero centred Gaussian random field with covariance SG.,

e~ TN DHEGX)Xe) — hFEGO00 |, [eﬁ =, sm(Xj)}

m Taylor expansion of the exponential in terms of the small parameter
N—1/2 yields at leading order

SN ! / Ey [ 14915 4y ferror(e, N),
B,e,N

ENﬂ,e,N[

where Ty = & > &7
The ¢ = €(N) is chosen so to have error(e, N) — 0 as N 1 occ.

Here )
€(N) ~ (log N)z=m.

[Benfatto, Picco, Pulvirenti]
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Towards a LDP

Need to prove I'-convergence of the free energy, in terms of the
density of vortices p,

Fip) = Euleb™av )15 [ [ €6, uldo de)ulas’ de)
or in terms of the pseudo—stream function,
1 m 1 1
(AT o—3€(=D) 112 il —B&Y(z) dz v(dE)
1) e S i Ztog( [ )

Problem: Control of the energy and the entropy to ensure
I'—convergence (or at least lower semi—continuity of the candidate
limit).

At m = 0 Moser—Trudinger inequality.

[Bellettini, Bertini, Mariani, Novaga]
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