# Crossing Numbers and Stress of Random Graphs 

Markus Chimani<br>Theoretical CS

Hanna Döring<br>Stochastics

Matthias Reitzner
Stochastics


## Crossing Numbers

Crossing Number
$\operatorname{cr}(G)$


$$
\operatorname{cr}\left(K_{8}\right)=18
$$

Rectilinear Crossing Number $\overline{c r}(G)$


$$
\overline{\operatorname{cr}}\left(K_{8}\right)=19
$$

Observation. $\operatorname{cr}(G) \leq \overline{\operatorname{cr}}(G)$

## Crossing Number Approximations

There is no PTAS [Cabello 13]

- Is there any constant-factor appriximation for general graphs?
- ...what if the graph has bounded maximum degree $\Delta$ ?


## Crossing Number Approximations

There is no PTAS [Cabello 13]

- Is there any constant-factor appriximation for general graphs?
- ...what if the graph has bounded maximum degree $\Delta$ ?

Known approximations:

| graph class | bounded $\Delta$ | ratio |
| :--- | :---: | :--- |
| general | $\checkmark$ | $\mathcal{O}\left(n^{9 / 10} \cdot\right.$ polylog $\left.n\right)$ |
| $m=\Theta\left(n^{2}\right)$ | - | $\mathcal{O}(1)$ |
| bounded genus | $\checkmark$ | $\mathcal{O}(1)$ |
| bounded number of <br> graph elements away <br> from planarity | $\checkmark$ | $\mathcal{O}(1)$ |
| bounded pathwidth | - | $\mathcal{O}(1)$ |

## Random Geometric Graphs

Geometric Graph (unit-disc/-ball graph): Given: points $V \subset \mathbb{R}^{d}$, threshold $\delta$. Connect points iff their Euclidean distance is at most $\delta$.


## Random Geometric Graphs

Geometric Graph (unit-disc/-ball graph): Given: points $V \subset \mathbb{R}^{d}$, threshold $\delta$. Connect points iff their Euclidean distance is at most $\delta$.

Random Geometric Graph: Consider a Poisson point process to generate $V$.

## Random Geometric Graphs

Geometric Graph (unit-disc/-ball graph): Given: points $V \subset \mathbb{R}^{d}$, threshold $\delta$. Connect points iff their Euclidean distance is at most $\delta$.

Random Geometric Graph: Consider a Poisson point process to generate $V$.

## More formally:

- Convex set $W \subset \mathbb{R}^{d}$ with $\operatorname{vol}_{d}(W)=1$
- Poisson process of intensity $t \rightarrow \mathbb{E} n=t$.
- Choose $n$ points $V \subset W$ independently according to uniform distribution.
- Simpler: $W$ is a ball $\rightarrow V$ is rotation invariant
- Consider threshold $\delta$ dependent on $t \rightarrow \delta_{t}$


## Random Geometric Graphs

Geometric Graph (unit-disc/-ball graph): Given: points $V \subset \mathbb{R}^{d}$, threshold $\delta$. Connect points iff their Euclidean distance is at most $\delta$.

Random Geometric Graph: Consider a Poisson point process to generate $V$.

## More formally:

- Convex set $W \subset \mathbb{R}^{d}$ with vol $_{d}(W)=1$
- Poisson process of intensity $t \rightarrow \mathbb{E} n=t$.
- Choose $n$ points $V \subset W$ independently according to uniform distribution.
- Simpler: $W$ is a ball $\rightarrow V$ is rotation invariant
- Consider threshold $\delta$ dependent on $t \rightarrow \delta_{t}$


Remark: Poisson simplifies formulae. We can de-Poissonize: simply pick $n$ uniform random independent points in $W$.

## Projection Algorithm



## Projection Algorithm


$G_{0}=$ abstract graph of $G$ : Relation between $\overline{\operatorname{cr}}\left(G_{0}\right)$ and $\overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)$ ?

## Stochastic Tools: U-Statistics

measurable, non-negative, real-valued, independent of other points
U-statistic $=$ measure $U(k, f):=\sum_{\mathbf{v} \in V_{\neq}^{k}} f(\mathbf{v})$

- $k$-tuple of pairwise distinct points


## Stochastic Tools: U-Statistics

measurable, non-negative, real-valued, independent of other points
U-statistic $=$ measure $U(k, f):=\sum_{\mathbf{v} \in V_{\neq}^{k}} f(\mathbf{v})$
L-tuple of pairwise distinct points
Those are U-statistics:

- of order $k=2$ : Number of edges in $G$

$$
m=\sum_{v, u \in V, v \neq u} \mathbb{1}\left(\|v-u\| \leq \delta_{t}\right) / 2
$$

## Stochastic Tools: U-Statistics

measurable, non-negative, real-valued, independent of other points
$\mathbf{U}$-statistic $=$ measure $U(k, f):=\sum_{\mathbf{v} \in V_{\neq}^{k}} f(\mathbf{v})$
k-tuple of pairwise distinct points
Those are U-statistics:

- of order $k=2$ : Number of edges in $G$

$$
m=\sum_{v, u \in V, v \neq u} \mathbb{1}\left(\|v-u\| \leq \delta_{t}\right) / 2
$$

- of order $k=4$ : Number of crossings in $G$ after projecting onto $L$

$$
\overline{\operatorname{cr}\left(\left.G\right|_{L}\right)=\sum_{\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in v_{\neq}^{4}} \mathbb{1}\left(\left.\left.\left[v_{1}, v_{2}\right]\right|_{L} \cap\left[v_{3}, v_{4}\right]\right|_{L} \neq \emptyset\right) / 8}
$$

## Stochastic Tools: Expectation and Variance

$f=$ U-Statistics over a Poisson proc. $\rightarrow$ relatively well understood!

## Stochastic Tools: Expectation and Variance

$f=$ U-Statistics over a Poisson proc. $\rightarrow$ relatively well understood!
Expectation of $f$ : Multivariate Slivnyak-Mecke

$$
\mathbb{E}_{V} \sum_{\left(v_{1}, \ldots, v_{k}\right) \in v_{\neq}^{k}} f\left(v_{1}, \ldots, v_{k}\right)=t^{k} \int_{W} \cdots \int_{W} f\left(v_{1}, \ldots, v_{k}\right) d v_{1} \cdots d v_{k}
$$

## Stochastic Tools: Expectation and Variance

$f=$ U-Statistics over a Poisson proc. $\rightarrow$ relatively well understood!
Expectation of $f$ : Multivariate Slivnyak-Mecke

$$
\mathbb{E}_{V} \sum_{\left(v_{1}, \ldots, v_{k}\right) \in v_{\neq}^{k}} f\left(v_{1}, \ldots, v_{k}\right)=t^{k} \int_{W} \cdots \int_{W} f\left(v_{1}, \ldots, v_{k}\right) d v_{1} \cdots d v_{k}
$$

Variance of $f$ : Malliavin calculus for Poisson point processes
Wiener-Itô chaos expansion, assuming $f$ is $L^{2}$-integrable

$$
t \int_{W}\left(\mathbb{E}_{v} D_{v} f(V)\right)^{2} d v \leq \operatorname{Var}_{v} f(V) \leq t \int_{W} \mathbb{E}_{V}\left(D_{v} f(V)\right)^{2} d v
$$

where $D_{v} f(V):=f(V \cup\{v\})-f(V)$ is an operator measuring the difference when adding a point.

## after some calculations... Stochastic Results

Let $G_{0}$ be the abstract graph (=no coordinates) of $G$. For any projection plane $L$ we have:

$$
\operatorname{cr}\left(G_{0}\right) \leq \overline{\operatorname{cr}}\left(G_{0}\right) \leq \mathbb{E}_{V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)=\Theta\left(\frac{m^{3}}{n^{2}} \cdot\left(\frac{m}{n^{2}}\right)^{\frac{2-d}{d}}\right)
$$

## after some calculations... Stochastic Results

Let $G_{0}$ be the abstract graph (=no coordinates) of $G$.
For any projection plane $L$ we have:

$$
\operatorname{cr}\left(G_{0}\right) \leq \overline{\operatorname{cr}}\left(G_{0}\right) \leq \mathbb{E}_{V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)=\Theta\left(\frac{m^{3}}{n^{2}} \cdot\left(\frac{m}{n^{2}}\right)^{\frac{2-d}{d}}\right)
$$

Crossing Lemma: $\operatorname{cr}\left(G_{0}\right)=\Omega\left(\frac{m^{3}}{n^{2}}\right)$

## after some calculations... Stochastic Results

Let $G_{0}$ be the abstract graph (=no coordinates) of $G$.
For any projection plane $L$ we have:
density

$$
\operatorname{cr}\left(G_{0}\right) \leq \overline{\operatorname{cr}}\left(G_{0}\right) \leq \mathbb{E}_{V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)=\Theta\left(\frac{m^{3}}{n^{2}} \cdot\left(\frac{m}{n^{2}}\right)^{\frac{2-d}{d}}\right)
$$

Crossing Lemma: $\operatorname{cr}\left(G_{0}\right)=\Omega\left(\frac{m^{3}}{n^{2}}\right)$

## Corollaries

- A random geometric graph $G$ in $\mathbb{R}^{2}$ is an expected constant-factor approximation for $\operatorname{cr}\left(G_{0}\right)$ and $\overline{\operatorname{cr}}\left(G_{0}\right)$.


## after some calculations... Stochastic Results

Let $G_{0}$ be the abstract graph (=no coordinates) of $G$.
For any projection plane $L$ we have:

$$
\operatorname{cr}\left(G_{0}\right) \leq \overline{\operatorname{cr}}\left(G_{0}\right) \leq \mathbb{E}_{V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)=\Theta\left(\frac{m^{3}}{n^{2}} \cdot\left(\frac{m}{n^{2}}\right)^{\frac{2-d}{d}}\right)
$$

Crossing Lemma: $\operatorname{cr}\left(G_{0}\right)=\Omega\left(\frac{m^{3}}{n^{2}}\right)$

Corollaries

- A random geometric graph $G$ in $\mathbb{R}^{2}$ is an expected constant-factor approximation for $\operatorname{cr}\left(G_{0}\right)$ and $\overline{\operatorname{cr}}\left(G_{0}\right)$.
- Let $d$ and density $m / n^{2}$ fixed. Picking any projection plane $L$ for a random geometric graph in $\mathbb{R}^{d}$ yields an expected constant-factor approximation for $\operatorname{cr}\left(G_{0}\right)$ and $\overline{\operatorname{Cr}}\left(G_{0}\right)$.


## after some more calculations... More Stochastic Results

Details in the paper...

- Var $\ll \mathbb{E}$ by several orders + Law-of-Large-Numbers $\rightarrow$ observed crossing number will be very close to $\mathbb{E}$ w.h.p.


## after some more calculations... More Stochastic Results

Details in the paper...

- Var $\ll \mathbb{E}$ by several orders + Law-of-Large-Numbers $\rightarrow$ observed crossing number will be very close to $\mathbb{E}$ w.h.p.
- We pick $L$ not arbitrary but random (uniform): compute $\mathbb{E}_{L, v} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)$, $\operatorname{Var}_{L, V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)$, LLN
- This is „simpler" if $W$ is rotation invariant:
$\operatorname{Var}_{L} \mathbb{E}_{V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)=0 \rightarrow$ all $L$ have same chance of being „good"

Details in the paper...

- Var $<\mathbb{E}$ by several orders + Law-of-Large-Numbers $\rightarrow$ observed crossing number will be very close to $\mathbb{E}$ w.h.p.
- We pick $L$ not arbitrary but random (uniform): compute $\mathbb{E}_{L, V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)$, $\operatorname{Var} r_{L, V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)$, LLN
- This is „simpler" if $W$ is rotation invariant: $\operatorname{Var}_{L} \mathbb{E}_{V} \overline{\operatorname{cr}}\left(\left.G\right|_{L}\right)=0 \rightarrow$ all $L$ have same chance of being "good"
- The probability of finding „optimum" $L$ is only in $\mathcal{O}\left(t^{-1}\right) \ldots$ expensive! $\rightarrow$ How to find a good $L$ ?


## Stress

$$
\operatorname{stress}(G):=\sum_{\substack{\left.v_{1}, v_{2} \in V(G), v_{1} \neq v_{2} \\ \text { desired (graph-theoretic? }\right) \text { distance }}} w\left(v_{1}, v_{2}\right) \cdot\left(d_{0}\left(v_{1}, v_{2}\right)-d_{1}\left(v_{1}, v_{2}\right)\right)^{2}
$$

## Stress

$$
\operatorname{stress}(G):=\sum_{\substack{\left.v_{1}, v_{2} \in V(G), v_{1} \neq v_{2} \\ \text { desired (graph-theoretic? }\right) \text { distance }}} w\left(v_{1}, v_{2}\right) \cdot\left(d_{0}\left(v_{1}, v_{2}\right)-d_{1}\left(v_{1}, v_{2}\right)\right)^{2}
$$

Based on experimental data, low-stress drawings seem to have small crossing number... Can we prove this?

## Stress

$$
\operatorname{stress}(G):=\sum_{\substack{v_{1}, v_{2} \in V(G), v_{1} \neq v_{2} \\ \text { often } \frac{1}{d_{0}\left(v_{1}, v_{2}\right)^{2}}}} w\left(v_{1}, v_{2}\right) \cdot\left(d_{0}\left(v_{1}, v_{2}\right)-d_{1}\left(v_{1}, v_{2}\right)\right)^{2} \text { distance in drawing }
$$

Based on experimental data, low-stress drawings seem to have small crossing number... Can we prove this?

Find low-stress drawings via Multidimensional Scaling (MDS):

1. Embed graph in high dimensional space, satisfying the distances
2. Seek a projection to minimize stress

## Stress

$$
\operatorname{stress}(G):=\sum_{\substack{\left.v_{1}, v_{2} \in V(G), v_{1} \neq v_{2} \\ \text { desired (graph-theoretic? }\right)}} w\left(v_{1}, v_{2}\right) \cdot\left(d_{0}\left(v_{1}, v_{2}\right)-d_{1}\left(v_{1}, v_{2}\right)\right)^{2}
$$

Based on experimental data, low-stress drawings seem to have small crossing number... Can we prove this?

Find low-stress drawings via Multidimensional Scaling (MDS):

1. Embed graph in high dimensional space, satisfying the distances
2. Seek a projection to minimize stress

If stress and crossing number positively correlated
$\rightarrow$ MDS yields crossing number approximations?!
Not really (graph-theoretic != our geometric distances), but close.

## Stress vs. Crossings

Details in the paper...

- Stress is a U-statistic!
- Project a random geometric graph $G$ onto $L$ $\rightarrow$ Consider stress w.r.t. $\mathbb{R}^{d}$-distances as desired distances $\rightarrow$ we compute $\mathbb{E}$, Var, LLN


## Stress vs. Crossings

Details in the paper...

- Stress is a U-statistic!
- Project a random geometric graph $G$ onto $L$ $\rightarrow$ Consider stress w.r.t. $\mathbb{R}^{d}$-distances as desired distances $\rightarrow$ we compute $\mathbb{E}$, Var, LLN
- Furthermore we show: strictly positive correlation between $\mathbb{E}_{V} \overline{\mathrm{Cr}}$ and $\mathbb{E}_{V}$ stress

Yes, in some sense a stress-minimum drawing is a crossing number approximation!

## Wrapping up...

## Summary. For a random geometric graph,...

1 ...a trivial projection yields an expected crossing number approximation with high probability.
2 ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

## Wrapping up...

Summary. For a random geometric graph,...
1 ...a trivial projection yields an expected crossing number approximation with high probability.
2 ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Disclaimer: We assume a random input graph! There are graphs for which the algorithm fails miserably and correlation is negative!

## Wrapping up...

Summary. For a random geometric graph,...
1 ...a trivial projection yields an expected crossing number approximation with high probability.
2 ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Disclaimer: We assume a random input graph! There are graphs for which the algorithm fails miserably and correlation is negative!

## Outlook.

- Can we achieve 1 without the disclaimer, i.e., randomized approximation for any random geometric input graph?
- Capture stress with the more typical graph-theoretic distances?
- What about other random graph models?


## Wrapping up...

Summary. For a random geometric graph,...
1 ...a trivial projection yields an expected crossing number approximation with high probability.
2 ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Disclaimer: We assume a random input graph! There are graphs for which the algorithm fails miserably and correlation is negative!

## Outlook.

- Can we achieve 1 without the disclaimer, i.e., randomized approximation for any random geometric input graph?
- Capture stress with the more typical graph-theoretic distances?
- What about other random graph models?


## Thank you for your attention!

