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Solutions to Last Month's Puzzled’.

146.—WATER, GAS, AND ELECTRICITY.
ACCORDING to the conditions, in the strict sense in
which one at first
understands them,
there is no pos-
sible solution to
this puzzle. In
such a dilemma
one always has to
look for some
verbal quibble or
trick. If the owner
of house A will
allow the water
company to run
their piﬁ) for house C through his property (and we
are not bound to assume that he would object), then
the difficulty is got over, as shown in our illustration.
It will be seen that the dotted line from W to C passes
through house A, but no pipe ever crosses another pipe.

Ernest H. Dudeney, Strand Magazine (46), 110, 1913 (original question)



Definition
The (graph) crossing number, cr(G), of a graph G is
the smallest number of crossings in any drawing of G.

- drawn where? Plane, surface, book, ...
- drawn how?

- how is the graph represented?

- how is the representation visualized?
- how are crossings counted?



Maximum Crossing Numbers

Definition
max-cr(G) = largest # crossings in
rectilinear (straight-line) drawing of G

X

max-cr(G) = largest # crossings in
good drawing of G

max-cr(C,) = max-cr(C,) =1



Maximum Crossing Numbers

max-cr(K,,) = max-cr(K,) = (Z)



Polygons and Cycles

S A

n(n—-3)

n(n —3)/2 if n 1s odd,

max-er(Chn ) = { n(n —4)/2+1 ifn is even.



Thrackle Bound

1
9(G) = EE(m — deg(u) —deg(v) + 1)

Lemma
max-cr(G) < 9(G)

Theorem (Piazza, Ringeisen, Stueckle [PRS88] )
max-cr(F) = 9(F) if F is a forest

Theorem (Verbitsky [V08])
ﬁ(G) < max-cr (G) < 9(G)



Maximum Crossing Number

Question: max-cr (G) = max-cr(G) ?

Answer: no. [CFKUVW17]

What if G is bipartite? A tree? What if drawing is separated (all
yes for spiders and trees of diameter edges crossed by a line)?
at most 4 [BET18, FHKLSS18]

Question: 3R-complete?
Known to be NP-hard [BJL16]



Subgraph Monotonicity

Question: If G is (induced) subgraph of H,
then max-cr(G) < max-cr(H) ?

* True for max-cr(G) (even pseudolinear cr)
 Conditions on G which make this happen?



“Aura” /partial join Technique

Theorem
If C,, is induced subgraph of H,
then max-cr(C,) < max-cr(H).

e True foroddn and C,
e True for Cg (pic on left)
* Replace edge with P;

e Add spokes




“Aura” /partial join Technique

Theorem
If C,, is irdueed subgraph of H,
then max-cr(C,)) < max-cr(H).

Question: Is monotonicity
conjecture true for
(induced) subgraphs?

Exercise: Show that
max-cr(G) < max-cr(H)
for G apex, and induced
subgraph of H.




Maximum Crossing Number

Question: Is there a formula for max-cr(T)
if T is a tree?

Theorem (Piazza, Ringeisen, Stueckle [PRS88])
max-cr(F) = 9(F) if F is a forest

All caterpillars are thrackleable,
Subdivided Kj 3 is not.

yes for spiders and trees of diameter
at most 4 [BET18, FHKLSS18]



Conway’s Thrackle Conjecture

If a graph can be drawn in the plane so

that every two edges intersect once,
then |E| < |V].

Current best bound: |E| < 1.3984|V| (Fulek, Pach [FP17])
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Local Crossing Number

Definition

The local crossing number, lcr(D), of a drawing D is the
largest number of crossings along any edge in D.

The local crossing number, lcr(G), of a graph G is the
smallest lcr(D) of anv drawing D of G.




Simple Local Crossing Number

Definition
The simple local crossing number, lcr™(G), of a graph
G is the smallest [cr(D) of any good drawing D of (.

Theorem (Pach, Radoicic, Tardos, Toth [PRTT06])
If lcr(G) < 3, then lcr(G) = ler™(G).

Used for better lower bound in crossing lemma



Simple =/# Non-Simple

Theorem
There is G with ler(G) = 4 and lcr*(G) = 5.

NP
Question: can lcr™(G) be

. bounded in lcr(G)?




Local Crossing Number

Question: Ilcr(K,)?
ler(Kmn)?

E(Kn) is known for all n (Abrego, Fernandez-Merchant [AF17])
ler (K ) is known for m = 3, 4 [ADFLSS17].
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Independent Crossing Number

Definition
The independent crossing number, cr_(G), of a

graph G is the smallest number of crossings between
independent edges in any drawing of G.

A /’
Lemma cr_(G) = cr(G) >< X\
Proof e b
e fix drawing D of G with smallest number of
crossings

* D cannot have dependent crossings
e socr_(D) =cr(D)



Independent Crossing Number
Definition

The independent crossing number, cr_(G), of a
graph Gi« ™ ""ast number of crossings between

independ Open n any drawing of G.

| y
Lemma cr_(G) = cr(G) Y 3

o/‘- ith smallest number of




Independent Crossing Number

Question: c¢r(G) = cr_(G) ?

 bound cr in terms of cr_ (best bound quadratic)

e bound cr(D) of a cr_(G)-minimal drawing
(exponential bound possible)

e easierforG = K, ?



Independent Crossing Number

Conjecture:
If a graph can be drawn on a surface
without independent crossings. Then
graph can be embedded in surface.

Known for
plane (Hanani-Tutte theorem)
projective plane (HT for PP)
HT fails for orientable surfaces of genus = 4.



Rectilinear Crossing number

Definition
The rectilinear crossing number, cr(G), of a graph G is

the smallest number of crossings in any straight-line
drawing of G.

Theorem (Fary, 48; Wagner, 36)

If G is planar, then G has a planar straight-line
drawing.

Theorem (Bienstock, Dean, 93)
cr(G) = cr(G) forer(G) < 3.



Independent Crossing Number
Literature
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Rectilinear Crossing number

Definition
The rectilinear crossing number,cr (G), of a graph G is

the smallest number of crossings in any straight-line
drawing of G.

Theorem (Fary, 48; Wagner, 36)

If G is planar, then G has a planar straight-line

drawing. ,

Theorem (Bienstock, Dean, 93) /
cr(G) = cr(G) forer(G) < 3.



Conjectures and Question

Conjecture (Harary, Kainen, Schwenk [HLS73])
cr(C,0C,) =n(m—2)forn=>m = 3.

Also open for cr(G). For that case, partial
results known.

Conjecture (Hernandez-Vélez, Leanos, Salazar [HLS17] )
cr(G) can be bounded in cr(G) for 3-connected .

Question: Can cr be bounded in ¢ (G)?

Question: What’s the complexity of cr(G) < 47?



Grid Drawings

Question: Is there an f so that
if cr(G) < kandn = |[V(G)], then
G can be realized on a f(k)n X f(k)n grid?

Alternatively: on an nf ) x n/ ) grid?

Question: If we restrict drawing D of G toa t X t grid,
what is the best cr(D) we can guarantee?

If t = Q(22"), then we can achieve ¢cr(G).
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Counting Crossings

S

Drawing D of K,

cr(D) = # of crossings in D
pcr(D) = #r of pairs of edges crossing in D

ocr(D) = # of pairs of edges crossing oddly in D

ocr_(D) = # of pairs of independent edges crossing
oddly in D

ocr_(G) < ocr(G) < pcr(G) < cr(G)



The Hanani-Tutte Theorem

Theorem (Hanani, 1934; Tutte, 1970)
ocr_(G) = 0 impliescr(G) =0



ocr_(G) = ocr(G) = pcr(G) = cr(G) ?

Answer: Not all. [FPSS12]
There is G so that ocr_(G) < ocr(G) < pcr(G)

Conjecture pcr(G) = cr(G)



Bounds?

Theorem (Matousek [M14])
3
cr(G) < per(G)z log? (per(G))

log?(pcr(G)) can be improved to log(pcr(G))
using string graph separator by Lee.

Theorem (Pelsmajer, Schaefer, Stefankovi¢ [PSS10])

cr(G) < (ZOCE‘ (G))

Question: sub-quadratic bounds for cr in ocr_?



Crossing Lemma for pcr(G)

remove each vertex of G = (V/, E) with prob. pi.a.r.
v

! > N __ /

/

E(cr(G")) = E(IE']) — 3E(IV'])

p*cr(G) = p?|E| — 3p|V]
can replace cr with pcr?

cr(G) = p~?|E| = 3p~3|V|

E|3 e.g.p = 4|V|/|E]

G) >
cr )_64|V|2




Improved Crossing Lemma for pcr, (G)

cr.: no adjacent crossings allowed
+

Theorem (Ackerman, Schaefer [AS14])

1 m

3
pcry (G) = 4z form = 6.75n.

n2

use Ilpcr(G) < 2, then ler(G) < lpcr(G)

Questions:
Ipcr(G) < 3, then lcr(G) < lpcr(G)
Ipcr_(G) < 1, thenlcr(G) < 17
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Thank You
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http://www.openproblemgarden.org/category/topological_graph_theory
http://www.cems.uvm.edu/TopologicalGraphTheoryProblems/
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From de la Vera Cruz’ Recognitio Summularum, 1554 (http://www.primeroslibros.org/
browse.html)



In actual practice, especially with large
groups, it has been convenient to use counters with
each subject's name and score written on them. (White
poker chips have served admirably.) These are moved
in the circles to which their score belongs and ar-
ranged to get the best "fit" among the individuals,
i.e., to have as few long lines and crossing lines as
possible. In plotting the diagram when public schgol

From Mary L. Northway. A Method for Depicting Social Relationships Obtained by
Sociometric Testing. Sociometry, Vol. 3, No. 2 (Apr., 1940), pp. 144-150
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