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Crossing Numbers

Crossing Number
cr(G)

cr(K8) = 18

Rectilinear Crossing Number
cr(G)

cr(K8) = 19

Observation. cr(G) ≤ cr(G)
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Crossing Number Approximations

There is no PTAS [Cabello 13]

I Is there any constant-factor appriximation for general graphs?

I ...what if the graph has bounded maximum degree ∆?

Known approximations:

graph class bounded ∆ ratio

general X O(n9/10 · polylog n)

m = Θ(n2) – O(1)

bounded genus X O(1)

bounded number of
graph elements away
from planarity

X O(1)

bounded pathwidth – O(1)
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Random Geometric Graphs

Geometric Graph (unit-disc/-ball graph):
Given: points V ⊂ Rd, threshold δ. Connect
points iff their Euclidean distance is at most δ.

Random Geometric Graph: Consider a
Poisson point process to generate V.

More formally:

I Convex set W ⊂ Rd with vold(W) = 1

I Poisson process of intensity t→ En = t.

I Choose n points V ⊂ W independently
according to uniform distribution.

I Simpler: W is a ball→ V is rotation invariant

I Consider threshold δ dependent on t→ δt

Remark: Poisson simplifies formulae. We can de-Poissonize: simply
pick n uniform random independent points in W.
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Projection Algorithm

W

G

L

G|L

G0 = abstract graph of G: Relation between cr(G0) and cr(G|L)?
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Stochastic Tools: U-Statistics

U-statistic = measure U(k, f) :=
∑

v

k-tuple of pairwise distinct points

∈Vk
6=
f

measurable, non-negative, real-valued, independent of other points

(v)

Those are U-statistics:

I of order k = 2: Number of edges in G

m =
∑

v,u∈V,v 6=u

1(‖v− u‖ ≤ δt)/2

I of order k = 4: Number of crossings in G after projecting onto L

cr(G|L) =
∑

(v1,v2,v3,v4)∈V4
6=

1([v1, v2 ]|L

line segment after projection on L

∩ [v3, v4]|L 6= ∅)/8
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Stochastic Tools: Expectation and Variance

f = U-Statistics over a Poisson proc.→ relatively well understood!

Expectation of f : Multivariate Slivnyak-Mecke

EV

∑
(v1,...,vk)∈Vk

6=

f(v1, . . . , vk) = tk
∫
W

· · ·
∫
W

f(v1, . . . , vk)dv1 · · ·dvk

Variance of f : Malliavin calculus for Poisson point processes

t

∫
W

(EVDvf(V))2 dv ≤

Wiener-Itô chaos expansion, assuming f is L2-integrable

VarV f(V) ≤

Poincaré inequality

t

∫
W

EV(Dvf(V))2 dv.

where Dvf(V) := f(V ∪ {v})− f(V) is an operator measuring the
difference when adding a point.
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after some calculations... Stochastic Results

Let G0 be the abstract graph (=no coordinates) of G.
For any projection plane L we have:

cr(G0) ≤ cr(G0) ≤ EV cr(G|L) = Θ

(
m3

n2
·
( m

n2

density)2−d
d

)

Crossing Lemma: cr(G0) = Ω
(
m3

n2

)
Corollaries

I A random geometric graph G in R2 is an expected
constant-factor approximation for cr(G0) and cr(G0).

I Let d and density m/n2 fixed. Picking any projection plane L for
a random geometric graph in Rd yields an expected
constant-factor approximation for cr(G0) and cr(G0).
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after some more calculations... More Stochastic Results

Details in the paper...

I Var� E by several orders + Law-of-Large-Numbers→
observed crossing number will be very close to E w.h.p.

I We pick L not arbitrary but random (uniform):
compute EL,V cr(G|L), VarL,V cr(G|L), LLN

I This is „simpler“ if W is rotation invariant:
VarL EV cr(G|L) = 0→ all L have same chance of being „good“

I The probability of finding „optimum“ L is only in O(t−1)...
expensive!→ How to find a good L?



Markus Chimani, H. Döring, M. Reitzner Crossing Numbers and Stress in Random Graphs 9

after some more calculations... More Stochastic Results

Details in the paper...

I Var� E by several orders + Law-of-Large-Numbers→
observed crossing number will be very close to E w.h.p.

I We pick L not arbitrary but random (uniform):
compute EL,V cr(G|L), VarL,V cr(G|L), LLN

I This is „simpler“ if W is rotation invariant:
VarL EV cr(G|L) = 0→ all L have same chance of being „good“

I The probability of finding „optimum“ L is only in O(t−1)...
expensive!→ How to find a good L?



Markus Chimani, H. Döring, M. Reitzner Crossing Numbers and Stress in Random Graphs 9

after some more calculations... More Stochastic Results

Details in the paper...

I Var� E by several orders + Law-of-Large-Numbers→
observed crossing number will be very close to E w.h.p.

I We pick L not arbitrary but random (uniform):
compute EL,V cr(G|L), VarL,V cr(G|L), LLN

I This is „simpler“ if W is rotation invariant:
VarL EV cr(G|L) = 0→ all L have same chance of being „good“

I The probability of finding „optimum“ L is only in O(t−1)...
expensive!→ How to find a good L?



Markus Chimani, H. Döring, M. Reitzner Crossing Numbers and Stress in Random Graphs 10

Stress

stress(G) :=
∑

v1,v2∈V(G),
v1 6=v2

w

often 1
d0(v1,v2)2

(v1, v2) ·
(
d0

desired (graph-theoretic?) distance

(v1, v2)− d1

distance in drawing

(v1, v2)
)2

Based on experimental data, low-stress drawings seem to have
small crossing number... Can we prove this?

Find low-stress drawings via Multidimensional Scaling (MDS):
1. Embed graph in high dimensional space, satisfying the distances
2. Seek a projection to minimize stress

If stress and crossing number positively correlated
→ MDS yields crossing number approximations?!

Not really (graph-theoretic != our geometric distances), but close.
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Stress vs. Crossings

Details in the paper...

I Stress is a U-statistic!

I Project a random geometric graph G onto L
→ Consider stress w.r.t. Rd-distances as desired distances
→ we compute E, Var, LLN

I Furthermore we show:
strictly positive correlation between EV cr and EVstress

Yes, in some sense a stress-minimum drawing is a crossing number
approximation!
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Wrapping up...

Summary. For a random geometric graph,...

1 ...a trivial projection yields an expected crossing number
approximation with high probability.

2 ...there is a strictly positive correlation between its crossing
number and its stress-minimum drawing.

Disclaimer: We assume a random input graph! There are graphs
for which the algorithm fails miserably and correlation is negative!

Outlook.

I Can we achieve 1 without the disclaimer, i.e., randomized
approximation for any random geometric input graph?

I Capture stress with the more typical graph-theoretic distances?

I What about other random graph models?

Thank you for your attention!
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