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Motivation: in the deterministic case, we have existence of
solutions to 2D Euler equations with singular vorticity, in particular
vortex sheets (initial vorticity concentrated on a line).
Question: what for stochastic 2D Euler equations?
Main result: existence of a martingale solution to the 2D
stochastic Euler equations with transport noise:

∂tξ + u · ∇ξ +
∑
k

σk · ∇ξ ◦ Ẇ k = 0

ξ = const + curlu

(σk given vector fields, W k independent Brownian motions)
when the vorticity is a non-negative measure and in H−1. This
includes vortex sheets.
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2D Euler equations (on R2 or T2)

∂tu + (u · ∇)u = −∇p
divu = 0

In vorticity form: ξ = const + curl u (scalar valued):

∂tξ + u · ∇ξ = 0,

u = K ∗ ξ

where K = ∇⊥G and G is the Green function of the Laplacian.
Note K (x) ≈ x⊥

|x |2 . Solutions in distributional form.
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Results:

Vorticity ξ in L∞x : existence and uniqueness (Yudovich 63,
Marchioro-Pulvirenti 94).

Vorticity ξ in Lp, p > 1: existence (DiPerna-Majda 87).

Vorticity ξ in M+ ∩ H−1: existence (Delort 91).
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Comparison with Onsager dissipative solutions:

Vorticity in Lp: solutions u are more regular (W 1,p) than
Hölder. From DiPerna-Lions and Ambrosio theory: existence
of a Lagrangian flow, renormalization expected for bounded u;
actually renormalization and energy conservation hold for
p > 3/2 and also below under some restrictions.

Vorticity in M+ ∩ H−1: not known.
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Now we introduce noise. Noise interpretation:

uncertainties

can give rise to turbulent phenomena

can improve well-posedness theory w.r.t. the deterministic
case (regularization by noise)

Here: Extension of Delort existence result to stochastic case.
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Stochastic 2D Euler equations with transport noise (on the
vorticity):

∂tξ + u · ∇ξ +
∑
k

σk · ∇ξ ◦ Ẇ k = 0

u = K ∗ ξ

Here σk are given divergence-free vector fields, assumed regular,
and W k are independent real Brownian motions, ◦ denotes
Stratonovich integration.
Solution: ξ : [0,T ]× T2 × Ω→ R random scalar field.

Noise interpretation: Calling formally ζ(t, x) =
∑

k σk(x)Ẇ k ,
ζ is a random field, Gaussian, decorrelated in time, correlated
and smooth in space.
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Features of transport noise:
1) Solution follows stochastic characteristics of the fluid (formally):

ξt(Xt) = ξ0

dXt = u(t,Xt)dt + σk(Xt) ◦ dWt

2) Stochastic Constantin-Iyer formula (proved by Flandoli-Luo for
the 3D case)

ut = Π[(∇X−1t )Tu0(X−1t )]

3) As consequence of transport property: enstrophy and any Lp

norm are preserved.
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In velocity form:

∂tu + (u · ∇)u + [(σk · ∇)u + (∇σk)Tu] ◦ Ẇ k = −∇p
divu = 0

Note: zero order term, energy (that is L2 norm of u) is not
preserved.
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Results:

Vorticity in L∞: existence and uniqueness, in pathwise sense
(Brzezniak-Flandoli-M. 16). Idea of proof (in the line of
Marchioro-Pulvirenti 94): prove uniqueness of stochastic
characteristics (stochastic flows), then prove
renormalization-type property.

Vorticity in L2, transport noise in the velocity: existence of a
martingale solution (Yokoyama 14, with a similar technique to
the one here).
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Other results:

Crisan-Flandoli-Holm 17: local existence and uniqueness in
3D.

Flandoli-Gubinelli-Priola 11: regularization by noise for
vorticity concentrated in a finite number of points.
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A few examples of other noises:

Mikulevicius–Valiukevicius 00: local existence of smooth
solutions under 2D (+Ẇ 1 + Ẇ 2) noise.

Bessaih–Flandoli 99, Bessaih 99: existence of a martingale
solution under affine multiplicative noise +

∑
k σk(x)uẆ k .

Brzezniak–Peszat 01: existence of a martingale solution in L2

under multiplicative noise +G (u)dW , G (u) in W 1,p (roughly
speaking.

Glatt-Holtz–Vicol 14: existence of smooth solutions under
additive noise (

∑
k σk(x)Ẇ k) and linear multiplicative

(αuẆ k) noise.
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Stochastic 2D Euler equations on the torus T2:

∂tξ + u · ∇ξ +
∑
k

σk · ∇ξ ◦ Ẇ k = 0

u = K ∗ ξ

Assumptions on σk :

divergence-free

regular:
∑

k ‖σk‖2C2 <∞
the covariance matrix C (x , y) =

∑
k σk(x)σk(y)T is locally

translation-invariant and even (OK if the noise is “locally
isotropic”)
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Theorem (Brzezniak-M.)

Assume σk as above. Let ξ0 be inM+ ∩ H−1. Then there exists a
weak (in the probabilistic sense) solution ξ with a.s. values in
Ct(M+,w∗) ∩ L2t (H−1).

Mario Maurelli (joint with Zdzislaw Brzezniak) Vortex sheets for 2D stochastic Euler equations



Introduction
Main result

Proof
Possible developments

Main result

Remarks:

We chose the torus as the simplest case, we expect the result
to hold also on R2.

The assumptions on the structure of the covariance matrix
associated with σk may be relaxed, they are put to simplify
Itô-Stratonovich corrections.
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How to make sense of u · ∇ξ for ξ measure? u is in general not
bounded.
Poupaud 02 trick: since K is odd, we can write formally∫

u(x)ξ(x)∇ϕ(x)dx =

∫ ∫
ξ(x)ξ(y)K (x − y)∇ϕ(x)dx

=
1

2

∫ ∫
ξ(x)ξ(y)Fϕ(x , y)dx

where
Fϕ(x , y) = K (x − y) · (∇ϕ(x)−∇ϕ(y))

Recall K (x − y) ≈ (x−y)⊥
|x−y |2 . Therefore, for ϕ in C 2, Fϕ is regular

outside the diagonal {x = y} and bounded everywhere.
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Hence, for ξ general measure, we define u · ∇ξ as

〈u · ∇ξ, ϕ〉 :=

∫ ∫
ξ(x)ξ(y)Fϕ(x , y)dxdy

Note that

|〈u · ∇ξ, ϕ〉| ≤ C‖ξ‖2M‖ϕ‖C2 ≤ C‖ξ‖2M‖ϕ‖H4

that is
‖u · ∇ξ‖H−4 ≤ C‖ξ‖2M

Mario Maurelli (joint with Zdzislaw Brzezniak) Vortex sheets for 2D stochastic Euler equations



Introduction
Main result

Proof
Possible developments

The nonlinear term
Strategy
Tightness
Equation for the limit

Strategy: 1) tightness 2) equation for any limiting object
1) Tightness: approximation by regular solutions, uniform
L∞t,ω(M), L2t,ω(H−1) and L2ω(Cαt (H−4)) bounds, via transport
structure, Poupaud trick, stochastic Cα bounds.
2) Equation for the limiting objects: a.s. convergence
(Skorohod-Jakubowski theorem), convergence of nonlinear term by
Poupaud trick.
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Take ξε bounded solutions to stochastic Euler equations but with
regular initial data ξε approximating ξ.
1) Uniform L∞t,ω(M) bound: transport structure implies mass
conservation:

∂t

∫
ξεdx = −

∫
uε · ∇ξεdx −

∫
σk · ∇ξεdx ◦ Ẇ k = 0
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2) Uniform L∞t (L2ω(H−1)) bound: equivalent to uniform
L∞t (L2ω(L2)) bound on uε (energy bound):
Equation for uε:

∂tu
ε + (uε · ∇)uε + (σk · ∇uε) ◦ Ẇ k + (∇σk)Tuε ◦ Ẇ k = −∇pε

Assumptions on σk imply that (∇σk)Tuε ◦ Ẇ k = (∇σk)TuεẆ k .
Get equation for |uε|2 and integrate in x and ω:

∂tE
∫
|uε|2dx = E

∫
|(∇σk)Tuε|2dx ≤ CE

∫
|uε|2dx

Conclusion by Gronwall lemma.

Mario Maurelli (joint with Zdzislaw Brzezniak) Vortex sheets for 2D stochastic Euler equations



Introduction
Main result

Proof
Possible developments

The nonlinear term
Strategy
Tightness
Equation for the limit

3) Uniform L2ω(Cαt (H−4)) bound, α < 1/2: use Poupaud trick and
stochastic calculus:

ut − us = −
∫ t

s
u · ∇ξdr −

∫ t

s
σk · ∇ξdW k +

1

2

∫ t

s
tr[C (0)D2ξ]dr

Nonlinear term: ‖u · ∇ξ‖H−4 ≤ C‖ξ‖2M, hence Lipschitz in time.
Stochastic term: ‖σk · ∇ξ‖H−4 ≤ C‖σk‖C‖ξ‖M, hence 1/2−
Hölder in time (stochastic integration in the Hilbert space H−4).
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Tightness in the space χ = Ct(MM ,w∗) ∩ (L2t (H−1x ),w):

The set A = {µ ∈ χ | ‖µ‖L2t (H−1
x ,w) + ‖µ‖Cα

t (H−4
x ) ≤ a} is

compact.

Uniform bounds before: Law(ξε)(Ac) < δ for small ε.
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Let ξεn be a subsequence such that (W , ξn) converges in law.
Skorokhod-Jakubowski theorem (Jakubowski 97 for r.v. with
values in topological spaces): on an enlarged probability space,
there exist r.v. (W̃ (n), ξ̃n), copies of (W , ξεn), converging a.s. to a
r.v. (W̃ , ξ̃).
Adaptedness: take F̃t as the completion of the filtration generated
by (W̃ , ξ̃), then W̃ is a (cylindrical) Brownian motion w.r.t. F̃t

and ξ̃ is adapted w.r.t. F̃t .
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Limiting equation: show that each term in the equation for ξ̃n

passes to the limit.
Nonlinear term ∫ ∫

ξ̃(x)ξ̃(y)Fϕ(x , y)dxdy

Poupaud trick:

If ξ̃(x)ξ̃(y) gives no mass to the diagonal {x = y} and ξ̃ is
positive, then the nonlinear term converges: indeed recall Fϕ
is continuous outside the diagonal.

If ξ̃ is in H−1, then ξ̃ has no atom and so ξ̃(x)ξ̃(y) gives no
mass to the diagonal.
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Stochastic term: linear but not continuous functional of ξ̃.
Brzezniak-Goldys-Jegarai 13:
If the integrands were step functions (in time), the stochastic
integral would be continuous w.r.t. ξ̃ and so convergence would
hold. In the general case, approximate the integrand by step
functions.
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Further developments:

Particle approximation for Lp vorticity (à la Schochet 96)

More general noises (fractional Brownian motion, or also
non-transport noises)

σk irregular? (Kraichnan model for passive scalars)
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Thank you!
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