Crossing Numbers and Stress of Random Graphs

Markus Chimani

Theoretical CS

Hanna Döring

Stochastics

Matthias Reitzner

Stochastics

Crossing Numbers

Crossing Number cr(G)

 $cr(K_8) = 18$

Rectilinear Crossing Number $\overline{cr}(G)$

 $\overline{cr}(K_8) = 19$

Observation. $cr(G) \leq \overline{cr}(G)$

Crossing Number Approximations

There is no PTAS [Cabello 13]

- Is there any constant-factor appriximation for general graphs?
- ...what if the graph has bounded maximum degree Δ ?

Crossing Number Approximations

There is no PTAS [Cabello 13]

- Is there any constant-factor appriximation for general graphs?
- ...what if the graph has bounded maximum degree Δ ?

Known approximations:

graph class	bounded Δ	ratio
general	\checkmark	$\mathcal{O}(n^{9/10} \cdot \operatorname{polylog} n)$
$m = \Theta(n^2)$	_	$\mathcal{O}(1)$
bounded genus	\checkmark	$\mathcal{O}(1)$
bounded number of graph elements away from planarity	\checkmark	<i>O</i> (1)
bounded pathwidth	-	$\mathcal{O}(1)$

Geometric Graph (unit-disc/-ball graph):

Given: points $V \subset \mathbb{R}^d$, threshold δ . Connect points iff their Euclidean distance is at most δ .

Geometric Graph (unit-disc/-ball graph): Given: points $V \subset \mathbb{R}^d$, threshold δ . Connect points iff their Euclidean distance is at most δ .

Random Geometric Graph: Consider a Poisson point process to generate *V*.

Geometric Graph (unit-disc/-ball graph): Given: points $V \subset \mathbb{R}^d$, threshold δ . Connect points iff their Euclidean distance is at most δ .

Random Geometric Graph: Consider a Poisson point process to generate *V*.

More formally:

- Convex set $W \subset \mathbb{R}^d$ with $\operatorname{vol}_d(W) = 1$
- Poisson process of intensity $t \to \mathbb{E}n = t$.
- ► Choose *n* points V ⊂ W independently according to uniform distribution.
- Simpler: W is a ball → V is rotation invariant
- Consider threshold δ dependent on $t \rightarrow \delta_t$

Geometric Graph (unit-disc/-ball graph): Given: points $V \subset \mathbb{R}^d$, threshold δ . Connect points iff their Euclidean distance is at most δ .

Random Geometric Graph: Consider a Poisson point process to generate *V*.

More formally:

- Convex set $W \subset \mathbb{R}^d$ with $\operatorname{vol}_d(W) = 1$
- Poisson process of intensity $t \to \mathbb{E}n = t$.
- ► Choose *n* points V ⊂ W independently according to uniform distribution.
- Simpler: W is a ball \rightarrow V is rotation invariant
- Consider threshold δ dependent on $t \rightarrow \delta_t$

Remark: Poisson simplifies formulae. We can de-Poissonize: simply pick *n* uniform random independent points in *W*.

 G_0 = abstract graph of G: Relation between $\overline{cr}(G_0)$ and $\overline{cr}(G|_L)$?

Stochastic Tools: U-Statistics

measurable, non-negative, real-valued, independent of other points

U-statistic = measure $U(k, f) := \sum_{\mathbf{v} \in V_{\neq}^{k}} f(\mathbf{v})$

k-tuple of pairwise distinct points

Stochastic Tools: U-Statistics

measurable, non-negative, real-valued, independent of other points

U-statistic = measure $U(k, f) := \sum_{\mathbf{v} \in V_{\neq}^{k}} f(\mathbf{v})$

k-tuple of pairwise distinct points

Those are U-statistics:

• of order k = 2: Number of edges in G

$$m = \sum_{\mathbf{v}, u \in \mathbf{V}, \mathbf{v} \neq u} \mathbb{1}(\|\mathbf{v} - u\| \le \delta_t)/2$$

Stochastic Tools: U-Statistics

measurable, non-negative, real-valued, independent of other points

U-statistic = measure $U(k, f) := \sum_{\mathbf{v} \in V_{\neq}^{k}} f(\mathbf{v})$

k-tuple of pairwise distinct points

Those are U-statistics:

• of order k = 2: Number of edges in G

$$m = \sum_{\mathbf{v}, u \in \mathbf{V}, \mathbf{v} \neq u} \mathbb{1}(\|\mathbf{v} - u\| \le \delta_t)/2$$

of order k = 4: Number of crossings in G after projecting onto L

line segment after projection on L

$$\overline{\operatorname{cr}}(G|_L) = \sum_{(v_1, v_2, v_3, v_4) \in V_{\neq}^4} \mathbb{1}([v_1, v_2]|_L \cap [v_3, v_4]|_L \neq \emptyset)/8$$

Stochastic Tools: Expectation and Variance

f = U-Statistics over a Poisson proc. \rightarrow **relatively well understood!**

Stochastic Tools: Expectation and Variance

f = U-Statistics over a Poisson proc. \rightarrow **relatively well understood!**

Expectation of f: Multivariate Slivnyak-Mecke

$$\mathbb{E}_{V}\sum_{(v_{1},\ldots,v_{k})\in V_{\neq}^{k}}f(v_{1},\ldots,v_{k})=t^{k}\int_{W}\cdots\int_{W}f(v_{1},\ldots,v_{k})\,dv_{1}\cdots dv_{k}$$

Stochastic Tools: Expectation and Variance

f = U-Statistics over a Poisson proc. \rightarrow **relatively well understood!**

Expectation of f: Multivariate Slivnyak-Mecke

$$\mathbb{E}_{V}\sum_{(v_1,\ldots,v_k)\in V_{\neq}^k}f(v_1,\ldots,v_k)=t^k\int\limits_{W}\cdots\int\limits_{W}f(v_1,\ldots,v_k)\,dv_1\cdots dv_k$$

Variance of f: Malliavin calculus for Poisson point processes

Wiener-Itô chaos expansion, assuming
$$f$$
 is L^2 -integrable
Poincaré inequality
 $t \int_{W} (\mathbb{E}_V D_V f(V))^2 dV \leq \operatorname{Var}_V f(V) \leq t \int_{W} \mathbb{E}_V (D_V f(V))^2 dV.$

where $D_v f(V) := f(V \cup \{v\}) - f(V)$ is an operator measuring the difference when adding a point.

Let G_0 be the abstract graph (=no coordinates) of G. For **any** projection plane L we have: density

$$\operatorname{cr}(G_0) \leq \overline{\operatorname{cr}}(G_0) \leq \mathbb{E}_V \, \overline{\operatorname{cr}}(G|_L) = \Theta\left(\frac{m^3}{n^2} \cdot \left(\frac{m}{n^2}\right)^{\frac{2-d}{d}}\right)$$

Let G_0 be the abstract graph (=no coordinates) of G. For **any** projection plane L we have: density

$$\operatorname{cr}(G_0) \leq \overline{\operatorname{cr}}(G_0) \leq \mathbb{E}_V \,\overline{\operatorname{cr}}(G|_L) = \Theta\left(\frac{m^3}{n^2} \cdot \left(\frac{m}{n^2}\right)^{\frac{2-d}{d}}\right)$$

Crossing Lemma: $\operatorname{cr}(G_0) = \Omega\left(\frac{m^3}{n^2}\right)$

Let G_0 be the abstract graph (=no coordinates) of G. For **any** projection plane L we have: density

$$\operatorname{cr}(G_0) \leq \overline{\operatorname{cr}}(G_0) \leq \mathbb{E}_V \,\overline{\operatorname{cr}}(G|_L) = \Theta\left(\frac{m^3}{n^2} \cdot \left(\frac{m}{n^2}\right)^{\frac{2-d}{d}}\right)$$

Crossing Lemma: $\operatorname{cr}(G_0) = \Omega\left(\frac{m^3}{n^2}\right)$

Corollaries

► A random geometric graph G in R² is an expected constant-factor approximation for cr(G₀) and cr(G₀).

Let G_0 be the abstract graph (=no coordinates) of G. For **any** projection plane L we have: density

$$\operatorname{cr}(G_0) \leq \overline{\operatorname{cr}}(G_0) \leq \mathbb{E}_V \,\overline{\operatorname{cr}}(G|_L) = \Theta\left(\frac{m^3}{n^2} \cdot \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right)^{\frac{2-d}{d}}\right)^{\frac{2-d}{d}}$$

Crossing Lemma: $\operatorname{cr}(G_0) = \Omega\left(\frac{m^3}{n^2}\right)$

Corollaries

- ► A random geometric graph G in R² is an expected constant-factor approximation for cr(G₀) and cr(G₀).
- Let *d* and density *m*/*n*² fixed. Picking **any** projection plane *L* for a random geometric graph in ℝ^d yields an **expected constant-factor** approximation for cr(*G*₀) and cr(*G*₀).

after some more calculations... More Stochastic Results

Details in the paper...

▶ Var ≪ E by several orders + Law-of-Large-Numbers → observed crossing number will be very close to E w.h.p.

after some more calculations... More Stochastic Results

Details in the paper...

- ▶ Var ≪ E by several orders + Law-of-Large-Numbers → observed crossing number will be very close to E w.h.p.
- We pick *L* not arbitrary but **random** (uniform): compute E_{L,V} cr̄(G|_L), Var_{L,V} cr̄(G|_L), LLN
- ► This is "simpler" if W is rotation invariant: $\operatorname{Var}_{L} \mathbb{E}_{V} \overline{\operatorname{cr}}(G|_{L}) = 0 \rightarrow \operatorname{all} L$ have same chance of being "good"

after some more calculations... More Stochastic Results

Details in the paper...

- ▶ Var ≪ E by several orders + Law-of-Large-Numbers → observed crossing number will be very close to E w.h.p.
- We pick *L* not arbitrary but **random** (uniform): compute E_{L,V} cr(G|_L), Var_{L,V} cr(G|_L), LLN
- ► This is "simpler" if W is rotation invariant: $\operatorname{Var}_{L} \mathbb{E}_{V} \overline{\operatorname{cr}}(G|_{L}) = 0 \rightarrow \operatorname{all} L$ have same chance of being "good"
- The probability of finding "optimum" L is only in O(t⁻¹)... expensive! → How to find a good L?

$$\mathsf{stress}(G) := \sum_{\substack{v_1, v_2 \in V(G), \\ v_1 \neq v_2}} \begin{array}{c} \mathsf{often} \ \frac{1}{d_0(v_1, v_2)^2} & \mathsf{distance in drawing} \\ & & \\ w \left(v_1, v_2\right) \cdot \left(\ d_0(v_1, v_2) - \ d_1(v_1, v_2) \right)^2 \\ & \\ \mathsf{desired} \ (\mathsf{graph-theoretic?}) \ \mathsf{distance} \end{array}$$

$$\mathsf{stress}(G) := \sum_{\substack{v_1, v_2 \in V(G), \\ v_1 \neq v_2}} \underbrace{\mathsf{often} \ \frac{1}{d_0(v_1, v_2)^2}}_{\mathsf{w}(v_1, v_2) \cdot \left(\begin{array}{c} d_0(v_1, v_2) - \ d_1(v_1, v_2) \right)^2}_{\mathsf{desired} \ \mathsf{(graph-theoretic?)} \ \mathsf{distance}} \right)$$

Based on **experimental** data, low-stress drawings **seem** to have small crossing number... **Can we prove this?**

Based on **experimental** data, low-stress drawings **seem** to have small crossing number... **Can we prove this?**

Find low-stress drawings via Multidimensional Scaling (MDS):

- 1. Embed graph in high dimensional space, satisfying the distances
- 2. Seek a projection to minimize stress

Based on **experimental** data, low-stress drawings **seem** to have small crossing number... **Can we prove this?**

Find low-stress drawings via **Multidimensional Scaling (MDS)**:

- 1. Embed graph in high dimensional space, satisfying the distances
- 2. Seek a projection to minimize stress

If stress and crossing number positively correlated \rightarrow MDS yields crossing number approximations?! Not really (graph-theoretic != our geometric distances), but close.

Stress vs. Crossings

Details in the paper...

- Stress is a U-statistic!
- Project a random geometric graph G onto L
 - ightarrow Consider stress w.r.t. \mathbb{R}^d -distances as desired distances
 - ightarrow we compute $\mathbb E$, $\mathbb V$ ar, LLN

Stress vs. Crossings

Details in the paper...

- Stress is a U-statistic!
- Project a random geometric graph G onto L
 - \rightarrow Consider stress w.r.t. \mathbb{R}^d -distances as desired distances
 - ightarrow we compute \mathbb{E} , \mathbb{V} ar, LLN

Furthermore we show: strictly positive correlation between E_V cr and E_V stress

Yes, in some sense a stress-minim**um** drawing **is** a crossing number approximation!

Summary. For a random geometric graph,...

- ...a trivial projection yields an expected crossing number approximation with high probability.
- ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Summary. For a random geometric graph,...

- ...a trivial projection yields an **expected** crossing number approximation with high probability.
- ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Disclaimer: We assume a random input graph! There are graphs for which the algorithm fails miserably and correlation is negative!

Summary. For a random geometric graph,...

- ...a trivial projection yields an expected crossing number approximation with high probability.
- ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Disclaimer: We assume a random input graph! There are graphs for which the algorithm fails miserably and correlation is negative!

Outlook.

- Can we achieve 1 without the disclaimer, i.e., randomized approximation for **any** random geometric input graph?
- Capture stress with the more typical graph-theoretic distances?
- What about other random graph models?

Summary. For a random geometric graph,...

- ...a trivial projection yields an expected crossing number approximation with high probability.
- ...there is a strictly positive correlation between its crossing number and its stress-minimum drawing.

Disclaimer: We assume a random input graph! There are graphs for which the algorithm fails miserably and correlation is negative!

Outlook.

- Can we achieve 1 without the disclaimer, i.e., randomized approximation for **any** random geometric input graph?
- Capture stress with the more typical graph-theoretic distances?
- What about other random graph models?

Thank you for your attention!