# Geometric Kinematics and Fluid Interfaces 

Peter Constantin<br>Princeton University

BIRS, Banff, August 2018

## In this talk

- kinematics of hypersurfaces. (Unpublished, cca 1987).
- slender jet and shallow water: blow up = pinchoff (with T. Drivas, H. Nguyen, F. Pasqualotto).


## In this talk

- kinematics of hypersurfaces. (Unpublished, cca 1987).
- slender jet and shallow water: blow up = pinchoff (with T. Drivas, H. Nguyen, F. Pasqualotto). an old (1993) conjecture, proved.


## In this talk

- kinematics of hypersurfaces. (Unpublished, cca 1987).
- slender jet and shallow water: blow up = pinchoff (with T. Drivas, H. Nguyen, F. Pasqualotto). an old (1993) conjecture, proved.
- Hele-Shaw neck model pinchoff (with T. Elgindi, H. Nguyen, V. Vicol).


## In this talk

- kinematics of hypersurfaces. (Unpublished, cca 1987).
- slender jet and shallow water: blow up = pinchoff (with T. Drivas, H. Nguyen, F. Pasqualotto). an old (1993) conjecture, proved.
- Hele-Shaw neck model pinchoff (with T. Elgindi, H. Nguyen, V. Vicol).(an old (1993) computation, revisited theoretically).


## Hypersurfaces of Evolution

We consider a time dependent immersed hypersurface $f$ in $\mathbb{R}^{d+1}$ which satisfies an evolution equation

$$
\frac{\partial f}{\partial t}=v,
$$

## Hypersurfaces of Evolution

We consider a time dependent immersed hypersurface $f$ in $\mathbb{R}^{d+1}$ which satisfies an evolution equation

$$
\frac{\partial f}{\partial t}=v
$$

locally given by $D \subset \mathbb{R}^{d}$,

$$
f: D \mapsto \mathbb{R}^{d+1}
$$

## Hypersurfaces of Evolution

We consider a time dependent immersed hypersurface $f$ in $\mathbb{R}^{d+1}$ which satisfies an evolution equation

$$
\frac{\partial f}{\partial t}=v
$$

locally given by $D \subset \mathbb{R}^{d}$,

$$
f: D \mapsto \mathbb{R}^{d+1}
$$

We compute the evolution of geometric quantities, such as the first and second fundamental forms, curvatures, area and volume enclosed.

## Hypersurfaces of Evolution

We consider a time dependent immersed hypersurface $f$ in $\mathbb{R}^{d+1}$ which satisfies an evolution equation

$$
\frac{\partial f}{\partial t}=v
$$

locally given by $D \subset \mathbb{R}^{d}$,

$$
f: D \mapsto \mathbb{R}^{d+1}
$$

We compute the evolution of geometric quantities, such as the first and second fundamental forms, curvatures, area and volume enclosed. $v$ could be time dependent and also related to the surface.

## Hypersurfaces of Evolution

We consider a time dependent immersed hypersurface $f$ in $\mathbb{R}^{d+1}$ which satisfies an evolution equation

$$
\frac{\partial f}{\partial t}=v
$$

locally given by $D \subset \mathbb{R}^{d}$,

$$
f: D \mapsto \mathbb{R}^{d+1}
$$

We compute the evolution of geometric quantities, such as the first and second fundamental forms, curvatures, area and volume enclosed. $v$ could be time dependent and also related to the surface.
The scalar product in $\mathbb{R}^{d+1}$ will be denoted by $<,>$. Usual derivatives with respect to the parameters in $D$ are denoted by subscripts preceded by a comma; covariant derivatives by subscripts preceded by a semicolon. Thus the coefficients of the first fundamental form I, are

$$
g_{i j}=<f_{, i}, f_{, j}>, \quad \text { for } i, j=1, \cdots, d
$$

## Hypersurfaces of Evolution

We consider a time dependent immersed hypersurface $f$ in $\mathbb{R}^{d+1}$ which satisfies an evolution equation

$$
\frac{\partial f}{\partial t}=v
$$

locally given by $D \subset \mathbb{R}^{d}$,

$$
f: D \mapsto \mathbb{R}^{d+1}
$$

We compute the evolution of geometric quantities, such as the first and second fundamental forms, curvatures, area and volume enclosed. $v$ could be time dependent and also related to the surface. The scalar product in $\mathbb{R}^{d+1}$ will be denoted by $<,>$. Usual derivatives with respect to the parameters in $D$ are denoted by subscripts preceded by a comma; covariant derivatives by subscripts preceded by a semicolon. Thus the coefficients of the first fundamental form I, are

$$
g_{i j}=<f_{, i}, f_{, j}>, \quad \text { for } i, j=1, \cdots, d
$$

The surface is assumed to be orientable, exterior normal is $n$. The vectors $\left\{n, f_{, 1}, \cdots, f_{d}\right\}$ computed at any $\alpha \in D$ form a basis of $\mathbb{R}_{\underline{d+1}}^{d+}$.

## Velocity decomposition, evolution of normal

$$
\begin{gathered}
v=a n+b^{j} f_{, j} \\
a=<n, v>, \quad b^{j}=g^{j k}<f_{, k}, v>
\end{gathered}
$$

## Velocity decomposition, evolution of normal

$$
\begin{gathered}
v=a n+b^{j} f_{, j} \\
a=<n, v>, \quad b^{j}=g^{j k}<f_{, k}, v>
\end{gathered}
$$

where $g^{j k}$ are the coefficients of the inverse matrix $I^{-1}$ of $I$. The coefficients $b^{j}$ determine a tangent vector $b$ to $f$.

## Velocity decomposition, evolution of normal

$$
\begin{gathered}
v=a n+b^{j} f_{, j} \\
a=<n, v>, \quad b^{j}=g^{j k}<f_{, k}, v>
\end{gathered}
$$

where $g^{j k}$ are the coefficients of the inverse matrix $I^{-1}$ of $I$. The coefficients $b^{j}$ determine a tangent vector $b$ to $f$. Because $n$ is a unit vector, $\partial_{t} n$ is a linear combination of $f_{j, j}$. Moreover, $\left\langle f_{, k}, n\right\rangle=0$, so $<f_{, k}, \frac{\partial n}{\partial t}>=-<\frac{\partial f_{k}}{\partial t}, n>$. Also,

$$
\frac{\partial}{\partial t} f_{, k}=a_{, k} n+a n_{, k}+b_{, k}^{j} f_{, j}+b^{j} f_{, j k},
$$

and we obtain the evolution of $n$ :

## Velocity decomposition, evolution of normal

$$
\begin{gathered}
v=a n+b^{j} f_{, j} \\
a=<n, v>, \quad b^{j}=g^{j k}<f_{, k}, v>
\end{gathered}
$$

where $g^{j k}$ are the coefficients of the inverse matrix $I^{-1}$ of $I$. The coefficients $b^{j}$ determine a tangent vector $b$ to $f$. Because $n$ is a unit vector, $\partial_{t} n$ is a linear combination of $f_{j, j}$. Moreover, $\left\langle f_{, k}, n\right\rangle=0$, so $<f_{, k}, \frac{\partial n}{\partial t}>=-<\frac{\partial f_{k}}{\partial t}, n>$. Also,

$$
\frac{\partial}{\partial t} f_{, k}=a_{, k} n+a n_{, k}+b_{, k}^{j} f_{, j}+b^{j} f_{, j k}
$$

and we obtain the evolution of $n$ :

$$
\frac{\partial n}{\partial t}=-g^{i k} f_{, i}\left(a_{, k}+b^{\prime} h_{l k}\right)
$$

## Velocity decomposition, evolution of normal

$$
\begin{gathered}
v=a n+b^{j} f_{, j} \\
a=<n, v>, \quad b^{j}=g^{j k}<f_{, k}, v>
\end{gathered}
$$

where $g^{j k}$ are the coefficients of the inverse matrix $I^{-1}$ of $I$. The coefficients $b^{j}$ determine a tangent vector $b$ to $f$. Because $n$ is a unit vector, $\partial_{t} n$ is a linear combination of $f_{j, j}$. Moreover, $\left\langle f_{, k}, n\right\rangle=0$, so $<f_{, k}, \frac{\partial n}{\partial t}>=-<\frac{\partial f_{k}}{\partial t}, n>$. Also,

$$
\frac{\partial}{\partial t} f_{, k}=a_{, k} n+a n_{, k}+b_{, k}^{j} f_{, j}+b^{j} f_{, j k}
$$

and we obtain the evolution of $n$ :

$$
\frac{\partial n}{\partial t}=-g^{i k} f_{, i}\left(a_{, k}+b^{\prime} h_{l k}\right)
$$

where $h_{j k}$ are the coefficients of the second fundamental form II:

$$
h_{j k}=<f_{, j k}, n>=-<f_{j, j}, n_{, k}>
$$

## Evolution of first and second fundamental forms

Recall $<f_{, p i}, f_{, j}>=[p i, j]$, the Christoffel symbols of the second kind $\Gamma_{p i}^{r}=g^{r j}[p i, j]$ and

$$
b_{; i}^{r}=b_{, i}^{r}+\Gamma_{p i}^{r} b^{p}
$$

the covariant gradient of the tangent vector $b$. We obtain after calculations:

$$
\frac{\partial}{\partial t} I=-2 a l l+I \nabla b+(\nabla b)^{*} I
$$

where $(\nabla b)^{*}$ is the transposed of $\nabla b=\left(b_{i j}^{r}\right)$

## Evolution of first and second fundamental forms

Recall $<f_{, p i}, f_{j}>=[p i, j]$, the Christoffel symbols of the second kind $\Gamma_{p i}^{r}=g^{r j}[p i, j]$ and

$$
b_{i i}^{r}=b_{, i}^{r}+\Gamma_{p i}^{r} b^{p},
$$

the covariant gradient of the tangent vector $b$. We obtain after calculations:

$$
\frac{\partial}{\partial t} I=-2 a l l+I \nabla b+(\nabla b)^{*} I
$$

where $(\nabla b)^{*}$ is the transposed of $\nabla b=\left(b_{i j}^{r}\right)$ and

$$
\frac{\partial}{\partial t}\|=\nabla \nabla a-a\|\left(I^{-1}\right) I I+L_{b}(I I)
$$

where $\nabla \nabla a$ is the matrix:

$$
a_{; k l}=a_{, k l}-\Gamma_{k l}^{p} a_{, p} .
$$

and where $L_{b}(I I)$ is the Lie derivative of $/ /$ given by

$$
\left(L_{b}(I I)\right)_{k l}=b^{j} h_{k l, j}+b_{, k}^{j} h_{j l}+b_{, l}^{j} h_{j k} .
$$

## Evolution of the Weingarten map, volume element

The Weingarten map is $W=I^{-1} \|$ :

$$
w_{k}^{j}=g^{j p} h_{p k} .
$$

## Evolution of the Weingarten map, volume element

 The Weingarten map is $W=I^{-1} \|$ :$$
w_{k}^{j}=g^{i p} h_{p k} .
$$

After calculations:

$$
\frac{\partial}{\partial t} W=a W^{2}+I^{-1} \nabla \nabla a+L_{b}(W)
$$

where the Lie derivative of $W, L_{b}(W)$ is

$$
\left(L_{b}(W)\right)_{j}^{i}=b^{k} W_{j, k}^{i}+W_{k}^{i} b_{, j}^{k}-W_{j}^{k} b_{, k}^{i} .
$$

## Evolution of the Weingarten map, volume element

The Weingarten map is $W=I^{-1} \|$ :

$$
w_{k}^{j}=g^{i p} h_{p k} .
$$

After calculations:

$$
\frac{\partial}{\partial t} W=a W^{2}+I^{-1} \nabla \nabla a+L_{b}(W)
$$

where the Lie derivative of $W, L_{b}(W)$ is

$$
\left(L_{b}(W)\right)_{j}^{i}=b^{k} W_{j, k}^{i}+W_{k}^{i} b_{, j}^{k}-W_{j}^{k} b_{, k}^{i} .
$$

The curvatures are the invariants of W .

## Evolution of the Weingarten map, volume element

The Weingarten map is $W=I^{-1} \|$ :

$$
w_{k}^{j}=g^{i p} h_{p k} .
$$

After calculations:

$$
\frac{\partial}{\partial t} W=a W^{2}+I^{-1} \nabla \nabla a+L_{b}(W)
$$

where the Lie derivative of $W, L_{b}(W)$ is

$$
\left(L_{b}(W)\right)_{j}^{i}=b^{k} W_{j, k}^{i}+W_{k}^{i} b_{, j}^{k}-W_{j}^{k} b_{, k}^{i} .
$$

The curvatures are the invariants of W . Denoting by $g$ the determinant of / we obtain from the evolution of I

## Evolution of the Weingarten map, volume element

The Weingarten map is $W=I^{-1} \|$ :

$$
w_{k}^{j}=g^{j p} h_{p k}
$$

After calculations:

$$
\frac{\partial}{\partial t} W=a W^{2}+I^{-1} \nabla \nabla a+L_{b}(W)
$$

where the Lie derivative of $W, L_{b}(W)$ is

$$
\left(L_{b}(W)\right)_{j}^{i}=b^{k} W_{j, k}^{i}+W_{k}^{i} b_{, j}^{k}-W_{j}^{k} b_{, k}^{i} .
$$

The curvatures are the invariants of W . Denoting by $g$ the determinant of $/$ we obtain from the evolution of $/$

$$
\frac{\partial}{\partial t} \sqrt{g}=(-a d H+\nabla \cdot b) \sqrt{g}
$$

where the divergence and mean curvature are

$$
\begin{gathered}
\nabla \cdot b=b_{i j}^{j} \\
H=\frac{1}{d} \text { Trace } W .
\end{gathered}
$$

Note that immersions persist as immersions $(g \neq 0)$ as long as the evolution is smooth.

## Total area, mean curvature

The total area

$$
A=\int \sqrt{g} d \alpha=\int_{f} d S
$$

satisfies

$$
\frac{d}{d t} A=-d \int a H \sqrt{g} d \alpha=-d \int_{f} a H d S .
$$

## Total area, mean curvature

The total area

$$
A=\int \sqrt{g} d \alpha=\int_{f} d S
$$

satisfies

$$
\frac{d}{d t} A=-d \int a H \sqrt{g} d \alpha=-d \int_{f} a H d S .
$$

If the surface $f$ encloses a bounded region $\Omega$ in $\mathbb{R}^{d+1}$ then the volume $V$ of this region evolves according to

$$
\frac{d}{d t} V=\int a \sqrt{g} d \alpha=\int_{f} a d S
$$

## Total area, mean curvature

The total area

$$
A=\int \sqrt{g} d \alpha=\int_{f} d S
$$

satisfies

$$
\frac{d}{d t} A=-d \int a H \sqrt{g} d \alpha=-d \int_{f} a H d S .
$$

If the surface $f$ encloses a bounded region $\Omega$ in $\mathbb{R}^{d+1}$ then the volume $V$ of this region evolves according to

$$
\frac{d}{d t} V=\int a \sqrt{g} d \alpha=\int_{f} a d S
$$

Using

$$
\text { Trace } I^{-1} \nabla \nabla a=\Delta_{f}(a)
$$

and taking the trace of the evolution of the Weingarten map we obtain the equation for $H$

$$
\frac{\partial}{\partial t} H=\frac{1}{d}\left(a \operatorname{Trace}\left(W^{2}\right)+\Delta_{f}(a)\right)+b^{j} H_{, j} .
$$

## Example: $d=2$, surfaces in $\mathbb{R}^{3}$

The determinant of $W$ is the Gauss curvature $K$.

## Example: $d=2$, surfaces in $\mathbb{R}^{3}$

The determinant of $W$ is the Gauss curvature $K$. The equation for the mean curvature becomes

$$
\frac{\partial}{\partial t} H=\left(2 H^{2}-K\right) a+\frac{1}{2} \Delta_{f}(a)+b^{j} H_{, j}
$$

## Example: $d=2$, surfaces in $\mathbb{R}^{3}$

The determinant of $W$ is the Gauss curvature $K$. The equation for the mean curvature becomes

$$
\frac{\partial}{\partial t} H=\left(2 H^{2}-K\right) a+\frac{1}{2} \Delta_{f}(a)+b^{j} H_{, j}
$$

and the equation for the Gauss curvature is

$$
\frac{\partial}{\partial t} K=2 a H K+\text { Trace }\left(\widetilde{W}\left(I^{-1} \nabla \nabla a+L_{b}(W)\right)\right)
$$

where $\widetilde{W}=($ Trace $W)$ ld $-W$.

## Example: $d=2$, surfaces in $\mathbb{R}^{3}$

The determinant of $W$ is the Gauss curvature $K$. The equation for the mean curvature becomes

$$
\frac{\partial}{\partial t} H=\left(2 H^{2}-K\right) a+\frac{1}{2} \Delta_{f}(a)+b^{j} H_{, j}
$$

and the equation for the Gauss curvature is

$$
\frac{\partial}{\partial t} K=2 a H K+\operatorname{Trace}\left(\widetilde{W}\left(I^{-1} \nabla \nabla a+L_{b}(W)\right)\right)
$$

where $\widetilde{W}=($ Trace $W)$ Id $-W$. We note

$$
\begin{aligned}
\frac{\partial}{\partial t}(K \sqrt{g}) & =\sqrt{g}\left[\operatorname{Trace}\left(\widetilde{W}\left(I^{-1} \nabla \nabla a+L_{b}(W)\right)\right)+K b_{i j}^{j}\right] \\
& =\frac{\partial}{\partial \alpha^{i}}\left(\sqrt{g} g^{i j} \widetilde{W}_{j}^{k} \frac{\partial a}{\partial \alpha^{k}}+b^{i} K \sqrt{g}\right)
\end{aligned}
$$

verifies the time independence of the Gauss-Bonnet formula $\int_{f} K d S=\chi(f)$.

## Example: $\mathrm{d}=1$, plane curves.

We write $f(\alpha)=z(\alpha)$. Usual differentiation with respect to the only variable (other than time) is denoted by a prime. The Weingarten matrix is simply the curvature $\kappa$ of the curve $z$. The Laplace-Beltrami operator $\Delta_{f}$ is the second derivative with respect to arclength. We obtain:

$$
\frac{\partial}{\partial t} \kappa=a \kappa^{2}+\frac{d^{2}}{d s^{2}} a+b \kappa^{\prime}
$$

where $\frac{d}{d s}=\left|z^{\prime}\right|^{-1} \frac{d}{d \alpha}$.

## Example: $\mathrm{d}=1$, plane curves.

We write $f(\alpha)=z(\alpha)$. Usual differentiation with respect to the only variable (other than time) is denoted by a prime. The Weingarten matrix is simply the curvature $\kappa$ of the curve $z$. The Laplace-Beltrami operator $\Delta_{f}$ is the second derivative with respect to arclength. We obtain:

$$
\frac{\partial}{\partial t} \kappa=a \kappa^{2}+\frac{d^{2}}{d s^{2}} a+b \kappa^{\prime}
$$

where $\frac{d}{d s}=\left|z^{\prime}\right|^{-1} \frac{d}{d \alpha}$. The equation for the volume element $\sqrt{g}=\left|z^{\prime}\right|$ becomes:

$$
\frac{d}{d t}\left|z^{\prime}\right|=-a \kappa\left|z^{\prime}\right|+\left(b\left|z^{\prime}\right|\right)^{\prime}
$$

## Example: $\mathrm{d}=1$, plane curves.

We write $f(\alpha)=z(\alpha)$. Usual differentiation with respect to the only variable (other than time) is denoted by a prime. The Weingarten matrix is simply the curvature $\kappa$ of the curve $z$. The Laplace-Beltrami operator $\Delta_{f}$ is the second derivative with respect to arclength. We obtain:

$$
\frac{\partial}{\partial t} \kappa=a \kappa^{2}+\frac{d^{2}}{d s^{2}} a+b \kappa^{\prime}
$$

where $\frac{d}{d s}=\left|z^{\prime}\right|^{-1} \frac{d}{d \alpha}$. The equation for the volume element $\sqrt{g}=\left|z^{\prime}\right|$ becomes:

$$
\frac{d}{d t}\left|z^{\prime}\right|=-a \kappa\left|z^{\prime}\right|+\left(b\left|z^{\prime}\right|\right)^{\prime}
$$

We note that the time invariance of the rotation number $\int_{f} \kappa d s$ follows:

## Example: $\mathrm{d}=1$, plane curves.

We write $f(\alpha)=z(\alpha)$. Usual differentiation with respect to the only variable (other than time) is denoted by a prime. The Weingarten matrix is simply the curvature $\kappa$ of the curve $z$. The Laplace-Beltrami operator $\Delta_{f}$ is the second derivative with respect to arclength. We obtain:

$$
\frac{\partial}{\partial t} \kappa=a \kappa^{2}+\frac{d^{2}}{d s^{2}} a+b \kappa^{\prime}
$$

where $\frac{d}{d s}=\left|z^{\prime}\right|^{-1} \frac{d}{d \alpha}$. The equation for the volume element $\sqrt{g}=\left|z^{\prime}\right|$ becomes:

$$
\frac{d}{d t}\left|z^{\prime}\right|=-a \kappa\left|z^{\prime}\right|+\left(b\left|z^{\prime}\right|\right)^{\prime}
$$

We note that the time invariance of the rotation number $\int_{f} \kappa d s$ follows: the quantity $q=\kappa\left|z^{\prime}\right|$ obeys the conservation law

$$
\frac{\partial}{\partial t} q=\left(\left|z^{\prime}\right|^{-1} a^{\prime}+b q\right)^{\prime}
$$

## Examples: geometric evolution, $\mathrm{d}=1$

Geometric evolution is local, $v$ depends locally on $f$.

## Examples: geometric evolution, $\mathrm{d}=1$

Geometric evolution is local, $v$ depends locally on $f$. 1) Unit normal speed, $a=1, b=0$.

## Examples: geometric evolution, $\mathrm{d}=1$

Geometric evolution is local, $v$ depends locally on $f$. 1) Unit normal speed, $a=1, b=0$. Curvature equation:

$$
\kappa_{t}=\kappa^{2}
$$

## Examples: geometric evolution, $\mathrm{d}=1$

Geometric evolution is local, $v$ depends locally on $f$. 1) Unit normal speed, $a=1, b=0$. Curvature equation:

$$
\kappa_{t}=\kappa^{2}
$$

2) Evolution by curvature: $a=\kappa, b=0$.

## Examples: geometric evolution, $\mathrm{d}=1$

Geometric evolution is local, $v$ depends locally on $f$. 1) Unit normal speed, $a=1, b=0$. Curvature equation:

$$
\kappa_{t}=\kappa^{2}
$$

2) Evolution by curvature: $a=\kappa, b=0$. Curvature equation

$$
\partial_{t} \kappa=\kappa^{3}+\frac{d^{2}}{d s^{2}} \kappa
$$

semilinear heat equation. Self-similar blow up, finite time extinction: $\frac{d}{d t} A=-\int_{f} \kappa^{2} d s, \int_{f} \kappa d s=1$, Schwartz:

$$
1+\frac{1}{2} \frac{d}{d t} A^{2} \leq 0
$$

## Examples: geometric evolution, $\mathrm{d}=1$

Geometric evolution is local, $v$ depends locally on $f$. 1) Unit normal speed, $a=1, b=0$. Curvature equation:

$$
\kappa_{t}=\kappa^{2}
$$

2) Evolution by curvature: $a=\kappa, b=0$. Curvature equation

$$
\partial_{t} \kappa=\kappa^{3}+\frac{d^{2}}{d s^{2}} \kappa
$$

semilinear heat equation. Self-similar blow up, finite time extinction: $\frac{d}{d t} A=-\int_{f} \kappa^{2} d s, \int_{f} \kappa d s=1$, Schwartz:

$$
1+\frac{1}{2} \frac{d}{d t} A^{2} \leq 0
$$

3) Evolution by arclength derivative of curvature: $a=\kappa_{s}, b=0$. Length $(A)$ is conserved $\frac{d}{d t} A=0$. Curvature equation $=$ modified KdV :

$$
\partial_{t} \kappa=\kappa^{2} \kappa_{s}+\frac{d^{3}}{d s^{3}} \kappa
$$

Does not blow up, completely integrable.

## Examples $d=1$ : incompressible fluid evolution

If $v$ is a fluid velocity, $v(x, y, t)=\nabla^{\perp} \Psi(x, y, t)$ and $f=z(\alpha, t)$, then

## Examples $d=1$ : incompressible fluid evolution

If $v$ is a fluid velocity, $v(x, y, t)=\nabla^{\perp} \Psi(x, y, t)$ and $f=z(\alpha, t)$, then

$$
a(\alpha, t)=\nabla^{\perp} \psi \cdot n=-\frac{1}{\left|z^{\prime}(\alpha, t)\right|} \partial_{\alpha}(\Psi(z(\alpha, t), t)
$$

## Examples $\mathrm{d}=1$ : incompressible fluid evolution

If $v$ is a fluid velocity, $v(x, y, t)=\nabla^{\perp} \Psi(x, y, t)$ and $f=z(\alpha, t)$, then

$$
a(\alpha, t)=\nabla^{\perp} \Psi \cdot n=-\frac{1}{\left|z^{\prime}(\alpha, t)\right|} \partial_{\alpha}(\Psi(z(\alpha, t), t)
$$

and

$$
b(\alpha, t)=\frac{1}{\left|z^{\prime}(\alpha, t)\right|} n \cdot \nabla \Psi(x, y, t)_{\mid(x, y)=z(\alpha, t)}
$$

The fluid obeys equations (Navier-Stokes, Euler, Hele-Shaw, Boussinesq, SQG, porous medium, etc). If the interface is passively carried, then $a$ and $b$ are given.

## Examples $\mathrm{d}=1$ : incompressible fluid evolution

If $v$ is a fluid velocity, $v(x, y, t)=\nabla^{\perp} \Psi(x, y, t)$ and $f=z(\alpha, t)$, then

$$
a(\alpha, t)=\nabla^{\perp} \Psi \cdot n=-\frac{1}{\left|z^{\prime}(\alpha, t)\right|} \partial_{\alpha}(\Psi(z(\alpha, t), t)
$$

and

$$
b(\alpha, t)=\frac{1}{\left|z^{\prime}(\alpha, t)\right|} n \cdot \nabla \Psi(x, y, t)_{\mid(x, y)=z(\alpha, t)}
$$

The fluid obeys equations (Navier-Stokes, Euler, Hele-Shaw, Boussinesq, SQG, porous medium, etc). If the interface is passively carried, then $a$ and $b$ are given. However, if the interface is dynamic, i.e. it influences the fluid, then the equations become nonlocal via stress balances at the interface.

## Examples $\mathrm{d}=1$ : incompressible fluid evolution

If $v$ is a fluid velocity, $v(x, y, t)=\nabla^{\perp} \Psi(x, y, t)$ and $f=z(\alpha, t)$, then

$$
a(\alpha, t)=\nabla^{\perp} \Psi \cdot n=-\frac{1}{\left|z^{\prime}(\alpha, t)\right|} \partial_{\alpha}(\Psi(z(\alpha, t), t)
$$

and

$$
b(\alpha, t)=\frac{1}{\left|z^{\prime}(\alpha, t)\right|} n \cdot \nabla \psi(x, y, t)_{\mid(x, y)=z(\alpha, t)}
$$

The fluid obeys equations (Navier-Stokes, Euler, Hele-Shaw, Boussinesq, SQG, porous medium, etc). If the interface is passively carried, then $a$ and $b$ are given. However, if the interface is dynamic, i.e. it influences the fluid, then the equations become nonlocal via stress balances at the interface. Simplest example: Hele-Shaw. $v=\nabla p$. The fluid domain $\Omega$ is bounded by the curve $f=z(\alpha, t)$.

## Examples $d=1$ : incompressible fluid evolution

If $v$ is a fluid velocity, $v(x, y, t)=\nabla^{\perp} \Psi(x, y, t)$ and $f=z(\alpha, t)$, then

$$
a(\alpha, t)=\nabla^{\perp} \Psi \cdot n=-\frac{1}{\left|z^{\prime}(\alpha, t)\right|} \partial_{\alpha}(\Psi(z(\alpha, t), t)
$$

and

$$
b(\alpha, t)=\frac{1}{\left|z^{\prime}(\alpha, t)\right|} n \cdot \nabla \Psi(x, y, t)_{\mid(x, y)=z(\alpha, t)}
$$

The fluid obeys equations (Navier-Stokes, Euler, Hele-Shaw, Boussinesq, SQG, porous medium, etc). If the interface is passively carried, then $a$ and $b$ are given. However, if the interface is dynamic, i.e. it influences the fluid, then the equations become nonlocal via stress balances at the interface. Simplest example: Hele-Shaw. $v=\nabla p$. The fluid domain $\Omega$ is bounded by the curve $f=z(\alpha, t)$. Irrotational flow, $\Delta p=0$, and stress balance $p=\gamma \kappa$ at the interface.

## Examples $d=1$ : incompressible fluid evolution

If $v$ is a fluid velocity, $v(x, y, t)=\nabla^{\perp} \Psi(x, y, t)$ and $f=z(\alpha, t)$, then

$$
a(\alpha, t)=\nabla^{\perp} \Psi \cdot n=-\frac{1}{\left|z^{\prime}(\alpha, t)\right|} \partial_{\alpha}(\Psi(z(\alpha, t), t)
$$

and

$$
b(\alpha, t)=\frac{1}{\left|z^{\prime}(\alpha, t)\right|} n \cdot \nabla \Psi(x, y, t)_{\mid(x, y)=z(\alpha, t)}
$$

The fluid obeys equations (Navier-Stokes, Euler, Hele-Shaw, Boussinesq, SQG, porous medium, etc). If the interface is passively carried, then $a$ and $b$ are given. However, if the interface is dynamic, i.e. it influences the fluid, then the equations become nonlocal via stress balances at the interface. Simplest example: Hele-Shaw. $v=\nabla p$. The fluid domain $\Omega$ is bounded by the curve $f=z(\alpha, t)$. Irrotational flow, $\Delta p=0$, and stress balance $p=\gamma \kappa$ at the interface. $\gamma=0$ ill-posed. $\gamma>0$, large data problem is open.

$$
a=n \cdot \nabla p(x, y, t)_{\mid(x, y)=z(\alpha, t)}
$$

is the Dirichlet-to-Neumann of $\gamma \kappa$.

## Example, $d=1$ : Irrotational inviscid flow

Irrotational 2d Euler flow. Then $v=\nabla \Phi$. Let $\Omega$ be the fluid domain and let $f=\partial \Omega$. Bernoulli:

$$
\partial_{t} \Phi+\frac{1}{2}|\nabla \Phi|^{2}+p=0
$$

in the fluid region $\Omega$. At the interface

$$
p=\gamma \kappa
$$

## Example, $d=1$ : Irrotational inviscid flow

Irrotational 2d Euler flow. Then $v=\nabla \Phi$. Let $\Omega$ be the fluid domain and let $f=\partial \Omega$. Bernoulli:

$$
\partial_{t} \Phi+\frac{1}{2}|\nabla \Phi|^{2}+p=0
$$

in the fluid region $\Omega$. At the interface

$$
p=\gamma \kappa
$$

Computing

$$
\begin{aligned}
a(\alpha, t) & =n \cdot \nabla \Phi(x, y, t)_{\mid(x, y)=z(\alpha, t)} \\
b(\alpha, t) & =\frac{1}{\left|z^{\prime}(\alpha, t)\right|^{2}} \partial_{\alpha}(\Phi(z(\alpha, t), t))
\end{aligned}
$$

The normal derivative $a=\Lambda \phi$, Dirichlet-to-Neumann, $\phi=\Phi_{\mid f}$. If $\gamma=0$ problem can be ill posed (Ebin). If $\gamma>0$, pinchoff computed (Day-Hinch-Lister), but problem largely open.

## Slender jets

Axisymmetric Navier-Stokes without swirl, with surface tension and gravity. Variables $r, x$. Interface:

$$
r=h(x, t)
$$

Boundary conditions:

$$
\left(p \mathbb{I}-\nu\left(\nabla v+\nabla v^{T}\right)\right) \cdot n=\gamma H n
$$

Assume: slender jet, i.e. distances across $r$ much smaller than along $x$. Eggers-Dupont '94: systematic derivation of equations for $h(x, t)$ and axial velocity $u(x, t)$

$$
\begin{aligned}
& \partial_{t} h+u \partial_{x} h=-\frac{1}{2} h \partial_{x} u, \\
& \partial_{t} u+u \partial_{x} u+\gamma \partial_{x}\left(\frac{1}{h}\right)=3 \nu \frac{\partial_{x}\left(h^{2} \partial_{x} u\right)}{h^{2}}-g,
\end{aligned}
$$

Finite time pinchoff, matching experiments (Nagel et al). Viscous forces cannot be neglected at pinchoff. Irrotationality fails.

## Compressible degenerate viscous flow, and active potentials

$$
\begin{aligned}
& \partial_{t} \rho+\partial_{x}(u \rho)=0 \\
& \partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)=-\partial_{x} p(\rho)+\partial_{x}\left(\mu(\rho) \partial_{x} u\right)+\rho f \\
& \left.(\rho, u)\right|_{t=0}=\left(\rho_{0}, u_{0}\right)
\end{aligned}
$$

## Compressible degenerate viscous flow, and active potentials

$$
\begin{aligned}
& \partial_{t} \rho+\partial_{x}(u \rho)=0 \\
& \partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)=-\partial_{x} p(\rho)+\partial_{x}\left(\mu(\rho) \partial_{x} u\right)+\rho f \\
& \left.(\rho, u)\right|_{t=0}=\left(\rho_{0}, u_{0}\right)
\end{aligned}
$$

with constitutive laws

$$
p(\rho)=c_{p} \rho^{\gamma}, \quad \mu(\rho)=c_{\mu} \rho^{\alpha}, \quad c_{p} \neq 0, c_{\mu}>0 .
$$

## Compressible degenerate viscous flow, and active potentials

$$
\begin{aligned}
& \partial_{t} \rho+\partial_{x}(u \rho)=0 \\
& \partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)=-\partial_{x} p(\rho)+\partial_{x}\left(\mu(\rho) \partial_{x} u\right)+\rho f \\
& \left.(\rho, u)\right|_{t=0}=\left(\rho_{0}, u_{0}\right)
\end{aligned}
$$

with constitutive laws

$$
p(\rho)=c_{p} \rho^{\gamma}, \quad \mu(\rho)=c_{\mu} \rho^{\alpha}, \quad c_{p} \neq 0, c_{\mu}>0 .
$$

Contain: viscous shallow water:

$$
p(\rho)=\frac{g}{2} \rho^{2} \quad \text { and } \quad \mu(\rho)=4 \nu \rho,
$$

## Compressible degenerate viscous flow, and active potentials

$$
\begin{aligned}
& \partial_{t} \rho+\partial_{x}(u \rho)=0, \\
& \partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)=-\partial_{x} p(\rho)+\partial_{x}\left(\mu(\rho) \partial_{x} u\right)+\rho f \\
& \left.(\rho, u)\right|_{t=0}=\left(\rho_{0}, u_{0}\right)
\end{aligned}
$$

with constitutive laws

$$
p(\rho)=c_{p} \rho^{\gamma}, \quad \mu(\rho)=c_{\mu} \rho^{\alpha}, \quad c_{p} \neq 0, c_{\mu}>0 .
$$

Contain: viscous shallow water:

$$
p(\rho)=\frac{g}{2} \rho^{2} \quad \text { and } \quad \mu(\rho)=4 \nu \rho,
$$

and Eggers-Dupont equations, with $\rho=h^{2}$ and

$$
p(\rho)=-\gamma \sqrt{\rho} \quad \text { and } \quad \mu(\rho)=3 \nu \rho .
$$

Note negative pressure law!

## Compressible degenerate viscous flow, and active potentials

$$
\begin{aligned}
& \partial_{t} \rho+\partial_{x}(u \rho)=0, \\
& \partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}\right)=-\partial_{x} p(\rho)+\partial_{x}\left(\mu(\rho) \partial_{x} u\right)+\rho f \\
& \left.(\rho, u)\right|_{t=0}=\left(\rho_{0}, u_{0}\right)
\end{aligned}
$$

with constitutive laws

$$
p(\rho)=c_{p} \rho^{\gamma}, \quad \mu(\rho)=c_{\mu} \rho^{\alpha}, \quad c_{p} \neq 0, c_{\mu}>0 .
$$

Contain: viscous shallow water:

$$
p(\rho)=\frac{g}{2} \rho^{2} \quad \text { and } \quad \mu(\rho)=4 \nu \rho,
$$

and Eggers-Dupont equations, with $\rho=h^{2}$ and

$$
p(\rho)=-\gamma \sqrt{\rho} \quad \text { and } \quad \mu(\rho)=3 \nu \rho .
$$

Note negative pressure law! Note $\gamma \neq \gamma$ !

## No singularity without pinchoff

Let $\mathbb{T}=[0,1]$. We consider periodic boundary conditions.
Theorem
(Drivas, Nguyen, Pasqualotto, C, '18). Let $f$ be smooth enough,

$$
f \in L^{2}\left(0, T ; H^{k-1}(\mathbb{T})\right.
$$

$k \geq 3, T>0$. Assume either one of
A) $c_{p}>0$ and $\alpha>\frac{1}{2}, \gamma \neq 1, \gamma \geq \alpha-\frac{1}{2}$ (covering viscous shallow water)

## No singularity without pinchoff

Let $\mathbb{T}=[0,1]$. We consider periodic boundary conditions.
Theorem
(Drivas, Nguyen, Pasqualotto, C, '18). Let $f$ be smooth enough,

$$
f \in L^{2}\left(0, T ; H^{k-1}(\mathbb{T})\right.
$$

$k \geq 3, T>0$. Assume either one of
A) $c_{p}>0$ and $\alpha>\frac{1}{2}, \gamma \neq 1, \gamma \geq \alpha-\frac{1}{2}$ (covering viscous shallow water) or
B) $c_{p}<0$ and $\frac{1}{2}<\alpha \leq \frac{3}{2}, \gamma<1,0<\gamma \leq \alpha$ (covering Eggers-Dupont equations).
Then solutions $(u, \rho)$ on $\left[0, T^{*}\right)$ satisfy

$$
\begin{aligned}
& \sup _{T \in\left[0, T^{*}\right)}\|\rho\|_{L^{\infty}\left(0, T ; H^{k}\right)}+\sup _{T \in\left[0, T^{*}\right)}\|u\|_{L^{\infty}\left(0, T ; H^{k}\right)} \\
& +\sup _{T \in\left[0, T^{*}\right)}\|u\|_{L^{2}\left(0, T ; H^{k+1}\right)}<\infty
\end{aligned}
$$

and can be uniquely continued past $T^{*}$ if

$$
\inf _{t \in\left[0, T^{*}\right)} \min _{x \in \mathbb{T}} \rho(x, t)>0 .
$$

## Elements of the proof

The proof is technical and uses higher energy metods building on: Energy

$$
e:=\frac{1}{2} \rho|u|^{2}+\pi(\rho), \quad \pi(\rho)=\rho \int_{\bar{\rho}}^{\rho} \frac{p(s)}{s^{2}} d s
$$

## Elements of the proof

The proof is technical and uses higher energy metods building on:
Energy

$$
e:=\frac{1}{2} \rho|u|^{2}+\pi(\rho), \quad \pi(\rho)=\rho \int_{\bar{\rho}}^{\rho} \frac{p(s)}{s^{2}} d s .
$$

balance,

$$
\frac{d}{d t} \int_{\mathbb{T}} e(x, t) d x=-\int_{\mathbb{T}} \mu(\rho)\left|\partial_{x} u\right|^{2} d x+\int_{\mathbb{T}} f_{\rho} u d x
$$

## Elements of the proof

The proof is technical and uses higher energy metods building on:
Energy

$$
e:=\frac{1}{2} \rho|u|^{2}+\pi(\rho), \quad \pi(\rho)=\rho \int_{\bar{\rho}}^{\rho} \frac{p(s)}{s^{2}} d s .
$$

balance,

$$
\frac{d}{d t} \int_{\mathbb{T}} e(x, t) d x=-\int_{\mathbb{T}} \mu(\rho)\left|\partial_{x} u\right|^{2} d x+\int_{\mathbb{T}} f_{\rho} u d x
$$

Bresch-Desjardins entropy

$$
s:=\frac{\rho}{2}\left|u+\frac{\partial_{x} \rho}{\rho^{2}} \mu(\rho)\right|^{2}+\pi(\rho) .
$$

## Elements of the proof

The proof is technical and uses higher energy metods building on:
Energy

$$
e:=\frac{1}{2} \rho|u|^{2}+\pi(\rho), \quad \pi(\rho)=\rho \int_{\bar{\rho}}^{\rho} \frac{p(s)}{s^{2}} d s .
$$

balance,

$$
\frac{d}{d t} \int_{\mathbb{T}} e(x, t) d x=-\int_{\mathbb{T}} \mu(\rho)\left|\partial_{x} u\right|^{2} d x+\int_{\mathbb{T}} f_{\rho} u d x
$$

Bresch-Desjardins entropy

$$
s:=\frac{\rho}{2}\left|u+\frac{\partial_{x} \rho}{\rho^{2}} \mu(\rho)\right|^{2}+\pi(\rho) .
$$

balance

$$
\frac{d}{d t} \int_{\mathbb{T}} s(x, t) d x=-\int_{\mathbb{T}}\left|\partial_{x} \rho\right|^{2} \mu(\rho) \frac{p^{\prime}(\rho)}{\rho^{2}} d x+\int_{\mathbb{T}} f \rho\left(u+\frac{\partial_{x} \rho}{\rho^{2}} \mu(\rho)\right) d x
$$

and

## The active potential

$$
w=-p(\rho)+\mu(\rho) \partial_{x} u
$$

If $f=0$ the force balance equation is

$$
\rho D_{t} u=\partial_{x} w,
$$

hence the name.

## The active potential

$$
w=-p(\rho)+\mu(\rho) \partial_{x} u
$$

If $f=0$ the force balance equation is

$$
\rho D_{t} u=\partial_{x} w,
$$

hence the name. The active potential obeys a nonlinear heat equation with nondegenerate or less degenerate diffusivity $\frac{\mu(\rho)}{\rho}$ than the momentum equation.

## The active potential

$$
w=-p(\rho)+\mu(\rho) \partial_{x} u .
$$

If $f=0$ the force balance equation is

$$
\rho D_{t} u=\partial_{x} w,
$$

hence the name. The active potential obeys a nonlinear heat equation with nondegenerate or less degenerate diffusivity $\frac{\mu(\rho)}{\rho}$ than the momentum equation. Bounds for the norms of the active potential are obtained using energy estimates, and used to close higher energy estimates for the momentum and density.

## Hele-Shaw

Two dimensional potential flow with surface tension. $\Omega \subset \mathbb{R}^{2}, u=\nabla p$, $f=\partial \Omega$, with

$$
\begin{array}{cc}
\Delta p=0, & \text { in } \Omega, \\
p=\gamma \kappa & \text { at } f
\end{array}
$$

## Hele-Shaw

Two dimensional potential flow with surface tension. $\Omega \subset \mathbb{R}^{2}, u=\nabla p$, $f=\partial \Omega$, with

$$
\begin{array}{cc}
\Delta p=0, & \text { in } \Omega, \\
p=\gamma \kappa & \text { at } f
\end{array}
$$

$V=$ area of $\Omega, A=$ length of $\partial \Omega$.

## Hele-Shaw

Two dimensional potential flow with surface tension. $\Omega \subset \mathbb{R}^{2}, u=\nabla p$, $f=\partial \Omega$, with

$$
\begin{array}{cc}
\Delta p=0, & \text { in } \Omega, \\
p=\gamma \kappa & \text { at } f
\end{array}
$$

$V=$ area of $\Omega, A=$ length of $\partial \Omega$. From previous general kinematics:

$$
\frac{d}{d t} V=\int_{f} a d S
$$

and

$$
\frac{d}{d t} A=-\int_{f} a \kappa d s
$$

## Hele-Shaw

Two dimensional potential flow with surface tension. $\Omega \subset \mathbb{R}^{2}, u=\nabla p$, $f=\partial \Omega$, with

$$
\begin{aligned}
& \Delta p=0, \quad \text { in } \Omega, \\
& p=\gamma \kappa \quad \text { at } f
\end{aligned}
$$

$V=$ area of $\Omega, A=$ length of $\partial \Omega$. From previous general kinematics:

$$
\frac{d}{d t} V=\int_{f} a d S
$$

and

$$
\frac{d}{d t} A=-\int_{f} a \kappa d s
$$

But

$$
a=\frac{\partial p}{\partial n}
$$

## Hele-Shaw

Two dimensional potential flow with surface tension. $\Omega \subset \mathbb{R}^{2}, u=\nabla p$, $f=\partial \Omega$, with

$$
\begin{gathered}
\Delta p=0, \quad \text { in } \Omega, \\
p=\gamma \kappa \quad \text { at } f
\end{gathered}
$$

$V=$ area of $\Omega, A=$ length of $\partial \Omega$. From previous general kinematics:

$$
\frac{d}{d t} V=\int_{f} a d S
$$

and

$$
\frac{d}{d t} A=-\int_{f} a \kappa d s
$$

But

$$
a=\frac{\partial p}{\partial n}
$$

so

$$
\frac{d V}{d t}=\int_{\partial \Omega} \frac{\partial p}{\partial n} d S=0
$$

and

$$
\frac{d A}{d t}=-\frac{1}{\gamma} \int_{\partial \Omega} p \frac{\partial p}{\partial n} d S=-\frac{1}{\gamma} \int_{\Omega}|\nabla p|^{2} d x<0
$$

## Hele-Shaw neck model

Area constant, length decreases: Disks stable (M. Pugh thesis),

## Hele-Shaw neck model

Area constant, length decreases: Disks stable (M. Pugh thesis), but a dumbell? Math: open problem. Thin neck forms.

## Hele-Shaw neck model

Area constant, length decreases: Disks stable (M. Pugh thesis), but a dumbell? Math: open problem. Thin neck forms. Model (C-Dupont-Goldstein-Kadanoff-Shelley-Zhou) 1993, using lubrication approximation: put $x$ along the neck and neglect $y$.

## Hele-Shaw neck model

Area constant, length decreases: Disks stable (M. Pugh thesis), but a dumbell? Math: open problem. Thin neck forms. Model (C-Dupont-Goldstein-Kadanoff-Shelley-Zhou) 1993, using lubrication approximation: put $x$ along the neck and neglect $y$.

$$
\left\{\begin{array}{l}
u=p_{x}, \\
p=\kappa=h_{x x}, \\
\partial_{t} h+\partial_{x}(h u)=0
\end{array}\right.
$$

## Hele-Shaw neck model

Area constant, length decreases: Disks stable (M. Pugh thesis), but a dumbell? Math: open problem. Thin neck forms. Model (C-Dupont-Goldstein-Kadanoff-Shelley-Zhou) 1993, using lubrication approximation: put $x$ along the neck and neglect $y$.

$$
\left\{\begin{array}{l}
u=p_{x}, \\
p=\kappa=h_{x x}, \\
\partial_{t} h+\partial_{x}(h u)=0
\end{array}\right.
$$

which is

$$
\partial_{t} h+\partial_{x}\left(h \partial_{x}^{3} h\right)=0
$$

for $x \in(-1,1)=I$ and $t \geq 0$.

## Hele-Shaw neck model

Area constant, length decreases: Disks stable (M. Pugh thesis), but a dumbell? Math: open problem. Thin neck forms. Model (C-Dupont-Goldstein-Kadanoff-Shelley-Zhou) 1993, using lubrication approximation: put $x$ along the neck and neglect $y$.

$$
\left\{\begin{array}{l}
u=p_{x}, \\
p=\kappa=h_{x x}, \\
\partial_{t} h+\partial_{x}(h u)=0
\end{array}\right.
$$

which is

$$
\partial_{t} h+\partial_{x}\left(h \partial_{x}^{3} h\right)=0
$$

for $x \in(-1,1)=I$ and $t \geq 0$. Boundary conditions:

$$
h( \pm 1, t)=1, \quad \partial_{x}^{2} h( \pm 1, t)=P>0
$$

## Hele-Shaw neck model

Area constant, length decreases: Disks stable (M. Pugh thesis), but a dumbell? Math: open problem. Thin neck forms. Model (C-Dupont-Goldstein-Kadanoff-Shelley-Zhou) 1993, using lubrication approximation: put $x$ along the neck and neglect $y$.

$$
\left\{\begin{array}{l}
u=p_{x}, \\
p=\kappa=h_{x x}, \\
\partial_{t} h+\partial_{x}(h u)=0
\end{array}\right.
$$

which is

$$
\partial_{t} h+\partial_{x}\left(h \partial_{x}^{3} h\right)=0
$$

for $x \in(-1,1)=I$ and $t \geq 0$. Boundary conditions:

$$
h( \pm 1, t)=1, \quad \partial_{x}^{2} h( \pm 1, t)=P>0 .
$$

Computations showed self-similar behavior with infinite time pinchoff. Other data lead to finite time pinchoff.

## Energy dissipation, steady states

The energy

$$
E(h)=\frac{1}{2} \int_{I}\left|\partial_{x} h(x)\right|^{2} d x+P \int_{I} h(x) d x
$$

decays on solutions

$$
\frac{d}{d t} E(h(t))=-D(h(t))
$$

where

$$
D(h)=\int_{I} h(x)\left|\partial_{x}^{3} h(x)\right|^{2} d x
$$

## Energy dissipation, steady states

The energy

$$
E(h)=\frac{1}{2} \int_{I}\left|\partial_{x} h(x)\right|^{2} d x+P \int_{I} h(x) d x
$$

decays on solutions

$$
\frac{d}{d t} E(h(t))=-D(h(t))
$$

where

$$
D(h)=\int_{I} h(x)\left|\partial_{x}^{3} h(x)\right|^{2} d x
$$

The steady solutions:

$$
h_{P}(x)=\frac{P}{2}\left(x^{2}-1\right)+1,
$$

if $P \leq 2$ and

$$
h_{P}(x)=\left\{\begin{array}{l}
\frac{P}{2}\left(|x|-x_{P}\right)^{2}, \quad \text { for } x_{P} \leq|x| \leq 1, \\
0, \quad \text { for }|x|<x_{P}
\end{array}\right.
$$

for $P>2$, with $x_{P}=1-\sqrt{\frac{2}{P}}$.

Weak solutions, uniqueness and variational characterization

$$
\partial_{x}\left(h \partial_{x}^{3} h\right)=\partial_{x}^{2}\left(h \partial_{x}^{2} h-\frac{1}{2}\left(\partial_{x} h\right)^{2}\right) .
$$

## Weak solutions, uniqueness and variational characterization

$$
\partial_{x}\left(h \partial_{x}^{3} h\right)=\partial_{x}^{2}\left(h \partial_{x}^{2} h-\frac{1}{2}\left(\partial_{x} h\right)^{2}\right) .
$$

Theorem
(CENV '17) The equation has global weak solutions $h(t)$ which are nonnegative, belong to $C^{2}$ near the boundary, satisfy the boundary conditions, and are in $L^{2}\left([0, T], H^{2}(I)\right)$.

## Weak solutions, uniqueness and variational characterization

$$
\partial_{x}\left(h \partial_{x}^{3} h\right)=\partial_{x}^{2}\left(h \partial_{x}^{2} h-\frac{1}{2}\left(\partial_{x} h\right)^{2}\right) .
$$

Theorem
(CENV '17) The equation has global weak solutions $h(t)$ which are nonnegative, belong to $C^{2}$ near the boundary, satisfy the boundary conditions, and are in $L^{2}\left([0, T], H^{2}(I)\right)$.

Theorem
(CENV '17) If $h \geq 0$ and $h \in H^{1}(I)$ with $h( \pm 1)=1$ then

$$
E(h) \geq E\left(h_{P}\right)
$$

Moreover, $E(h)=E\left(h_{P}\right)$ if and only if $h=h_{P}$.

## Weak solutions, uniqueness and variational characterization

$$
\partial_{x}\left(h \partial_{x}^{3} h\right)=\partial_{x}^{2}\left(h \partial_{x}^{2} h-\frac{1}{2}\left(\partial_{x} h\right)^{2}\right) .
$$

Theorem
(CENV '17) The equation has global weak solutions $h(t)$ which are nonnegative, belong to $C^{2}$ near the boundary, satisfy the boundary conditions, and are in $L^{2}\left([0, T], H^{2}(I)\right)$.

## Theorem

(CENV '17) If $h \geq 0$ and $h \in H^{1}(I)$ with $h( \pm 1)=1$ then

$$
E(h) \geq E\left(h_{P}\right) .
$$

Moreover, $E(h)=E\left(h_{P}\right)$ if and only if $h=h_{P}$.
Let $h_{n}$ be a sequence of nonnegative $H^{3}(I)$ functions satisfying the boundary conditions, which are uniformly bounded in $H^{1}(I)$ and satisfy $\lim _{n \rightarrow \infty} D\left(h_{n}\right)=0$. Then $h_{n}$ converge weakly in $H^{1}(I)$ to $h_{P}$ and strongly in $H_{l o c}^{3}\left(\left\{x \mid h_{P}(x)>0\right\}\right)$.

## Pinchoff

Theorem
(CENV) 1.If $P<2$ then $h_{P}$ is asymptotically stable in $H^{1}(I)$ :

$$
\left\|h(t)-h_{P}\right\|_{H^{1}(l)} \leq C\left\|h_{0}-h_{P}\right\|_{H^{1}(I)} e^{-c t}
$$

for $\left\|h_{0}-h_{P}\right\|_{H^{\prime}(I)} \leq \delta$. Moreover $h(t)$ converge to $h_{P}$ in $H^{3}(I)$.

## Pinchoff

Theorem
(CENV) 1.If $P<2$ then $h_{P}$ is asymptotically stable in $H^{1}(I)$ :

$$
\left\|h(t)-h_{P}\right\|_{H^{1}(I)} \leq C\left\|h_{0}-h_{P}\right\|_{H^{1}(I)} e^{-c t}
$$

for $\left\|h_{0}-h_{P}\right\|_{H^{\prime}(I)} \leq \delta$. Moreover $h(t)$ converge to $h_{P}$ in $H^{3}(I)$.
2. If $P \geq 2$, then starting from positive $h_{0} \in H^{3}(I)$ the solution pinches off in finite time or in infinite time. If the pinchoff is in infinite time then there exists a sequence of times $t_{n} \rightarrow \infty$ such that $h\left(t_{n}\right)$ converges to $h_{P}$ weakly in $H^{1}(I)$ and in $H_{l o c}^{3}\left(\left\{x \mid h_{P}(x)>0\right\}\right)$.

Local existence, blow up= pinchoff
Let

$$
X(T)=L^{\infty}\left([0, T] ; H^{3}(I)\right) \cap L^{2}\left([0, T] ; H^{5}(I)\right)
$$

## Local existence, blow up= pinchoff

Let

$$
X(T)=L^{\infty}\left([0, T] ; H^{3}(I)\right) \cap L^{2}\left([0, T] ; H^{5}(I)\right)
$$

## Theorem

(CENV '17) Let $h_{0} \in H^{3}(I)$ be a positive initial datum, satisfying the boundary conditions. Let $m(0)=\min _{l} h_{0}(x)>0$. There exists a positive time $T>0$ depending only on $P,\left\|h_{0}\right\|_{H^{3}(I)}$ and $m(0)$ such that the problem has a unique solution $h \in X(T)$ which satisfies $m(T)=\inf _{/ \times[0, T]} h(x, t)>0$.

## Local existence, blow up= pinchoff

Let

$$
X(T)=L^{\infty}\left([0, T] ; H^{3}(I)\right) \cap L^{2}\left([0, T] ; H^{5}(I)\right)
$$

## Theorem

(CENV '17) Let $h_{0} \in H^{3}(I)$ be a positive initial datum, satisfying the boundary conditions. Let $m(0)=\min _{1} h_{0}(x)>0$. There exists a positive time $T>0$ depending only on $P,\left\|h_{0}\right\|_{H^{3}(I)}$ and $m(0)$ such that the problem has a unique solution $h \in X(T)$ which satisfies $m(T)=\inf _{/ \times[0, T]} h(x, t)>0$. Moreover,

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m(T)^{-1},\left\|h_{0}\right\|_{H^{3}(I)}\right)
$$

holds with $\mathcal{F}$ a continuous increasing function depending only on $P$.

## Local existence, blow up= pinchoff

Let

$$
X(T)=L^{\infty}\left([0, T] ; H^{3}(I)\right) \cap L^{2}\left([0, T] ; H^{5}(I)\right)
$$

## Theorem

(CENV '17) Let $h_{0} \in H^{3}(I)$ be a positive initial datum, satisfying the boundary conditions. Let $m(0)=\min _{l} h_{0}(x)>0$. There exists a positive time $T>0$ depending only on $P,\left\|h_{0}\right\|_{H^{3}(I)}$ and $m(0)$ such that the problem has a unique solution $h \in X(T)$ which satisfies $m(T)=\inf _{/ \times[0, T]} h(x, t)>0$. Moreover,

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m(T)^{-1},\left\|h_{0}\right\|_{H^{3}(I)}\right)
$$

holds with $\mathcal{F}$ a continuous increasing function depending only on $P$.
Blow up requires $m(T)=0$.

## Local existence, blow up= pinchoff

Let

$$
X(T)=L^{\infty}\left([0, T] ; H^{3}(I)\right) \cap L^{2}\left([0, T] ; H^{5}(I)\right)
$$

## Theorem

(CENV '17) Let $h_{0} \in H^{3}(I)$ be a positive initial datum, satisfying the boundary conditions. Let $m(0)=\min _{l} h_{0}(x)>0$. There exists a positive time $T>0$ depending only on $P,\left\|h_{0}\right\|_{H^{3}(I)}$ and $m(0)$ such that the problem has a unique solution $h \in X(T)$ which satisfies $m(T)=\inf _{/ \times[0, T]} h(x, t)>0$. Moreover,

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m(T)^{-1},\left\|h_{0}\right\|_{H^{3}(I)}\right)
$$

holds with $\mathcal{F}$ a continuous increasing function depending only on $P$. Blow up requires $m(T)=0$. There exists a constant $C$ such that

$$
\int_{0}^{T} D(h(t)) d t \leq C\left(\left\|h_{0}\right\|_{H^{3}(l)}+1\right)
$$

## Local existence, blow up= pinchoff

Let

$$
X(T)=L^{\infty}\left([0, T] ; H^{3}(I)\right) \cap L^{2}\left([0, T] ; H^{5}(I)\right)
$$

## Theorem

(CENV '17) Let $h_{0} \in H^{3}(I)$ be a positive initial datum, satisfying the boundary conditions. Let $m(0)=\min _{l} h_{0}(x)>0$. There exists a positive time $T>0$ depending only on $P,\left\|h_{0}\right\|_{H^{3}(I)}$ and $m(0)$ such that the problem has a unique solution $h \in X(T)$ which satisfies $m(T)=\inf _{/ \times[0, T]} h(x, t)>0$. Moreover,

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m(T)^{-1},\left\|h_{0}\right\|_{H^{3}(I)}\right)
$$

holds with $\mathcal{F}$ a continuous increasing function depending only on $P$. Blow up requires $m(T)=0$. There exists a constant $C$ such that

$$
\int_{0}^{T} D(h(t)) d t \leq C\left(\left\|h_{0}\right\|_{H^{3}(l)}+1\right)
$$

so $T=\infty$ triggers convergence to $h_{P}$.

## Elements of proof, I

For the proof of convergence to $h_{P}$ of a sequence $h_{n}$ which is bounded in $H^{1}(I)$ and whose dissipation $D\left(h_{n}\right)$ converges to zero:

## Elements of proof, I

For the proof of convergence to $h_{P}$ of a sequence $h_{n}$ which is bounded in $H^{1}(I)$ and whose dissipation $D\left(h_{n}\right)$ converges to zero: From the $H^{1}$ a priori bounds there is enough compactness to deduce that the sequence converges weakly in $H^{1}(I)$ and strongly in $C(I)$ to a nonnegative continuous function $h_{\infty}(x)$.

## Elements of proof, I

For the proof of convergence to $h_{P}$ of a sequence $h_{n}$ which is bounded in $H^{1}(I)$ and whose dissipation $D\left(h_{n}\right)$ converges to zero: From the $H^{1}$ a priori bounds there is enough compactness to deduce that the sequence converges weakly in $H^{1}(I)$ and strongly in $C(I)$ to a nonnegative continuous function $h_{\infty}(x)$. This function is necessarily a parabola or a line segment on each interval where it does not vanish (from the vanishing of the dissipation).

## Elements of proof, I

For the proof of convergence to $h_{P}$ of a sequence $h_{n}$ which is bounded in $H^{1}(I)$ and whose dissipation $D\left(h_{n}\right)$ converges to zero: From the $H^{1}$ a priori bounds there is enough compactness to deduce that the sequence converges weakly in $H^{1}(I)$ and strongly in $C(I)$ to a nonnegative continuous function $h_{\infty}(x)$. This function is necessarily a parabola or a line segment on each interval where it does not vanish (from the vanishing of the dissipation). An argument shows that because $h_{\infty}$ is the vanishing dissipation limit of functions which are nonnegative at satisfy $h_{ \pm 1}=1$, it follows that it has to touch down at zero angle whenever it touches down. This then is used to imply that $h_{\infty}=h_{P}$.

## Elements of the proof II

Linear problem

$$
\partial_{t} h+\partial_{x}\left(g \partial_{x}^{3} h\right)=0
$$

with the same boundary conditions $\left(h( \pm 1, t)=1, \partial_{x}^{2} h( \pm 1, t)=P\right)$. Take $m_{g}=\inf _{I \times[0, T]} g(x, t)>0$.

## Elements of the proof II

Linear problem

$$
\partial_{t} h+\partial_{x}\left(g \partial_{x}^{3} h\right)=0
$$

with the same boundary conditions $\left(h( \pm 1, t)=1, \partial_{x}^{2} h( \pm 1, t)=P\right)$. Take $m_{g}=\inf _{/ \times[0, T]} g(x, t)>0$. Obtain bounds of the form

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m_{g}^{-1},\|g\|_{L^{\infty}\left(1 ; H^{2}(I)\right)},\left\|\partial_{t} g\right\|_{L^{1}\left(l ; L^{\infty}(l)\right)},\left\|h_{0}\right\|_{H^{3}(l)}\right)
$$

## Elements of the proof II

Linear problem

$$
\partial_{t} h+\partial_{x}\left(g \partial_{x}^{3} h\right)=0
$$

with the same boundary conditions $\left(h( \pm 1, t)=1, \partial_{x}^{2} h( \pm 1, t)=P\right)$. Take $m_{g}=\inf _{l \times[0, T]} g(x, t)>0$. Obtain bounds of the form

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m_{g}^{-1},\|g\|_{L^{\infty}\left(l ; H^{2}(l)\right)},\left\|\partial_{t} g\right\|_{L^{1}\left(l ; L^{\infty}(l)\right)},\left\|h_{0}\right\|_{H^{3}(l)}\right)
$$

The active potential

$$
w=g \partial_{x}^{3} h
$$

obeys

$$
w_{t}=-g \partial_{x}^{4} w+\frac{\partial_{t} g}{g} w
$$

with selfadjoint Neumann-Neumann boundary conditions $\partial_{x} w( \pm 1, t)=\partial_{x}^{3} w( \pm 1, t)=0$ which follow from the boundary conditions for $\partial_{t} h$.

## Elements of the proof II

Linear problem

$$
\partial_{t} h+\partial_{x}\left(g \partial_{x}^{3} h\right)=0
$$

with the same boundary conditions $\left(h( \pm 1, t)=1, \partial_{x}^{2} h( \pm 1, t)=P\right)$. Take $m_{g}=\inf _{/ \times[0, T]} g(x, t)>0$. Obtain bounds of the form

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m_{g}^{-1},\|g\|_{L^{\infty}\left(l ; H^{2}(l)\right)},\left\|\partial_{t} g\right\|_{L^{1}\left(l ; L^{\infty}(l)\right)},\left\|h_{0}\right\|_{H^{3}(l)}\right)
$$

The active potential

$$
w=g \partial_{x}^{3} h
$$

obeys

$$
w_{t}=-g \partial_{x}^{4} w+\frac{\partial_{t} g}{g} w
$$

with selfadjoint Neumann-Neumann boundary conditions $\partial_{x} w( \pm 1, t)=\partial_{x}^{3} w( \pm 1, t)=0$ which follow from the boundary conditions for $\partial_{t} h$. The active potential has therefore very good energy bounds, if $g>0$ and $\partial_{t} g$ is no too bad. Approximations, bootstraps, high energy bounds...

## Elements of the proof II

Linear problem

$$
\partial_{t} h+\partial_{x}\left(g \partial_{x}^{3} h\right)=0
$$

with the same boundary conditions $\left(h( \pm 1, t)=1, \partial_{x}^{2} h( \pm 1, t)=P\right)$. Take $m_{g}=\inf _{/ \times[0, T]} g(x, t)>0$. Obtain bounds of the form

$$
\|h\|_{X(T)} \leq \mathcal{F}\left(m_{g}^{-1},\|g\|_{L^{\infty}\left(l ; H^{2}(l)\right)},\left\|\partial_{t} g\right\|_{L^{1}\left(l ; L^{\infty}(l)\right)},\left\|h_{0}\right\|_{H^{3}(l)}\right)
$$

The active potential

$$
w=g \partial_{x}^{3} h
$$

obeys

$$
w_{t}=-g \partial_{x}^{4} w+\frac{\partial_{t} g}{g} w
$$

with selfadjoint Neumann-Neumann boundary conditions $\partial_{x} w( \pm 1, t)=\partial_{x}^{3} w( \pm 1, t)=0$ which follow from the boundary conditions for $\partial_{t} h$. The active potential has therefore very good energy bounds, if $g>0$ and $\partial_{t} g$ is no too bad. Approximations, bootstraps, high energy bounds...

## Thank You!

$$
4 \square>4 \text { 吕 } \downarrow 4 \equiv \downarrow 4 \equiv \Rightarrow \text { 三 }
$$

