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Crossing Numbers ?



Ernest H. Dudeney, Strand Magazine (46), 110, 1913 (original question)



Definition 
The (graph) crossing number, 𝑐𝑐𝑐𝑐(𝐺𝐺), of a graph 𝐺𝐺 is 
the smallest number of crossings in any drawing of 𝐺𝐺.

- drawn where?  Plane, surface, book, …
- drawn how? 

- how is the graph represented?
- how is the representation visualized?

- how are crossings counted?



Maximum Crossing Numbers

Definition 
𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐(𝐺𝐺) = largest # crossings in 

rectilinear (straight-line) drawing of G

𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐(𝐺𝐺) = largest # crossings in 
good drawing of G

𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐶𝐶4 = 𝑚𝑚𝑚𝑚𝑚𝑚−𝑐𝑐𝑐𝑐(𝐶𝐶4) =1



Maximum Crossing Numbers

𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐾𝐾𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚−𝑐𝑐𝑐𝑐(𝐾𝐾𝑛𝑛) =
𝑛𝑛
4



Polygons and Cycles

𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐶𝐶𝑛𝑛 = 𝑛𝑛 𝑛𝑛−3
2

for 𝑛𝑛 ≥ 4



Thrackle Bound

𝜗𝜗 𝐺𝐺 ≔
1
2
�
𝑢𝑢𝑢𝑢

(𝑚𝑚 − deg 𝑢𝑢 − deg 𝑣𝑣 + 1)

Lemma
𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝜗𝜗(𝐺𝐺)

Theorem (Piazza, Ringeisen, Stueckle [PRS88] )
𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐹𝐹 = 𝜗𝜗(𝐹𝐹) if 𝐹𝐹 is a forest

Theorem (Verbitsky [V08])
𝜗𝜗 𝐺𝐺
3

≤ 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐𝑜𝑜 𝐺𝐺 ≤ 𝜗𝜗(𝐺𝐺)



Maximum Crossing Number
Question: 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐𝑜𝑜 𝐺𝐺 = 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐(𝐺𝐺) ?

Answer: no. [CFKUVW17] 

What if G is bipartite? A tree?
yes for spiders and trees of diameter 
at most 4 [BET18, FHKLSS18]  

What if drawing is separated (all 
edges crossed by a line)?

Question: ∃ℝ-complete? 
Known to be NP-hard [BJL16]



Subgraph Monotonicity
Question: If 𝐺𝐺 is (induced) subgraph of 𝐻𝐻, 

then 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐(𝐺𝐺) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐(𝐻𝐻) ?

• True for 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐(𝐺𝐺) (even pseudolinear 𝑐𝑐𝑐𝑐)
• Conditions on 𝐺𝐺 which make this happen?



“Aura”/partial join Technique

• True for odd 𝑛𝑛 and 𝐶𝐶4
• True for 𝐶𝐶6 (pic on left)
• Replace edge with 𝑃𝑃3
• Add spokes

Theorem 
If 𝐶𝐶𝑛𝑛 is induced subgraph of 𝐻𝐻, 

then 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐶𝐶𝑛𝑛 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐻𝐻 .



“Aura”/partial join Technique
Theorem 

If 𝐶𝐶𝑛𝑛 is induced subgraph of 𝐻𝐻, 
then 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐶𝐶𝑛𝑛 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐻𝐻 .

Exercise: Show that
𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐻𝐻
for 𝐺𝐺 apex, and induced 
subgraph of 𝐻𝐻.

Question: Is monotonicity 
conjecture true for 
(induced) subgraphs?



Maximum Crossing Number

Question: Is there a formula for 𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐(𝑇𝑇)
if 𝑇𝑇 is a tree?

Theorem (Piazza, Ringeisen, Stueckle [PRS88])
𝑚𝑚𝑚𝑚𝑚𝑚-𝑐𝑐𝑐𝑐 𝐹𝐹 = 𝜗𝜗(𝐹𝐹) if 𝐹𝐹 is a forest

All caterpillars are thrackleable,
Subdivided 𝐾𝐾1,3 is not.

yes for spiders and trees of diameter 
at most 4 [BET18, FHKLSS18]  



Conway’s Thrackle Conjecture

If a graph can be drawn in the plane so 
that every two edges intersect once, 
then 𝐸𝐸 ≤ 𝑉𝑉 .

Current best bound: 𝐸𝐸 ≤ 1.3984 𝑉𝑉 (Fulek, Pach [FP17])
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Local Crossing Number
Definition 

The local crossing number, 𝑙𝑙𝑐𝑐𝑐𝑐(𝐷𝐷), of a drawing 𝐷𝐷 is the 
largest number of crossings along any edge in 𝐷𝐷.
The local crossing number, 𝑙𝑙𝑐𝑐𝑐𝑐(𝐺𝐺), of a graph 𝐺𝐺 is the 
smallest 𝑙𝑙𝑐𝑐𝑐𝑐(𝐷𝐷) of any drawing 𝐷𝐷 of 𝐺𝐺.

Example

𝑙𝑙𝑐𝑐𝑐𝑐 𝐾𝐾6 = 1 𝑙𝑙𝑐𝑐𝑐𝑐 𝐾𝐾7 = 2



Simple Local Crossing Number
Definition 

The simple local crossing number, 𝑙𝑙𝑐𝑐𝑐𝑐∗(𝐺𝐺), of a graph 
𝐺𝐺 is the smallest 𝑙𝑙𝑐𝑐𝑐𝑐(𝐷𝐷) of any good drawing 𝐷𝐷 of 𝐺𝐺.

Theorem (Pach, Radoičič, Tardos, Tóth [PRTT06])
If 𝑙𝑙𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 3, then 𝑙𝑙𝑐𝑐𝑐𝑐 𝐺𝐺 = 𝑙𝑙𝑐𝑐𝑐𝑐∗ 𝐺𝐺 .

Used for better lower bound in crossing lemma



Simple =/≠ Non-Simple

Question: can 𝑙𝑙𝑐𝑐𝑐𝑐∗(𝐺𝐺) be 
bounded in 𝑙𝑙𝑐𝑐𝑐𝑐(𝐺𝐺)?

Theorem
There is 𝐺𝐺 with 𝑙𝑙𝑐𝑐𝑐𝑐 𝐺𝐺 = 4 and 𝑙𝑙𝑐𝑐𝑐𝑐∗ 𝐺𝐺 = 5.



Local Crossing Number

Example

𝑙𝑙𝑐𝑐𝑐𝑐 𝐾𝐾6 = 1 𝑙𝑙𝑐𝑐𝑐𝑐 𝐾𝐾7 = 2

Question: 𝑙𝑙𝑐𝑐𝑐𝑐 𝐾𝐾𝑛𝑛 ? 
𝑙𝑙𝑐𝑐𝑐𝑐(𝐾𝐾𝑚𝑚,𝑛𝑛)? 

𝑙𝑙𝑐𝑐𝑐𝑐 𝐾𝐾𝑛𝑛 is known for all n (Ábrego, Fernandez-Merchant [AF17])
𝑙𝑙𝑐𝑐𝑐𝑐(𝐾𝐾𝑚𝑚,𝑛𝑛) is known for m = 3, 4 [ADFLSS17].



Local Crossing Number Literature

[AF17] Bernardo M. Ábrego and Silvia Fernández-Merchant. The rectilinear local crossing number of Kn. J. 
Combin. Theory Ser. A, 151:131�145, 2017.
[ADFLSS17] Bernardo M. Ábrego, Kory Dondzila, Silvia Fernández-Merchant, Evgeniya Lagoda, Seyed Sajjadi, 
and Yakov Sapozhnikov. On the rectilinear local crossing number of K(m,n). Journal of Information Processing, 
25:542�550, August 2017
[PRTT06] János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the crossing lemma by finding 
more crossings in sparse graphs. Discrete Comput. Geom., 36(4):527�552, 2006



Independent Crossing Number

Definition
The independent crossing number, 𝑐𝑐𝑐𝑐−(𝐺𝐺), of a 
graph G is the smallest number of crossings between 
independent edges in any drawing of G.

Lemma 𝑐𝑐𝑐𝑐− 𝐺𝐺 = 𝑐𝑐𝑐𝑐(𝐺𝐺)
Proof

• fix drawing D of G with smallest number of 
crossings

• D cannot have dependent crossings
• so 𝑐𝑐𝑐𝑐− 𝐷𝐷 = 𝑐𝑐𝑐𝑐(𝐷𝐷)



Independent Crossing Number

Definition 
The independent crossing number, 𝑐𝑐𝑐𝑐−(𝐺𝐺), of a 
graph G is the smallest number of crossings between 
independent edges in any drawing of G.

Lemma 𝑐𝑐𝑐𝑐− 𝐺𝐺 = 𝑐𝑐𝑐𝑐(𝐺𝐺)
Proof 

• fix drawing D of G with smallest number of 
crossings

• D cannot have dependent crossings
• so 𝑐𝑐𝑐𝑐− 𝐷𝐷 = 𝑐𝑐𝑐𝑐(𝐷𝐷)

Open



Independent Crossing Number

• bound 𝑐𝑐𝑐𝑐 in terms of 𝑐𝑐𝑐𝑐− (best bound quadratic)
• bound 𝑐𝑐𝑐𝑐(𝐷𝐷) of a 𝑐𝑐𝑐𝑐− 𝐺𝐺 -minimal drawing 

(exponential bound possible)
• easier for 𝐺𝐺 = 𝐾𝐾𝑛𝑛 ? 

Question: 𝑐𝑐𝑐𝑐 𝐺𝐺 = 𝑐𝑐𝑐𝑐−(𝐺𝐺) ? 



Conjecture: 
If a graph can be drawn on a surface
without independent crossings. Then
graph can be embedded in surface.

Independent Crossing Number

Known for 
plane (Hanani-Tutte theorem)
projective plane (HT for PP)
HT fails for orientable surfaces of genus ≥ 4. 



Rectilinear Crossing number

Definition
The rectilinear crossing number, 𝑐𝑐𝑐𝑐(𝐺𝐺), of a graph G is 
the smallest number of crossings in any straight-line 
drawing of G.

Theorem (Fary, 48; Wagner, 36) 
If G is planar, then G has a planar straight-line 
drawing. 

Theorem (Bienstock, Dean, 93)
𝑐𝑐𝑐𝑐 𝐺𝐺 = 𝑐𝑐𝑐𝑐(𝐺𝐺) for 𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 3.  



Independent Crossing Number 
Literature

[S10] Marcus Schaefer. Removing Incident Crosssings. Manuscript, 2010.
[



Rectilinear Crossing number

Definition
The rectilinear crossing number,𝑐𝑐𝑐𝑐(𝐺𝐺), of a graph G is 
the smallest number of crossings in any straight-line 
drawing of G.

Theorem (Fary, 48; Wagner, 36) 
If G is planar, then G has a planar straight-line 
drawing. 

Theorem (Bienstock, Dean, 93)
𝑐𝑐𝑐𝑐 𝐺𝐺 = 𝑐𝑐𝑐𝑐(𝐺𝐺) for 𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 3.  

?



Conjectures and Question

Conjecture (Harary, Kainen, Schwenk [HLS73])
𝑐𝑐𝑐𝑐 𝐶𝐶𝑚𝑚 □ 𝐶𝐶𝑛𝑛 = 𝑛𝑛(𝑚𝑚 − 2) for 𝑛𝑛 ≥ 𝑚𝑚 ≥ 3.

Conjecture (Hernández-Vélez, Leaños, Salazar [HLS17] )
𝑐𝑐𝑐𝑐 𝐺𝐺 can be bounded in 𝑐𝑐𝑐𝑐(𝐺𝐺) for 3-connected 𝐺𝐺.

Also open for 𝑐𝑐𝑐𝑐 𝐺𝐺 . For that case, partial 
results known.

Question: What’s the complexity of 𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 4?

Question: Can 𝑐𝑐𝑐𝑐 be bounded in �𝑐𝑐𝑐𝑐(𝐺𝐺)?



Grid Drawings

Question: Is there an 𝑓𝑓 so that 
if 𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝑘𝑘 and 𝑛𝑛 = |𝑉𝑉 𝐺𝐺 |, then 
𝐺𝐺 can be realized on a 𝑓𝑓 𝑘𝑘 𝑛𝑛 × 𝑓𝑓 𝑘𝑘 𝑛𝑛 grid?

Alternatively: on an 𝑛𝑛𝑓𝑓 𝑘𝑘 × 𝑛𝑛𝑓𝑓 𝑘𝑘 grid?

Question: If we restrict drawing 𝐷𝐷 of 𝐺𝐺 to a 𝑡𝑡 × 𝑡𝑡 grid, 
what is the best 𝑐𝑐𝑐𝑐(𝐷𝐷) we can guarantee?

If 𝑡𝑡 = Ω(22𝑛𝑛), then we can achieve 𝑐𝑐𝑐𝑐(𝐺𝐺).
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Counting Crossings

𝑐𝑐𝑐𝑐 𝐷𝐷 = # of crossings in 𝐷𝐷

𝑝𝑝𝑐𝑐𝑐𝑐 𝐷𝐷 = #r of pairs of edges crossing in 𝐷𝐷

𝑜𝑜𝑐𝑐𝑐𝑐 𝐷𝐷 = # of pairs of edges crossing oddly in 𝐷𝐷

𝑜𝑜𝑐𝑐𝑐𝑐− 𝐷𝐷 = # of pairs of independent edges crossing 
oddly in 𝐷𝐷

Drawing 𝐷𝐷 of 𝐾𝐾4

𝑜𝑜𝑐𝑐𝑐𝑐− 𝐺𝐺 ≤ 𝑜𝑜𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝑐𝑐𝑐𝑐(𝐺𝐺)



Theorem (Hanani, 1934; Tutte, 1970)
𝑜𝑜𝑐𝑐𝑐𝑐− 𝐺𝐺 = 0 implies 𝑐𝑐𝑐𝑐 𝐺𝐺 = 0

The Hanani-Tutte Theorem



𝑜𝑜𝑐𝑐𝑐𝑐− 𝐺𝐺 = 𝑜𝑜𝑐𝑐𝑐𝑐 𝐺𝐺 = 𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺 = 𝑐𝑐𝑐𝑐 𝐺𝐺 ?

There is G so that 𝑜𝑜𝑐𝑐𝑐𝑐− 𝐺𝐺 < 𝑜𝑜𝑐𝑐𝑐𝑐 𝐺𝐺 < 𝑝𝑝𝑐𝑐𝑐𝑐(𝐺𝐺)
Answer: Not all. [FPSS12]

Conjecture 𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺 = 𝑐𝑐𝑐𝑐 𝐺𝐺



Bounds?
Theorem (Matousek [M14])

𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺
3
2 log2(𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺 )

Theorem (Pelsmajer, Schaefer, Štefankovič [PSS10])

𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 2𝑜𝑜𝑐𝑐𝑐𝑐− 𝐺𝐺
2

log2 𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺 can be improved to log 𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺
using string graph separator by Lee.

Question: sub-quadratic bounds for 𝑐𝑐𝑐𝑐 in 𝑜𝑜𝑐𝑐𝑐𝑐−?



Crossing Lemma for 𝑝𝑝𝑐𝑐𝑐𝑐(𝐺𝐺)

𝐺𝐺𝐺 = (𝑉𝑉𝐺,𝐸𝐸𝐺)

remove each vertex of 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with prob. 𝑝𝑝 i.a.r.

can replace cr with pcr?

𝑐𝑐𝑐𝑐 𝐺𝐺𝐺 ≥ 𝐸𝐸′ − 3|𝑉𝑉′|

𝑝𝑝4𝑐𝑐𝑐𝑐 𝐺𝐺 ≥ 𝑝𝑝2 𝐸𝐸 − 3𝑝𝑝|𝑉𝑉|

𝑐𝑐𝑐𝑐 𝐺𝐺 ≥ 𝑝𝑝−2 𝐸𝐸 − 3𝑝𝑝−3|𝑉𝑉|

𝔼𝔼 𝑐𝑐𝑐𝑐 𝐺𝐺′ ≥ 𝔼𝔼 𝐸𝐸′ − 3𝔼𝔼( 𝑉𝑉′ )

e.g. 𝑝𝑝 = 4 𝑉𝑉 / 𝐸𝐸
𝑐𝑐𝑐𝑐 𝐺𝐺 ≥

𝐸𝐸 3

64 𝑉𝑉 2



Improved Crossing Lemma for 𝑝𝑝𝑐𝑐𝑐𝑐+(𝐺𝐺)

use 𝑙𝑙𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 2, then 𝑙𝑙𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝑙𝑙𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺

Theorem (Ackerman, Schaefer  [AS14])

𝑝𝑝𝑐𝑐𝑐𝑐+ 𝐺𝐺 ≥ 1
32.4

𝑚𝑚3

𝑛𝑛2
for 𝑚𝑚 ≥ 6.75 𝑛𝑛.

𝑝𝑝𝑐𝑐𝑐𝑐+: no adjacent crossings allowed

Questions: 
𝑙𝑙𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 3, then 𝑙𝑙𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 𝑙𝑙𝑝𝑝𝑐𝑐𝑐𝑐 𝐺𝐺
𝑙𝑙𝑝𝑝𝑐𝑐𝑐𝑐− 𝐺𝐺 ≤ 1, then 𝑙𝑙𝑐𝑐𝑐𝑐 𝐺𝐺 ≤ 1?



Odd and Pair Crossing Number 
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[AS14] Eyal Ackerman and Marcus Schaefer. A crossing lemma for the pair-crossing number. Graph Drawing, 
222-233, 2014.
[FPSS12] Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič, Adjacent crossings do 
matter. J. Graph Algorithms Appl., 16(3):759�782, 2012.
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Open Questions on Crossing Numbers

[A09] Dan Archdeacon. Open problems. In Topics in topological graph theory, volume 128
of Encyclopedia Math. Appl., Cambridge, 2009.
[BMP05] Peter Brass, William Moser, and János Pach. Research Problems in Discrete Geometry. 
Springer, New York, 2005.
[PT00] János Pach and Géza Tóth. Thirteen problems on crossing numbers. Geombinatorics, 
9(4):194�207, 2000.
[S17] Marcus Schaefer. The Graph Crossing Number and its Variants: A Survey, Electronic Journal 
of Combinatorics, 2017.
[S16] László A. Székely. Turán's brick factory problem: The status of the conjectures of 
Zarankiewicz and Hill. In Ralucca Gera, Stephen Hedetniemi, and Craig Larson, editors, Graph 
Theory: Favorite Conjectures and Open Problems, Springer, 2016.

Also: 
• http://www.openproblemgarden.org/category/topological_graph_theory
• http://www.cems.uvm.edu/TopologicalGraphTheoryProblems/

http://www.openproblemgarden.org/category/topological_graph_theory
http://www.cems.uvm.edu/TopologicalGraphTheoryProblems/


From de la Vera Cruz’ Recognitio Summularum, 1554 (http://www.primeroslibros.org/
browse.html)

Question: What is the 
oldest reference to 
crossing numbers?



From Mary L. Northway. A Method for Depicting Social Relationships Obtained by 
Sociometric Testing. Sociometry, Vol. 3, No. 2 (Apr., 1940), pp. 144-150
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