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SQG in R2 (or T2)
Nonlinear, nonlocal, scalar

∂tθ + u · ∇θ = 0

θ(x , t) is a real valued function of x ∈ R2 and t ∈ R

u = R⊥θ

R is a vector of Riesz transforms

Ri f (x) = ∂i (−∆)−
1
2 f (x) = cPV

ˆ
R2

xi − yi

|x − y |3
f (y) dy

R⊥ = (−R2,R1)

The velocity u is divergence-free.
Held, Pierrhumbert, Garner, Swanson ’95: SQG is an equation for
frontogenesis in meteorology

I model for rapidly rotating, stratified fluids
I θ temperature (or surface buoyancy) in a 2D layer



Analogies with the 3D incompressible Euler equations

I Conservation of kinetic energy, ||u||L2 .
I The integral curves of ∇⊥θ are carried by the flow.
I ∇⊥θ is like 3D vorticity ω, Constantin–Majda–Tabak (’94): it

satisfies the stretching equation

(∂t + u · ∇)(∇⊥θ) = (∇u)(∇⊥θ), u = ∇⊥(−∆)−
1
2 θ

3D Euler: (∂t + u · ∇)ω = (∇u)ω, u = ∇⊥(−∆)−1ω

I The Beal-Kato-Majda theorem holds: a smooth solution blows up
at time t = T if and only if

´ T
0 ||∇

⊥θ(·, t)||∞dt =∞.
I If the direction of level lines is locally nice, geometric depletion of

nonlinearity.

Difference to 3D Euler: The 2D SQG has weak continuity of the
nonlinearity in L2 due to a commutator structure. Resnick (’95)

Major open problem: global existence of smooth solutions vs blow up.
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Dissipative SQG in R2

∂tθ + u · ∇θ + Λsθ = 0

u = ∇⊥Λ−1θ, Λ = (−∆)
1
2

The fractional Laplacian has an explicit kernel in R2,

Λsf (x) = cPV
ˆ
R2

f (x)− f (y)

|x − y |2+s dy

for 0 < s < 2.

Scaling invariance: θλ(x , t) = λs−1θ(λx , λst)
I s > 1, subcritical SQG: global smooth solutions. Resnick ’95,

Constantin, Wu ’99
I s = 1, critical SQG: global smooth solutions.

I Small data in L∞: Cordoba–Constantin–Wu ’01
I Large data: Caffarelli–Vasseur ’07, Kiselev–Nazarov–Volberg ’07,

Kiselev–Nazarov ’09, Constantin–Vicol ’12,
Constantin–Tarfulea–Vicol ’15

I s < 1, supercritical SQG: The problem of global existence of
smooth solutions is open.
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Global regularity ideas in the whole space
I The stretching equation

(∂t + u · ∇+ Λ)∇⊥θ = (∇u)∇⊥θ.

I Take the scalar product with ∇⊥θ

1
2

(∂t + u · ∇+ Λ)q2 + D(q) = Q

for q2 = |∇⊥θ|2, with

Q = (∇u)∇⊥θ · ∇⊥θ ≤ |∇u|q2.

|∇u| ∼ q, Q is cubic.
I Nonlinear lower bounds

D(q) = qΛq − 1
2

Λ
(
q2) ≥ c (‖θ‖L∞)−1 q3

hold pointwise, for q = ∂iθ. (Useful when ‖θ‖L∞ ≤ ‖θ0‖L∞ .)



Critical SQG in bounded domains
Let Ω ⊂ R2 be open, bounded, smooth.

∂tθ + u · ∇θ + ΛDθ = 0

u = R⊥D θ, RD = ∇Λ−1
D

θ|t=0 = θ0

Main result: Global interior Lipschitz regularity
Additional challenges to the whole space case:
1. No explicit kernels. Need eigenfunction expansion and heat kernel.
2. No translation invariance. Need commutators of ΛD with finite
difference operators, properly localized.

Strategy of proof:
1. L∞ bounds (Convex damping inequality)

||θ||L∞ ≤ ||θ0||L∞ .

2. Global interior Hölder estimates with exponent α, where

α||θ0||L∞ � 1.

3. Global interior gradient bounds.
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The Dirichlet Fractional Laplacian
Recall the eigenfunction expansion for the Dirichlet Laplacian:

−∆wj = λjwj , wj |∂Ω
= 0

We have

f =
∑

fjwj , fj =

ˆ
Ω

fwjdx , ΛDf =
∑

λj
1
2 fjwj

We mainly use a formula based on the heat kernel:

((−∆)
s
2 f )(x) = cs

ˆ ∞
0

[f (x)− et∆f (x)]t−1− s
2 dt

where (et∆f )(x) =
´

Ω
HD(t , x , y)f (y)dy is the heat operator.

ΛD = (−∆)
1
2 , D(ΛD) = H1

0 (Ω)

Gaussian bounds for HD in Ω. Denote

d(x) = dist(x , ∂Ω).

We have

|∇xHD(t , x , y)|
HD(t , x , y)

≤ C

{ 1
d(x) , if

√
t ≥ d(x),

1√
t

(
1 + |x−y|√

t

)
, if
√

t ≤ d(x)



The convex damping inequality

Proposition (C, I ’16)
Let Ω be a bounded domain with smooth boundary. There exists a
constant c > 0 depending only on Ω such that for any Φ, a C2 convex
function satisfying Φ(0) = 0, and any f ∈ C∞0 (Ω), the inequality

Φ′(f )ΛDf − ΛD(Φ(f )) ≥ c
d(x)

(f Φ′(f )− Φ(f )) ≥ 0

holds pointwise in Ω.

The proof follows from approximation, convexity, and the fact that
Θ = et∆1 obeys 0 ≤ Θ ≤ 1 and

ΛD1 =

ˆ ∞
0

t−
3
2 (1−Θ(x , t))dt ≥ cd(x)−1
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The Nonlinear Bound for derivatives

Theorem (C, I ’16)
Let f ∈ L∞(Ω) ∩ D(ΛD). Assume that f = ∂θ with θ ∈ L∞(Ω) and ∂ a
first order derivative. Then there exist constants c, C depending on Ω
such that

f ΛDf − 1
2

ΛDf 2 ≥ c(‖θ‖L∞)−1|fd |3 +
c

d(x)
f 2

holds pointwise in Ω, with

|fd (x)| =

{
|f (x)| if |f (x)| ≥ C ‖θ‖L∞(Ω)

d(x) ,

0 if |f (x)| ≤ C ‖θ‖L∞(Ω)

d(x) .

Proof: uses precise bounds on the heat kernel and

D(f ) = f ΛDf − 1
2 ΛDf 2

= γ0
´∞

0 t−
3
2 dt
´

Ω
HD(x , y , t)(f (x)− f (y))2dy + γ0f 2(x)ΛD1

holds for all x ∈ Ω.
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Global interior Hölder bounds for the critical SQG
Ω smooth bounded domain.

Theorem (C, I ’16)
Let θ(x , t) be a smooth solution of

∂tθ + (R⊥D θ) · ∇θ + ΛDθ = 0

on a time interval [0,T ), with T ≤ ∞, with initial data θ(x , 0) = θ0(x). Then
the solution is uniformly bounded,

sup
0≤t<T

‖θ(t)‖L∞(Ω) ≤ ‖θ0‖L∞(Ω).

There exists α depending only on ‖θ0‖L∞(Ω) and Ω, and a constant Γ
depending only on the domain Ω such that

sup
0≤t<T

‖θ(t)‖Cα(Ω) ≤ Γ‖θ0‖Cα(Ω),

where the interior Cα norm is ||f ||Cα(Ω) = ||f ||L∞(Ω) + [f ]Cα(Ω) with

[f ]Cα(Ω) = sup
x∈Ω

d(x)α sup
h 6=0,|h|<d(x)

|f (x + h)− f (x)|
|h|α



Global interior gradient bounds

Theorem (C, I ’16)
Let θ(x , t) be a smooth solution of

∂tθ + (R⊥D θ) · ∇θ + ΛDθ = 0

on a time interval [0,T ), with T ≤ ∞, with initial data θ(x ,0) = θ0(x).
There exists a constant Γ1 depending only on Ω such that

sup
x∈Ω,0≤t<T

d(x)|∇xθ(x , t)| ≤ Γ1

[
sup
x∈Ω

d(x)|∇xθ0(x)|+
(
1 + ‖θ0‖L∞(Ω)

)4
]

holds.



Commutator estimates, Ω ⊂ R2

Theorem (C, I ’16)
Let a ∈W 2,p(Ω) with p > 2. There exists a constant C, such that

‖[a,ΛD]f‖ 1
2 ,D
≤ C‖a‖W 2,p(Ω)‖f‖ 1

2 ,D

holds for any f ∈ D
(

Λ
1
2
D

)
.

Theorem (C, I ’16)
Let a ∈

(
W 2,p(Ω)

)2 with p > 2. Assume that a|∂Ω · n = 0. There
exists a constant C such that

‖[a · ∇,ΛD]f‖ 1
2 ,D
≤ C‖a‖W 2,p(Ω)‖f‖ 3

2 ,D

holds for any f ∈ D
(

Λ
3
2
D

)
.

The proofs are based on harmonic extension, cancellation, and
elliptic regularity.
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Linear drift-diffusion equation with nonlocal diffusion
Let Ω ⊂ R2 be a bounded open domain with smooth boundary.

∂tθ + u · ∇θ + ΛDθ = 0

θ(x ,0) = θ0

with the constraint
θ|∂Ω = 0

Assumptions for u = u(x , t):
I ∇ · u = 0,
I u ∈ L2(0,T ; (W 2,p(Ω))2), p > 2
I u|∂Ω · n = 0.

Theorem (C, I ’16)
The equation with θ0 ∈ H1

0 (Ω) ∩ H2(Ω) has unique solutions

θ ∈ L∞(0,T ; H1
0 (Ω) ∩ H2(Ω)) ∩ L2(0,T ; H2.5(Ω)).

If θ0 ∈ Lp(Ω), 1 ≤ p ≤ ∞, then

sup
0≤t≤T

‖θ(·, t)‖Lp(Ω) ≤ ‖θ0‖Lp(Ω).
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Critical SQG in bounded domains

Local existence of smooth solutions: proof using methods above for
linear drift-diffusion equations.

Global weak solutions:

Theorem (C, I ’16)
Let θ0 ∈ L2(Ω) and let T > 0. There exists a weak solution

θ ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ;D(Λ
1
2
D))

satisfying limt→0θ(t) = θ0 weakly in L2(Ω).

I θ obeys the energy inequality

1
2
‖θ(t)‖2

L2(Ω) +

ˆ t

0

ˆ
Ω

|Λ
1
2
D θ|

2dxdτ ≤ 1
2
‖θ0‖2

L2(Ω)

for a.e. t > 0.
I the dissipation ΛDθ can be replaced by Λs

Dθ for s ∈ (0, 2].
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Inviscid SQG in bounded domains

Constantin, Nguyen ’17: Let θ0 ∈ L2(Ω). There exists a weak solution
θ ∈ L∞([0,∞); L2(Ω)); that is, for any T ≥ 0 and φ ∈ C∞0 ((0,T )× Ω)

ˆ T

0

ˆ
Ω

θ(x , t)∂tφ(x , t)dxdt +

ˆ T

0

ˆ
Ω

θ(x , t)u(x , t) · ∇φ(x , t)dxdt = 0.

Moreover, θ obeys the energy inequality

‖θ(t)‖2
L2(Ω) ≤ ‖θ0‖2

L2(Ω) for a.e. t > 0.

Constantin, I., Nguyen ’18: Weak solutions of ∂tθ + u · ∇θ + νΛs
Dθ = 0

converge to weak solutions of ∂tθ + u · ∇θ = 0 as ν → 0.
Commutator structure:
ˆ

Ω

Λψ∇⊥ψ · ∇φdx =
1
2

ˆ
Ω

[Λ,∇⊥]ψ · ∇φψdx − 1
2

ˆ
Ω

∇⊥ψ · [Λ,∇φ]ψdx

for ψ = Λ−1θ ∈ H1
0 (Ω) and ϕ ∈ C∞0 (Ω).
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Elements of the proof for the Hölder bound

I Gaussian bounds for the heat kernel; cancelation due to
translation invariance effective for small time

I Good cutoff χ and bound for the commutator [δh,ΛD] away from
boundary (the most expensive term, fighting boundary repulsion)

I Nonlinear maximum principle (lower bound for ΛD) giving
smoothing and a strong boundary repulsion damping effect

I Finite difference bounds for Riesz transforms using the nonlinear
maximum principle bound in its finite difference version

Equation for the finite difference δhθ(x) = θ(x + h)− θ(x):

(∂t + u · ∇+ δhu · ∇h)(δhθ) + ΛD(δhθ) + [δh,ΛD]θ = 0.
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Good cutoff

Lemma
Let Ω be a bounded domain with C2 boundary. For ` > 0 small
enough (depending on Ω) there exist cutoff functions χ with the
properties:

I 0 ≤ χ ≤ 1
I χ(y) = 0 if d(y) ≤ `

4

I χ(y) = 1 for d(y) ≥ `
2

I |∇kχ| ≤ C`−k with C independent of `
I
´

Ω
(1−χ(y))
|x−y|2+j dy ≤ C

d(x)j

I
´

Ω
|∇χ(y)|
|x−y|2 ≤

C
d(x)

hold for j > 0 and d(x) ≥ `.

Useful because of the Gaussian bounds on the heat kernel. Makes work in Ω

look like work in half-space without changing coordinates.



Translation invariance effect

Using the definition of ΛD and integration by parts

[∇,ΛD]f (x) = cs

ˆ ∞
0

t−
3
2

ˆ
Ω

(∇x +∇y )HD(x , y , t)f (y)dydt .

Important additional bounds we need are

|(∇x +∇y )HD(x , y , t)| ≤ Ct−
1
2−

d
2 e−

d(x)2

Ct

and
I1(x , t) =

ˆ
Ω

|(∇x +∇y )HD(x , y , t)|dy ≤ Ct−
1
2 e−

d(x)2

K̃t

valid for t ≤ cd(x)2. Nonsingular at x = y .

These imply that

ˆ t

0
s−

3
2 I1(x , s)ds ≤ d(x)−2

for small time.
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Commutator

Let χ be a good cutoff with scale ` > 0. Denote

δhθ(x) = θ(x + h)− θ(x).

Lemma
There exists a constant Γ0 such that the commutator

Ch(θ) = δhΛDθ − ΛD(χδhθ)

obeys

|Ch(θ)(x)| ≤ Γ0
|h|

d(x)2 ‖θ‖L∞(Ω)

for d(x) ≥ `, |h| ≤ `
16 and θ ∈ H1

0 (Ω) ∩ L∞(Ω).



The nonlinear bound for finite differences

Theorem
Let χ ∈ C∞0 (Ω) be a good cutoff with scale ` > 0 and let

f (x) = χ(x)(δhθ(x)) = χ(x)(θ(x + h)− θ(x)).

Then

D(f ) = (f ΛDf )(x)− 1
2

(ΛDf 2)(x) ≥ γ1|h|−1 |fd (x)|3

‖θ‖L∞
+γ1

f 2(x)

d(x)

holds pointwise in Ω when |h| ≤ `
16 and d(x) ≥ ` with

|fd (x)| =

{
|f (x)|, if |f (x)| ≥ M‖θ‖L∞(Ω)

|h|
d(x) ,

0, if |f (x)| ≤ M‖θ‖L∞(Ω)
|h|

d(x) .
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Finite difference of Riesz transform

Lemma
Let u be given by

u = ∇⊥Λ−1
D θ

and let χ be a good cutoff with a length scale `. Then

|δhu(x)| ≤ C
(√

ρD(f )(x) + ‖θ‖L∞

(
|h|

d(x)
+
|h|
ρ

)
+ |δhθ(x)|

)

holds for d(x) ≥ `, ρ ≤ cd(x), f = χδhθ and with C a constant
depending on Ω.



Hölder bound, idea of proof:
Let χ be a good cutoff with a scale ` > 0, and |h| ≤ `

16 . The equation
for δhθ implies:

1
2

Lχ (δhθ)2 + D(f ) + (δhθ)Ch(θ) = 0

with
Lχg = ∂tg + u · ∇xg + δhu · ∇hg + ΛD(χ2g)

and

D(f ) ≥ γ1|h|−1 |(δhθ)d |3

‖θ‖L∞
+ γ1

|δhθ|2

d(x)

for f = χδhθ. Multiply by |h|−2α where α > 0 will be chosen small
enough:

1
2

Lχ

(
δhθ(x)2

|h|2α

)
+ |h|−2αD(f )− 2α

|δhu|
|h|

(
δhθ(x)2

|h|2α

)
≤ |Ch(θ)||δhθ||h|−2α.
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ε-approximation of critical SQG
Let ε > 0 and consider the ε-approximation of SQG

∂tθ
ε + uε · ∇θε + ΛDθ

ε = 0

where
uε = ∇⊥ψε = ∇⊥

ˆ ∞
ε

t−
1
2 et∆θεdt

with initial data θε(0) = θ0.

Theorem
For each ε > 0, the ε-approximation has unique, global, smooth
solutions up to the boundary. The solutions obey bounds

d(x)|∇θε(x , t)| ≤ C

with C depending on Ω and ‖θ0‖W 1,∞(Ω) but not on t nor on ε.

For the proof: note that

‖ΛM
Dψ

ε‖L2(Ω) ≤ CM,ε‖θ0‖L2(Ω)

for any M > 0, and therefore uε is smooth.
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Convergence to critical SQG

Theorem
Let θ0 ∈ L∞(Ω) and let T > 0. Any sequence of solutions of
ε-approximations of SQG with ε→ 0 contains a subsequence θn
converging strorngly in L2([0,T ],L2(Ω)) to a weak solution

θ ∈ L∞([0,T ],L∞(Ω)) ∩ L2([0,T ],D(Λ
1
2
D)) of critical SQG.

If θ0 ∈W 1,∞(Ω), then θ obeys

d(x)|∇θ(x , t)| ≤ C

with C depending on Ω and ‖θ0‖W 1,∞(Ω).

For the proof we use that θn are uniformly bounded in
L∞([0,T ],L∞(Ω)) hence unθn are bounded in L∞([0,T ],L2(Ω)), and
∂tθn are bounded in L∞([0,T ],H−1(Ω)). We then use an Aubin-Lions
lemma with based on L2 in time, and with spaces
D(Λ

1
2
D) ⊂⊂ L2(Ω) ⊂ H−1(Ω).
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Electroconvection

Electric field determined by charge density:

∇3 · E = ρ

∇3 × E = 0

in Q ⊂ R3. Boundary conditions at ∂Q. Charge density ρ confined to
domain Ω ⊂ R2 × {0} (two dimensional smectic layer, Morris et al):

ρ = 2qδΩ

carried by a flow in Ω

∂tq +∇ · (uq + σE ||) = 0

with σ electric conductivity. Conducting fluid confined to domain Ω:

∂tu + u · ∇u − ν∆u +∇p = qE ||, ∇ · u = 0.
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Figure: Schematic of the experiment of Morris et al. Side view and top view.



The electrical potential
Smectic conducting fluid, driven by electric current. 2DNS in fluid
region Ω ⊂ R2 × {0}.

Electrods share boundaries with ∂Ω. Two
connected components of ∂Ω kept at two different voltages, V and 0.
Electric field

E = −∇3Φ

defined in Q = Ω× R with inhomogeneous boundary conditions for
the electric potential Φ.

−∆3Φ = 2qδΩ, Φ∂Q = V , 0.

Solution is

Φ(x , z) = Φ0(x) +

{
e−zΛD Λ−1

D q, z ≥ 0,
ezΛD Λ−1

D q, z < 0

Parallel component of E

E || = (−∂1Φ,−∂2Φ,0)|Ω

Fractional Laplacian emerges:

∇ · E || = ΛDq
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Global Regularity in Bounded Domains

Theorem (Constantin, Elgindi, Ignatova, Vicol (’17))
Let Ω ⊂ R2 open, bounded, with smooth boundary. Let
u0 ∈ [H1

0 (Ω) ∩ H2(Ω)]2 be divergence-free. Let q0 ∈ H1
0 (Ω) ∩ H2(Ω).

Then the electroconvection system ∂tu + u · ∇u +∇p = ν∆u − q∇(Φ0 + Λ−1
D q),

∇ · u = 0,
∂tq + u · ∇q + σΛDq = 0

with homogeneous Dirichlet boundary conditions for both u and q has
global unique strong solutions,

u ∈ L∞(0,T ; [H1
0 (Ω) ∩ H2(Ω)]2) ∩ L2(0,T ; H

5
2 (Ω)2),

q ∈ L∞(0,T ; W 1,4
0 (Ω) ∩ H2(Ω)) ∩ L2(0,T ; H

5
2 (Ω)).



Strategy of Proof

1. Good approximation:

(∂t + um · ∇+ ΛD)q = 0

coupled with Galerkin for NSE:

∂tum + Aum + PmB(um,um) = −Pm(qRDq)

From the q equation we get a priori bounds for q ∈ L∞(0,T ; Lp(Ω)),
independent of um, using the convex damping inequality in bounded
domains.
2. We use NSE energy bounds to deduce
um ∈ L∞(0,T ; H1

0 (Ω)2) ∩ L2(0,T ; H2(Ω)2) are controlled uniformly.
(RD = ∇Λ−1 are bounded in Lp(Ω) spaces.)
3. We obtain higher regularity for q.
4. Then we obtain higher uniform regularity for um.
5. Pass to the limit m→∞.
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Conclusion and Outlook

I Nonlinear lower bounds for ΛD can be used to prove global
interior regularity for SQG and electroconvection.

I Commutators are expensive due to lack of translation invariance.

I Uniform, up to the boundary estimates are not available, in
general.

I Construction of global unique weak solution with uniform interior
smoothness is in progress.

I Electroconvection: different configurations.
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