SQG in Bounded Domains

Mihaela Ignatova Temple University

BIRS, Banff

August 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

SQG in \mathbb{R}^2 (or \mathbb{T}^2)

Nonlinear, nonlocal, scalar

 $\partial_t \theta + \mathbf{u} \cdot \nabla \theta = \mathbf{0}$

heta(x,t) is a real valued function of $x \in \mathbb{R}^2$ and $t \in \mathbb{R}$

 $u = R^{\perp} \theta$

R is a vector of Riesz transforms

$$R_i f(x) = \partial_i (-\Delta)^{-\frac{1}{2}} f(x) = c P V \int_{\mathbb{R}^2} \frac{x_i - y_i}{|x - y|^3} f(y) \, dy$$

 $R^{\perp} = (-R_2, R_1)$

The velocity *u* is divergence-free.

Held, Pierrhumbert, Garner, Swanson '95: SQG is an equation for frontogenesis in meteorology

- model for rapidly rotating, stratified fluids
- → θ temperature (or surface buoyancy) in a 2D layer

- Conservation of kinetic energy, $||u||_{L^2}$.
- The integral curves of $\nabla^{\perp} \theta$ are carried by the flow.
- ∇[⊥]θ is like 3D vorticity ω, Constantin–Majda–Tabak ('94): it satisfies the stretching equation

 $(\partial_t + u \cdot \nabla)(\nabla^{\perp}\theta) = (\nabla u)(\nabla^{\perp}\theta), \quad u = \nabla^{\perp}(-\Delta)^{-\frac{1}{2}}\theta$

3D Euler: $(\partial_t + u \cdot \nabla) \omega = (\nabla u) \omega, \quad u = \nabla^{\perp} (-\Delta)^{-1} \omega$

- ► The Beal-Kato-Majda theorem holds: a smooth solution blows up at time t = T if and only if $\int_0^T ||\nabla^{\perp} \theta(\cdot, t)||_{\infty} dt = \infty$.
- If the direction of level lines is locally nice, geometric depletion of nonlinearity.

- Conservation of kinetic energy, $||u||_{L^2}$.
- The integral curves of $\nabla^{\perp} \theta$ are carried by the flow.
- ∇[⊥]θ is like 3D vorticity ω, Constantin–Majda–Tabak ('94): it satisfies the stretching equation

 $(\partial_t + u \cdot \nabla)(\nabla^{\perp}\theta) = (\nabla u)(\nabla^{\perp}\theta), \quad u = \nabla^{\perp}(-\Delta)^{-\frac{1}{2}}\theta$

3D Euler: $(\partial_t + u \cdot \nabla) \omega = (\nabla u) \omega, \quad u = \nabla^{\perp} (-\Delta)^{-1} \omega$

- ► The Beal-Kato-Majda theorem holds: a smooth solution blows up at time t = T if and only if $\int_0^T ||\nabla^{\perp} \theta(\cdot, t)||_{\infty} dt = \infty$.
- If the direction of level lines is locally nice, geometric depletion of nonlinearity.

- Conservation of kinetic energy, $||u||_{L^2}$.
- The integral curves of $\nabla^{\perp} \theta$ are carried by the flow.
- ∇[⊥]θ is like 3D vorticity ω, Constantin–Majda–Tabak ('94): it satisfies the stretching equation

 $(\partial_t + u \cdot \nabla)(\nabla^{\perp}\theta) = (\nabla u)(\nabla^{\perp}\theta), \quad u = \nabla^{\perp}(-\Delta)^{-\frac{1}{2}}\theta$

3D Euler: $(\partial_t + u \cdot \nabla) \omega = (\nabla u) \omega, \quad u = \nabla^{\perp} (-\Delta)^{-1} \omega$

- ► The Beal-Kato-Majda theorem holds: a smooth solution blows up at time t = T if and only if $\int_0^T ||\nabla^{\perp} \theta(\cdot, t)||_{\infty} dt = \infty$.
- If the direction of level lines is locally nice, geometric depletion of nonlinearity.

Difference to 3D Euler: The 2D SQG has weak continuity of the nonlinearity in L^2 due to a commutator structure. Resnick ('95)

- Conservation of kinetic energy, $||u||_{L^2}$.
- The integral curves of $\nabla^{\perp} \theta$ are carried by the flow.
- ∇[⊥]θ is like 3D vorticity ω, Constantin–Majda–Tabak ('94): it satisfies the stretching equation

 $(\partial_t + u \cdot \nabla)(\nabla^{\perp}\theta) = (\nabla u)(\nabla^{\perp}\theta), \quad u = \nabla^{\perp}(-\Delta)^{-\frac{1}{2}}\theta$

3D Euler: $(\partial_t + u \cdot \nabla) \omega = (\nabla u) \omega, \quad u = \nabla^{\perp} (-\Delta)^{-1} \omega$

- ► The Beal-Kato-Majda theorem holds: a smooth solution blows up at time t = T if and only if $\int_0^T ||\nabla^{\perp} \theta(\cdot, t)||_{\infty} dt = \infty$.
- If the direction of level lines is locally nice, geometric depletion of nonlinearity.

Difference to 3D Euler: The 2D SQG has weak continuity of the nonlinearity in L^2 due to a commutator structure. Resnick ('95)

Major open problem: global existence of smooth solutions vs blow up.

Dissipative SQG in \mathbb{R}^2

$$\partial_t \theta + u \cdot \nabla \theta + \Lambda^s \theta = 0$$
$$u = \nabla^{\perp} \Lambda^{-1} \theta, \ \Lambda = (-\Delta)^{\frac{1}{2}}$$

The fractional Laplacian has an explicit kernel in \mathbb{R}^2 ,

$$\Lambda^s f(x) = cPV \int_{\mathbb{R}^2} \frac{f(x) - f(y)}{|x - y|^{2+s}} \, dy$$

for 0 < s < 2.

Dissipative SQG in \mathbb{R}^2

 $\partial_t \theta + u \cdot \nabla \theta + \Lambda^s \theta = 0$ $u = \nabla^{\perp} \Lambda^{-1} \theta, \ \Lambda = (-\Delta)^{\frac{1}{2}}$

The fractional Laplacian has an explicit kernel in \mathbb{R}^2 ,

$$\Lambda^s f(x) = \mathcal{CPV} \int_{\mathbb{R}^2} rac{f(x) - f(y)}{|x - y|^{2+s}} \, dy$$

for 0 < *s* < 2.

Scaling invariance: $\theta_{\lambda}(x, t) = \lambda^{s-1}\theta(\lambda x, \lambda^{s}t)$

- s > 1, subcritical SQG: global smooth solutions. Resnick '95, Constantin, Wu '99
- s = 1, critical SQG: global smooth solutions.
 - Small data in L[∞]: Cordoba–Constantin–Wu '01
 - Large data: Caffarelli–Vasseur '07, Kiselev–Nazarov–Volberg '07, Kiselev–Nazarov '09, Constantin–Vicol '12, Constantin–Tarfulea–Vicol '15
- s < 1, supercritical SQG: The problem of global existence of smooth solutions is open.

Global regularity ideas in the whole space

The stretching equation

$$(\partial_t + u \cdot \nabla + \Lambda) \nabla^{\perp} \theta = (\nabla u) \nabla^{\perp} \theta.$$

• Take the scalar product with $\nabla^{\perp} \theta$

$$\frac{1}{2}(\partial_t + u \cdot \nabla + \Lambda)q^2 + D(q) = Q$$

for $q^2 = |\nabla^{\perp} \theta|^2$, with

$$\boldsymbol{Q} = (\nabla \boldsymbol{u}) \nabla^{\perp} \boldsymbol{\theta} \cdot \nabla^{\perp} \boldsymbol{\theta} \leq |\nabla \boldsymbol{u}| \boldsymbol{q}^{2}.$$

 $|\nabla u| \sim q$, *Q* is cubic.

Nonlinear lower bounds

$$D(q) = q \wedge q - rac{1}{2} \wedge \left(q^2\right) \geq c \left(\|\theta\|_{L^{\infty}}\right)^{-1} q^3$$

hold pointwise, for $q = \partial_i \theta$. (Useful when $\|\theta\|_{L^{\infty}} \leq \|\theta_0\|_{L^{\infty}}$.)

Critical SQG in bounded domains Let $\Omega \subset \mathbb{R}^2$ be open, bounded, smooth.

$$\begin{split} \partial_t \theta + u \cdot \nabla \theta + \Lambda_D \theta &= 0 \\ u &= R_D^\perp \theta, \ R_D = \nabla \Lambda_D^{-1} \\ \theta_{|t=0} &= \theta_0 \end{split}$$

Main result: Global interior Lipschitz regularity

Additional challenges to the whole space case:

1. No explicit kernels. Need eigenfunction expansion and heat kernel.

(日) (日) (日) (日) (日) (日) (日)

2. No translation invariance. Need commutators of Λ_D with finite difference operators, properly localized.

Critical SQG in bounded domains Let $\Omega \subset \mathbb{R}^2$ be open, bounded, smooth.

$$\begin{split} \partial_t \theta + u \cdot \nabla \theta + \Lambda_D \theta &= 0 \\ u &= R_D^\perp \theta, \ R_D = \nabla \Lambda_D^{-1} \\ \theta_{|t=0} &= \theta_0 \end{split}$$

Main result: Global interior Lipschitz regularity

Additional challenges to the whole space case:

1. No explicit kernels. Need eigenfunction expansion and heat kernel.

2. No translation invariance. Need commutators of Λ_D with finite difference operators, properly localized.

Strategy of proof:

1. L^{∞} bounds (Convex damping inequality)

 $||\theta||_{L^{\infty}} \leq ||\theta_0||_{L^{\infty}}.$

2. Global interior Hölder estimates with exponent α , where

 $\alpha ||\theta_0||_{L^{\infty}} \ll 1.$

3. Global interior gradient bounds.

The Dirichlet Fractional Laplacian

Recall the eigenfunction expansion for the Dirichlet Laplacian:

$$-\Delta w_j = \lambda_j w_j, \quad w_{j|\partial\Omega} = 0$$

We have

$$f = \sum f_j w_j, \quad f_j = \int_{\Omega} f w_j dx, \quad \Lambda_D f = \sum \lambda_j^{\frac{1}{2}} f_j w_j$$

We mainly use a formula based on the heat kernel:

$$((-\Delta)^{\frac{s}{2}}f)(x) = c_s \int_0^\infty [f(x) - e^{t\Delta}f(x)]t^{-1-\frac{s}{2}} dt$$

where $(e^{t\Delta}f)(x) = \int_{\Omega} H_D(t, x, y)f(y)dy$ is the heat operator.

$$\Lambda_D = (-\Delta)^{\frac{1}{2}}, \qquad \mathcal{D}(\Lambda_D) = H_0^1(\Omega)$$

Gaussian bounds for H_D in Ω . Denote

 $d(x) = dist(x, \partial \Omega).$

We have

$$\frac{|\nabla_x H_D(t, x, y)|}{H_D(t, x, y)} \le C \begin{cases} \frac{1}{d(x)}, & \text{if } \sqrt{t} \ge d(x), \\ \frac{1}{\sqrt{t}} \left(1 + \frac{|x-y|}{\sqrt{t}}\right), & \text{if } \sqrt{t} \le d(x) \end{cases}$$

The convex damping inequality

Proposition (C, I '16)

Let Ω be a bounded domain with smooth boundary. There exists a constant c > 0 depending only on Ω such that for any Φ , a C^2 convex function satisfying $\Phi(0) = 0$, and any $f \in C_0^{\infty}(\Omega)$, the inequality

$$\Phi'(f) \wedge_D f - \wedge_D(\Phi(f)) \ge \frac{c}{d(x)} (f \Phi'(f) - \Phi(f)) \ge 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

holds pointwise in Ω .

The convex damping inequality

Proposition (C, I '16)

Let Ω be a bounded domain with smooth boundary. There exists a constant c > 0 depending only on Ω such that for any Φ , a C^2 convex function satisfying $\Phi(0) = 0$, and any $f \in C_0^{\infty}(\Omega)$, the inequality

$$\Phi'(f) \wedge_D f - \Lambda_D(\Phi(f)) \ge \frac{c}{d(x)} (f \Phi'(f) - \Phi(f)) \ge 0$$

holds pointwise in Ω .

The proof follows from approximation, convexity, and the fact that $\Theta = e^{t\Delta} 1$ obeys $0 \le \Theta \le 1$ and

$$\Lambda_D \mathbf{1} = \int_0^\infty t^{-\frac{3}{2}} (1 - \Theta(x, t)) dt \ge c d(x)^{-1}$$

(日) (日) (日) (日) (日) (日) (日)

The Nonlinear Bound for derivatives

Theorem (C, I '16)

Let $f \in L^{\infty}(\Omega) \cap \mathcal{D}(\Lambda_D)$. Assume that $f = \partial \theta$ with $\theta \in L^{\infty}(\Omega)$ and ∂ a first order derivative. Then there exist constants c, C depending on Ω such that

$$f \Lambda_D f - \frac{1}{2} \Lambda_D f^2 \ge c (\|\theta\|_{L^{\infty}})^{-1} |f_d|^3 + \frac{c}{d(x)} f^2$$

holds pointwise in Ω , with

$$|f_{d}(\boldsymbol{x})| = \begin{cases} |f(\boldsymbol{x})| & \text{if } |f(\boldsymbol{x})| \ge C \frac{\|\theta\|_{L^{\infty}(\Omega)}}{d(\boldsymbol{x})}, \\ 0 & \text{if } |f(\boldsymbol{x})| \le C \frac{\|\theta\|_{L^{\infty}(\Omega)}}{d(\boldsymbol{x})}. \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Nonlinear Bound for derivatives

Theorem (C, I '16)

Let $f \in L^{\infty}(\Omega) \cap \mathcal{D}(\Lambda_D)$. Assume that $f = \partial \theta$ with $\theta \in L^{\infty}(\Omega)$ and ∂ a first order derivative. Then there exist constants c, C depending on Ω such that

$$f\Lambda_D f - \frac{1}{2}\Lambda_D f^2 \ge c(\|\theta\|_{L^\infty})^{-1}|f_d|^3 + \frac{c}{d(x)}f^2$$

holds pointwise in Ω , with

$$|f_d(x)| = \begin{cases} |f(x)| & \text{if } |f(x)| \ge C \frac{\|\theta\|_{L^{\infty}(\Omega)}}{d(x)}, \\ 0 & \text{if } |f(x)| \le C \frac{\|\theta\|_{L^{\infty}(\Omega)}}{d(x)}. \end{cases}$$

Proof: uses precise bounds on the heat kernel and

$$D(f) = f\Lambda_D f - \frac{1}{2}\Lambda_D f^2$$

= $\gamma_0 \int_0^\infty t^{-\frac{3}{2}} dt \int_\Omega H_D(x, y, t) (f(x) - f(y))^2 dy + \gamma_0 f^2(x)\Lambda_D 1$

holds for all $x \in \Omega$.

Global interior Hölder bounds for the critical SQG

 Ω smooth bounded domain.

Theorem (C, I '16)

Let $\theta(x, t)$ be a smooth solution of

 $\partial_t \theta + (\mathbf{R}_D^{\perp} \theta) \cdot \nabla \theta + \Lambda_D \theta = \mathbf{0}$

on a time interval [0, T), with $T \leq \infty$, with initial data $\theta(x, 0) = \theta_0(x)$. Then the solution is uniformly bounded,

 $\sup_{0\leq t< T} \|\theta(t)\|_{L^{\infty}(\Omega)} \leq \|\theta_0\|_{L^{\infty}(\Omega)}.$

There exists α depending only on $\|\theta_0\|_{L^{\infty}(\Omega)}$ and Ω , and a constant Γ depending only on the domain Ω such that

 $\sup_{0 \le t < T} \|\theta(t)\|_{\mathcal{C}^{\alpha}(\Omega)} \le \Gamma \|\theta_0\|_{\mathcal{C}^{\alpha}(\Omega)},$

where the interior C^{α} norm is $||f||_{C^{\alpha}(\Omega)} = ||f||_{L^{\infty}(\Omega)} + [f]_{C^{\alpha}(\Omega)}$ with

 $[f]_{\mathcal{C}^{\alpha}(\Omega)} = \sup_{x \in \Omega} d(x)^{\alpha} \sup_{h \neq 0, |h| < d(x)} \frac{|f(x+h) - f(x)|}{|h|^{\alpha}}$

Global interior gradient bounds

Theorem (C, I '16) Let $\theta(x, t)$ be a smooth solution of

 $\partial_t \theta + (\mathbf{R}_D^{\perp} \theta) \cdot \nabla \theta + \Lambda_D \theta = \mathbf{0}$

on a time interval [0, T), with $T \leq \infty$, with initial data $\theta(x, 0) = \theta_0(x)$. There exists a constant Γ_1 depending only on Ω such that

 $\sup_{x\in\Omega,0\leq t<\mathcal{T}}d(x)|\nabla_x\theta(x,t)|\leq \Gamma_1\left[\sup_{x\in\Omega}d(x)|\nabla_x\theta_0(x)|+\left(1+\|\theta_0\|_{L^\infty(\Omega)}\right)^4\right]$

(日) (日) (日) (日) (日) (日) (日)

holds.

Commutator estimates, $\Omega \subset \mathbb{R}^2$

Theorem (C, I '16)

Let $a \in W^{2,p}(\Omega)$ with p > 2. There exists a constant *C*, such that

 $\|[a, \Lambda_D]f\|_{rac{1}{2}, D} \leq C \|a\|_{W^{2, p}(\Omega)} \|f\|_{rac{1}{2}, D}$

holds for any $f \in \mathcal{D}\left(\Lambda_{D}^{\frac{1}{2}}\right)$.

Commutator estimates, $\Omega \subset \mathbb{R}^2$

Theorem (C, I '16) Let $a \in W^{2,p}(\Omega)$ with p > 2. There exists a constant *C*, such that

 $\|[a, \Lambda_D]f\|_{rac{1}{2}, D} \leq C \|a\|_{W^{2, p}(\Omega)} \|f\|_{rac{1}{2}, D}$

holds for any $f \in \mathcal{D}\left(\Lambda_D^{\frac{1}{2}}\right)$.

Theorem (C, I '16) Let $a \in (W^{2,p}(\Omega))^2$ with p > 2. Assume that $a_{|\partial\Omega} \cdot n = 0$. There exists a constant *C* such that

 $\|[a \cdot \nabla, \Lambda_D]f\|_{\frac{1}{2}, D} \le C \|a\|_{W^{2, p}(\Omega)} \|f\|_{\frac{3}{2}, D}$

holds for any $f \in \mathcal{D}\left(\Lambda_D^{\frac{3}{2}}\right)$.

Commutator estimates, $\Omega \subset \mathbb{R}^2$

Theorem (C, I '16) Let $a \in W^{2,p}(\Omega)$ with p > 2. There exists a constant *C*, such that

 $\|[a, \Lambda_D]f\|_{rac{1}{2}, D} \leq C \|a\|_{W^{2, p}(\Omega)} \|f\|_{rac{1}{2}, D}$

holds for any $f \in \mathcal{D}\left(\Lambda_D^{\frac{1}{2}}\right)$.

Theorem (C, I '16) Let $a \in (W^{2,p}(\Omega))^2$ with p > 2. Assume that $a_{|\partial\Omega} \cdot n = 0$. There exists a constant *C* such that

 $\|[a \cdot \nabla, \Lambda_D]f\|_{\frac{1}{2}, D} \le C \|a\|_{W^{2, p}(\Omega)} \|f\|_{\frac{3}{2}, D}$

holds for any $f \in \mathcal{D}\left(\Lambda_{D}^{\frac{3}{2}}\right)$.

The proofs are based on harmonic extension, cancellation, and elliptic regularity.

Linear drift-diffusion equation with nonlocal diffusion Let $\Omega \subset \mathbb{R}^2$ be a bounded open domain with smooth boundary.

 $\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta + \Lambda_D \theta = \boldsymbol{0}$

 $\theta(x,0)=\theta_0$

with the constraint

$$\theta_{\mid \partial \Omega} = \mathbf{0}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Assumptions for u = u(x, t):

- $\blacktriangleright \nabla \cdot u = 0,$
- ▶ $u \in L^2(0, T; (W^{2,p}(\Omega))^2), p > 2$
- $\bullet \ u_{\mid \partial \Omega} \cdot n = 0.$

Linear drift-diffusion equation with nonlocal diffusion Let $\Omega \subset \mathbb{R}^2$ be a bounded open domain with smooth boundary.

 $\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta + \Lambda_D \theta = \boldsymbol{0}$

 $\theta(x,0)=\theta_0$

with the constraint

$$\theta_{\mid \partial \Omega} = \mathbf{0}$$

Assumptions for u = u(x, t):

- $\blacktriangleright \nabla \cdot \boldsymbol{u} = \boldsymbol{0},$
- ▶ $u \in L^2(0, T; (W^{2,p}(\Omega))^2), p > 2$
- $\bullet \ u_{\mid \partial \Omega} \cdot n = 0.$

Theorem (C, I '16)

The equation with $\theta_0 \in H_0^1(\Omega) \cap H^2(\Omega)$ has unique solutions

 $\theta \in L^{\infty}(0,T; H^1_0(\Omega) \cap H^2(\Omega)) \cap L^2(0,T; H^{2.5}(\Omega)).$

If $\theta_0 \in L^p(\Omega)$, $1 \leq p \leq \infty$, then

 $\sup_{0 \le t \le T} \|\theta(\cdot, t)\|_{L^p(\Omega)} \le \|\theta_0\|_{L^p(\Omega)}.$

Critical SQG in bounded domains

Local existence of smooth solutions: proof using methods above for linear drift-diffusion equations.

Global weak solutions:

Theorem (C, I '16)

Let $\theta_0 \in L^2(\Omega)$ and let T > 0. There exists a weak solution

 $\theta \in L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{2}(0, T; \mathcal{D}(\Lambda_{D}^{\frac{1}{2}}))$

(日) (日) (日) (日) (日) (日) (日)

satisfying $\lim_{t\to 0} \theta(t) = \theta_0$ weakly in $L^2(\Omega)$.

Critical SQG in bounded domains

Local existence of smooth solutions: proof using methods above for linear drift-diffusion equations.

Global weak solutions:

Theorem (C, I '16) Let $\theta_0 \in L^2(\Omega)$ and let T > 0. There exists a weak solution

 $\theta \in L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{2}(0, T; \mathcal{D}(\Lambda_{D}^{\frac{1}{2}}))$

satisfying $\lim_{t\to 0} \theta(t) = \theta_0$ weakly in $L^2(\Omega)$.

• θ obeys the energy inequality

$$\frac{1}{2}\|\theta(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\int_{\Omega}|\Lambda_{D}^{\frac{1}{2}}\theta|^{2}dxd\tau\leq\frac{1}{2}\|\theta_{0}\|_{L^{2}(\Omega)}^{2}$$

for a.e. t > 0.

▶ the dissipation $\Lambda_D \theta$ can be replaced by $\Lambda_D^s \theta$ for $s \in (0, 2]$.

Constantin, Nguyen '17: Let $\theta_0 \in L^2(\Omega)$. There exists a weak solution $\theta \in L^{\infty}([0,\infty); L^2(\Omega))$; that is, for any $T \ge 0$ and $\phi \in C_0^{\infty}((0,T) \times \Omega)$

$$\int_0^T \int_\Omega \theta(x,t) \partial_t \phi(x,t) dx dt + \int_0^T \int_\Omega \theta(x,t) u(x,t) \cdot \nabla \phi(x,t) dx dt = 0.$$

Constantin, Nguyen '17: Let $\theta_0 \in L^2(\Omega)$. There exists a weak solution $\theta \in L^{\infty}([0,\infty); L^2(\Omega))$; that is, for any $T \ge 0$ and $\phi \in C_0^{\infty}((0,T) \times \Omega)$

$$\int_0^T \int_\Omega \theta(x,t) \partial_t \phi(x,t) dx dt + \int_0^T \int_\Omega \theta(x,t) u(x,t) \cdot \nabla \phi(x,t) dx dt = 0.$$

Moreover, θ obeys the energy inequality

$$\|\theta(t)\|_{L^{2}(\Omega)}^{2} \leq \|\theta_{0}\|_{L^{2}(\Omega)}^{2}$$
 for a.e. $t > 0$

(日) (日) (日) (日) (日) (日) (日)

Constantin, Nguyen '17: Let $\theta_0 \in L^2(\Omega)$. There exists a weak solution $\theta \in L^{\infty}([0,\infty); L^2(\Omega))$; that is, for any $T \ge 0$ and $\phi \in C_0^{\infty}((0,T) \times \Omega)$

$$\int_0^T \int_\Omega \theta(x,t) \partial_t \phi(x,t) dx dt + \int_0^T \int_\Omega \theta(x,t) u(x,t) \cdot \nabla \phi(x,t) dx dt = 0.$$

Moreover, θ obeys the energy inequality

$$\|\theta(t)\|_{L^2(\Omega)}^2 \le \|\theta_0\|_{L^2(\Omega)}^2$$
 for a.e. $t > 0$.

Constantin, I., Nguyen '18: Weak solutions of $\partial_t \theta + u \cdot \nabla \theta + \nu \Lambda_D^s \theta = 0$ converge to weak solutions of $\partial_t \theta + u \cdot \nabla \theta = 0$ as $\nu \to 0$.

Constantin, Nguyen '17: Let $\theta_0 \in L^2(\Omega)$. There exists a weak solution $\theta \in L^{\infty}([0,\infty); L^2(\Omega))$; that is, for any $T \ge 0$ and $\phi \in C_0^{\infty}((0,T) \times \Omega)$

$$\int_0^T \int_\Omega \theta(x,t) \partial_t \phi(x,t) dx dt + \int_0^T \int_\Omega \theta(x,t) u(x,t) \cdot \nabla \phi(x,t) dx dt = 0.$$

Moreover, θ obeys the energy inequality

$$\|\theta(t)\|_{L^2(\Omega)}^2 \le \|\theta_0\|_{L^2(\Omega)}^2$$
 for a.e. $t > 0$.

Constantin, I., Nguyen '18: Weak solutions of $\partial_t \theta + u \cdot \nabla \theta + \nu \Lambda_D^s \theta = 0$ converge to weak solutions of $\partial_t \theta + u \cdot \nabla \theta = 0$ as $\nu \to 0$.

Commutator structure:

$$\int_{\Omega} \Lambda \psi \nabla^{\perp} \psi \cdot \nabla \phi dx = \frac{1}{2} \int_{\Omega} [\Lambda, \nabla^{\perp}] \psi \cdot \nabla \phi \psi dx - \frac{1}{2} \int_{\Omega} \nabla^{\perp} \psi \cdot [\Lambda, \nabla \phi] \psi dx$$

for $\psi = \Lambda^{-1} \theta \in H_0^1(\Omega)$ and $\varphi \in C_0^\infty(\Omega)$.

Elements of the proof for the Hölder bound

- Gaussian bounds for the heat kernel; cancelation due to translation invariance effective for small time
- Good cutoff χ and bound for the commutator [δ_h, Λ_D] away from boundary (the most expensive term, fighting boundary repulsion)
- Nonlinear maximum principle (lower bound for Λ_D) giving smoothing and a strong boundary repulsion damping effect
- Finite difference bounds for Riesz transforms using the nonlinear maximum principle bound in its finite difference version

(日) (日) (日) (日) (日) (日) (日)

Elements of the proof for the Hölder bound

- Gaussian bounds for the heat kernel; cancelation due to translation invariance effective for small time
- Good cutoff χ and bound for the commutator [δ_h, Λ_D] away from boundary (the most expensive term, fighting boundary repulsion)
- Nonlinear maximum principle (lower bound for Λ_D) giving smoothing and a strong boundary repulsion damping effect
- Finite difference bounds for Riesz transforms using the nonlinear maximum principle bound in its finite difference version

Equation for the finite difference $\delta_h \theta(x) = \theta(x + h) - \theta(x)$:

$$(\partial_t + u \cdot \nabla + \delta_h u \cdot \nabla_h)(\delta_h \theta) + \Lambda_D(\delta_h \theta) + [\delta_h, \Lambda_D] \theta = 0.$$

Good cutoff

Lemma

Let Ω be a bounded domain with C^2 boundary. For $\ell > 0$ small enough (depending on Ω) there exist cutoff functions χ with the properties:

- ► 0 ≤ χ ≤ 1
- $\chi(y) = 0$ if $d(y) \leq \frac{\ell}{4}$
- $\chi(y) = 1$ for $d(y) \ge \frac{\ell}{2}$
- $|\nabla^k \chi| \leq C\ell^{-k}$ with C independent of ℓ
- $\int_{\Omega} \frac{(1-\chi(y))}{|x-y|^{2+j}} dy \leq \frac{C}{d(x)^j}$
- ► $\int_{\Omega} \frac{|\nabla \chi(y)|}{|x-y|^2} \leq \frac{C}{d(x)}$ hold for j > 0 and $d(x) \geq \ell$.

Useful because of the Gaussian bounds on the heat kernel. Makes work in Ω look like work in half-space without changing coordinates.

Translation invariance effect

Using the definition of Λ_D and integration by parts

$$[\nabla, \Lambda_D]f(x) = c_s \int_0^\infty t^{-\frac{3}{2}} \int_\Omega (\nabla_x + \nabla_y) H_D(x, y, t) f(y) dy dt.$$

Important additional bounds we need are

$$|(\nabla_x + \nabla_y) \mathcal{H}_D(x, y, t)| \leq C t^{-\frac{1}{2} - \frac{d}{2}} e^{-\frac{d(x)^2}{Ct}}$$

and

$$I_1(x,t) = \int_{\Omega} |(\nabla_x + \nabla_y) H_D(x,y,t)| \, dy \leq Ct^{-\frac{1}{2}} e^{-\frac{d(x)^2}{Rt}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

valid for $t \leq cd(x)^2$. Nonsingular at x = y.

Translation invariance effect

Using the definition of Λ_D and integration by parts

$$[\nabla, \Lambda_D]f(x) = c_s \int_0^\infty t^{-\frac{3}{2}} \int_\Omega (\nabla_x + \nabla_y) H_D(x, y, t) f(y) dy dt.$$

Important additional bounds we need are

$$|(
abla_x+
abla_y)\mathcal{H}_{D}(x,y,t)|\leq Ct^{-rac{1}{2}-rac{d}{2}}e^{-rac{d(x)^2}{Ct}}$$

and

$$I_1(x,t) = \int_{\Omega} |(
abla_x +
abla_y) H_D(x,y,t)| \, dy \leq Ct^{-rac{1}{2}} e^{-rac{d(x)^2}{Rt}}$$

valid for $t \leq cd(x)^2$. Nonsingular at x = y. These imply that

$$\int_{0}^{t} s^{-rac{3}{2}} l_{1}(x,s) ds \leq d(x)^{-2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for small time.

Commutator

Let χ be a good cutoff with scale $\ell > 0$. Denote

 $\delta_h\theta(x)=\theta(x+h)-\theta(x).$

Lemma

There exists a constant Γ_0 such that the commutator

$$C_h(\theta) = \delta_h \Lambda_D \theta - \Lambda_D(\chi \delta_h \theta)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

obeys

$$|C_h(heta)(x)| \leq \Gamma_0 \frac{|h|}{d(x)^2} \|\theta\|_{L^{\infty}(\Omega)}$$

for $d(x) \geq \ell$, $|h| \leq \frac{\ell}{16}$ and $\theta \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$.

The nonlinear bound for finite differences

Theorem Let $\chi \in C_0^{\infty}(\Omega)$ be a good cutoff with scale $\ell > 0$ and let

 $f(x) = \chi(x)(\delta_h \theta(x)) = \chi(x)(\theta(x+h) - \theta(x)).$

The nonlinear bound for finite differences

Theorem Let $\chi \in C_0^{\infty}(\Omega)$ be a good cutoff with scale $\ell > 0$ and let

$$f(x) = \chi(x)(\delta_h \theta(x)) = \chi(x)(\theta(x+h) - \theta(x)).$$

Then

$$D(f) = (f \Lambda_D f)(x) - \frac{1}{2} (\Lambda_D f^2)(x) \ge \gamma_1 |h|^{-1} \frac{|f_d(x)|^3}{\|\theta\|_{L^{\infty}}} + \gamma_1 \frac{f^2(x)}{d(x)}$$

holds pointwise in Ω when $|h| \leq \frac{\ell}{16}$ and $d(x) \geq \ell$ with

$$|f_d(\mathbf{x})| = \begin{cases} |f(\mathbf{x})|, & \text{if } |f(\mathbf{x})| \ge M \|\theta\|_{L^{\infty}(\Omega)} \frac{|h|}{d(\mathbf{x})}, \\ 0, & \text{if } |f(\mathbf{x})| \le M \|\theta\|_{L^{\infty}(\Omega)} \frac{|h|}{d(\mathbf{x})}. \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Finite difference of Riesz transform

Lemma Let u be given by

 $u = \nabla^{\perp} \Lambda_D^{-1} \theta$

and let χ be a good cutoff with a length scale ℓ . Then

$$|\delta_h u(x)| \leq C \left(\sqrt{\rho D(f)(x)} + \|\theta\|_{L^{\infty}} \left(\frac{|h|}{d(x)} + \frac{|h|}{\rho} \right) + |\delta_h \theta(x)| \right)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

holds for $d(x) \ge \ell$, $\rho \le cd(x)$, $f = \chi \delta_h \theta$ and with *C* a constant depending on Ω .

Hölder bound, idea of proof:

Let χ be a good cutoff with a scale $\ell > 0$, and $|h| \le \frac{\ell}{16}$. The equation for $\delta_h \theta$ implies:

$$\frac{1}{2}L_{\chi}\left(\delta_{h}\theta\right)^{2}+D(f)+\left(\delta_{h}\theta\right)C_{h}(\theta)=0$$

with

$$L_{\chi}g = \partial_t g + u \cdot \nabla_x g + \delta_h u \cdot \nabla_h g + \Lambda_D(\chi^2 g)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hölder bound, idea of proof:

Let χ be a good cutoff with a scale $\ell > 0$, and $|h| \le \frac{\ell}{16}$. The equation for $\delta_h \theta$ implies:

$$\frac{1}{2}L_{\chi}\left(\delta_{h}\theta\right)^{2}+D(f)+\left(\delta_{h}\theta\right)C_{h}(\theta)=0$$

with

$$L_{\chi}g = \partial_t g + u \cdot \nabla_x g + \delta_h u \cdot \nabla_h g + \Lambda_D(\chi^2 g)$$

and

$$D(f) \geq \gamma_1 |h|^{-1} \frac{|(\delta_h \theta)_d|^3}{\|\theta\|_{L^{\infty}}} + \gamma_1 \frac{|\delta_h \theta|^2}{d(x)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for $f = \chi \delta_h \theta$.

Hölder bound, idea of proof:

Let χ be a good cutoff with a scale $\ell > 0$, and $|h| \le \frac{\ell}{16}$. The equation for $\delta_h \theta$ implies:

$$\frac{1}{2}L_{\chi}\left(\delta_{h}\theta\right)^{2}+D(f)+(\delta_{h}\theta)C_{h}(\theta)=0$$

with

$$L_{\chi}g = \partial_t g + u \cdot \nabla_x g + \delta_h u \cdot \nabla_h g + \Lambda_D(\chi^2 g)$$

and

$$D(f) \geq \gamma_1 |h|^{-1} \frac{|(\delta_h \theta)_d|^3}{\|\theta\|_{L^{\infty}}} + \gamma_1 \frac{|\delta_h \theta|^2}{d(x)}$$

for $f = \chi \delta_h \theta$. Multiply by $|h|^{-2\alpha}$ where $\alpha > 0$ will be chosen small enough:

$$\frac{1}{2}L_{\chi}\left(\frac{\delta_{h}\theta(x)^{2}}{|h|^{2\alpha}}\right)+|h|^{-2\alpha}D(f)-2\alpha\frac{|\delta_{h}u|}{|h|}\left(\frac{\delta_{h}\theta(x)^{2}}{|h|^{2\alpha}}\right)\leq |C_{h}(\theta)||\delta_{h}\theta||h|^{-2\alpha}.$$

e-approximation of critical SQG

Let $\epsilon > 0$ and consider the ϵ -approximation of SQG

$$\partial_t \theta^{\epsilon} + u^{\epsilon} \cdot \nabla \theta^{\epsilon} + \Lambda_D \theta^{\epsilon} = 0$$

where

$$u^{\epsilon} = \nabla^{\perp}\psi^{\epsilon} = \nabla^{\perp}\int_{\epsilon}^{\infty} t^{-\frac{1}{2}} e^{t\Delta}\theta^{\epsilon} dt$$

with initial data $\theta^{\epsilon}(0) = \theta_0$.

Theorem

For each $\epsilon > 0$, the ϵ -approximation has unique, global, smooth solutions up to the boundary. The solutions obey bounds

 $d(x)|\nabla \theta^{\epsilon}(x,t)| \leq C$

(日) (日) (日) (日) (日) (日) (日)

with *C* depending on Ω and $\|\theta_0\|_{W^{1,\infty}(\Omega)}$ but not on *t* nor on ϵ .

e-approximation of critical SQG

Let $\epsilon > 0$ and consider the ϵ -approximation of SQG

$$\partial_t \theta^{\epsilon} + u^{\epsilon} \cdot \nabla \theta^{\epsilon} + \Lambda_D \theta^{\epsilon} = 0$$

where

$$u^{\epsilon} = \nabla^{\perp}\psi^{\epsilon} = \nabla^{\perp}\int_{\epsilon}^{\infty} t^{-\frac{1}{2}} e^{t\Delta}\theta^{\epsilon} dt$$

with initial data $\theta^{\epsilon}(0) = \theta_0$.

Theorem

For each $\epsilon > 0$, the ϵ -approximation has unique, global, smooth solutions up to the boundary. The solutions obey bounds

 $d(x)|\nabla \theta^{\epsilon}(x,t)| \leq C$

with *C* depending on Ω and $\|\theta_0\|_{W^{1,\infty}(\Omega)}$ but not on *t* nor on ϵ .

For the proof: note that

$$\|\Lambda_D^M \psi^{\epsilon}\|_{L^2(\Omega)} \leq C_{M,\epsilon} \|\theta_0\|_{L^2(\Omega)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for any M > 0, and therefore u^{ϵ} is smooth.

Convergence to critical SQG

Theorem

Let $\theta_0 \in L^{\infty}(\Omega)$ and let T > 0. Any sequence of solutions of ϵ -approximations of SQG with $\epsilon \to 0$ contains a subsequence θ_n converging strongly in $L^2([0, T], L^2(\Omega))$ to a weak solution $\theta \in L^{\infty}([0, T], L^{\infty}(\Omega)) \cap L^2([0, T], \mathcal{D}(\Lambda_D^{\frac{1}{2}}))$ of critical SQG. If $\theta_0 \in W^{1,\infty}(\Omega)$, then θ obeys

 $|d(x)|\nabla \theta(x,t)| \leq C$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

with *C* depending on Ω and $\|\theta_0\|_{W^{1,\infty}(\Omega)}$.

Convergence to critical SQG

Theorem

Let $\theta_0 \in L^{\infty}(\Omega)$ and let T > 0. Any sequence of solutions of ϵ -approximations of SQG with $\epsilon \to 0$ contains a subsequence θ_n converging strongly in $L^2([0, T], L^2(\Omega))$ to a weak solution $\theta \in L^{\infty}([0, T], L^{\infty}(\Omega)) \cap L^2([0, T], \mathcal{D}(\Lambda_D^{\frac{1}{2}}))$ of critical SQG. If $\theta_0 \in W^{1,\infty}(\Omega)$, then θ obeys

 $|d(x)|\nabla \theta(x,t)| \leq C$

with *C* depending on Ω and $\|\theta_0\|_{W^{1,\infty}(\Omega)}$.

For the proof we use that θ_n are uniformly bounded in $L^{\infty}([0, T], L^{\infty}(\Omega))$ hence $u_n\theta_n$ are bounded in $L^{\infty}([0, T], L^2(\Omega))$, and $\partial_t\theta_n$ are bounded in $L^{\infty}([0, T], H^{-1}(\Omega))$. We then use an Aubin-Lions lemma with based on L^2 in time, and with spaces $\mathcal{D}(\Lambda_D^{\frac{1}{2}}) \subset \mathcal{L}^2(\Omega) \subset H^{-1}(\Omega)$.

Electric field determined by charge density:

 $\nabla_3 \cdot \boldsymbol{E} = \boldsymbol{\rho}$ $\nabla_3 \times \boldsymbol{E} = \boldsymbol{0}$

Electric field determined by charge density:

$$\nabla_3 \cdot E = \rho$$
$$\nabla_3 \times E = 0$$

in $Q \subset \mathbb{R}^3$. Boundary conditions at ∂Q . Charge density ρ confined to domain $\Omega \subset \mathbb{R}^2 \times \{0\}$ (two dimensional smectic layer, Morris et al):

$$\rho = 2q\delta_{\Omega}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Electric field determined by charge density:

$$\nabla_3 \cdot \boldsymbol{E} = \boldsymbol{\rho}$$
$$\nabla_3 \times \boldsymbol{E} = \boldsymbol{0}$$

in $Q \subset \mathbb{R}^3$. Boundary conditions at ∂Q . Charge density ρ confined to domain $\Omega \subset \mathbb{R}^2 \times \{0\}$ (two dimensional smectic layer, Morris et al):

$$\rho = 2q\delta_{\Omega}$$

carried by a flow in $\boldsymbol{\Omega}$

$$\partial_t q + \nabla \cdot (uq + \sigma E^{||}) = 0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Electric field determined by charge density:

$$\nabla_3 \cdot \boldsymbol{E} = \boldsymbol{\rho}$$
$$\nabla_3 \times \boldsymbol{E} = \boldsymbol{0}$$

in $Q \subset \mathbb{R}^3$. Boundary conditions at ∂Q . Charge density ρ confined to domain $\Omega \subset \mathbb{R}^2 \times \{0\}$ (two dimensional smectic layer, Morris et al):

$$\rho = 2q\delta_{\Omega}$$

carried by a flow in $\boldsymbol{\Omega}$

$$\partial_t \boldsymbol{q} + \nabla \cdot (\boldsymbol{u} \boldsymbol{q} + \sigma \boldsymbol{E}^{||}) = \boldsymbol{0}$$

with σ electric conductivity. Conducting fluid confined to domain Ω :

$$\partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p = q E^{||}, \quad \nabla \cdot u = 0.$$

| ◆ □ ▶ ★ □ ▶ ★ 三 ▶ ★ □ ▶ ● ○ ○ ○ ○

Figure: Schematic of the experiment of Morris et al. Side view and top view.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Smectic conducting fluid, driven by electric current. 2DNS in fluid region $\Omega \subset \mathbb{R}^2 \times \{0\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Smectic conducting fluid, driven by electric current. 2DNS in fluid region $\Omega \subset \mathbb{R}^2 \times \{0\}$. Electrods share boundaries with $\partial \Omega$.

Smectic conducting fluid, driven by electric current. 2DNS in fluid region $\Omega \subset \mathbb{R}^2 \times \{0\}$. Electrods share boundaries with $\partial \Omega$. Two connected components of $\partial \Omega$ kept at two different voltages, *V* and 0. Electric field

$$E = -\nabla_3 \Phi$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

defined in $Q = \Omega \times \mathbb{R}$ with inhomogeneous boundary conditions for the electric potential Φ .

Smectic conducting fluid, driven by electric current. 2DNS in fluid region $\Omega \subset \mathbb{R}^2 \times \{0\}$. Electrods share boundaries with $\partial \Omega$. Two connected components of $\partial \Omega$ kept at two different voltages, *V* and 0. Electric field

$$E = -
abla_3 \Phi$$

defined in $Q = \Omega \times \mathbb{R}$ with inhomogeneous boundary conditions for the electric potential Φ .

$$-\Delta_3 \Phi = 2q\delta_\Omega, \quad \Phi_{\partial Q} = V, \quad 0.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Smectic conducting fluid, driven by electric current. 2DNS in fluid region $\Omega \subset \mathbb{R}^2 \times \{0\}$. Electrods share boundaries with $\partial \Omega$. Two connected components of $\partial \Omega$ kept at two different voltages, *V* and 0. Electric field

$${\sf E}=-
abla_3\Phi$$

defined in $Q = \Omega \times \mathbb{R}$ with inhomogeneous boundary conditions for the electric potential Φ .

$$-\Delta_3 \Phi = 2q\delta_\Omega, \quad \Phi_{\partial Q} = V, \quad 0.$$

Solution is

$$\Phi(x,z)=\Phi_0(x)+\left\{egin{array}{cc} e^{-z\Lambda_D}\Lambda_D^{-1}q, & z\geq 0,\ e^{z\Lambda_D}\Lambda_D^{-1}q, & z< 0 \end{array}
ight.$$

Parallel component of E

$$E^{||} = (-\partial_1 \Phi, -\partial_2 \Phi, 0)_{|\,\Omega}$$

Fractional Laplacian emerges:

$$abla \cdot E^{||} = \Lambda_D q$$

・ロト・西ト・ 山田・ 山田・

Global Regularity in Bounded Domains

Theorem (Constantin, Elgindi, Ignatova, Vicol ('17)) Let $\Omega \subset \mathbb{R}^2$ open, bounded, with smooth boundary. Let $u_0 \in [H_0^1(\Omega) \cap H^2(\Omega)]^2$ be divergence-free. Let $q_0 \in H_0^1(\Omega) \cap H^2(\Omega)$. Then the electroconvection system

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p = \nu \Delta u - q \nabla (\Phi_0 + \Lambda_D^{-1} q), \\ \nabla \cdot u = 0, \\ \partial_t q + u \cdot \nabla q + \sigma \Lambda_D q = 0 \end{cases}$$

with homogeneous Dirichlet boundary conditions for both u and q has global unique strong solutions,

$$u \in L^{\infty}(0, T; [H_0^1(\Omega) \cap H^2(\Omega)]^2) \cap L^2(0, T; H^{\frac{5}{2}}(\Omega)^2),$$
$$q \in L^{\infty}(0, T; W_0^{1,4}(\Omega) \cap H^2(\Omega)) \cap L^2(0, T; H^{\frac{5}{2}}(\Omega)).$$

Strategy of Proof

1. Good approximation:

 $(\partial_t + u_m \cdot \nabla + \Lambda_D)q = 0$

Strategy of Proof

1. Good approximation:

$$(\partial_t + u_m \cdot \nabla + \Lambda_D)q = 0$$

coupled with Galerkin for NSE:

$$\partial_t u_m + A u_m + \mathbb{P}_m B(u_m, u_m) = -\mathbb{P}_m(qR_Dq)$$

From the *q* equation we get a priori bounds for $q \in L^{\infty}(0, T; L^{p}(\Omega))$, independent of u_m , using the convex damping inequality in bounded domains.

2. We use NSE energy bounds to deduce

 $u_m \in L^{\infty}(0, T; H^1_0(\Omega)^2) \cap L^2(0, T; H^2(\Omega)^2)$ are controlled uniformly.

 $(R_D = \nabla \Lambda^{-1} \text{ are bounded in } L^p(\Omega) \text{ spaces.})$

- 3. We obtain higher regularity for q.
- 4. Then we obtain higher uniform regularity for u_m .
- 5. Pass to the limit $m \to \infty$.

- ► Nonlinear lower bounds for Λ_D can be used to prove global interior regularity for SQG and electroconvection.
- Commutators are expensive due to lack of translation invariance.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ► Nonlinear lower bounds for Λ_D can be used to prove global interior regularity for SQG and electroconvection.
- Commutators are expensive due to lack of translation invariance.

(ロ) (同) (三) (三) (三) (三) (○) (○)

 Uniform, up to the boundary estimates are not available, in general.

- ► Nonlinear lower bounds for Λ_D can be used to prove global interior regularity for SQG and electroconvection.
- Commutators are expensive due to lack of translation invariance.
- Uniform, up to the boundary estimates are not available, in general.
- Construction of global unique weak solution with uniform interior smoothness is in progress.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- ► Nonlinear lower bounds for Λ_D can be used to prove global interior regularity for SQG and electroconvection.
- Commutators are expensive due to lack of translation invariance.
- Uniform, up to the boundary estimates are not available, in general.
- Construction of global unique weak solution with uniform interior smoothness is in progress.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Electroconvection: different configurations.