Blocks \& Gaps in the
 Asymmetric Simple Exclusion Process

Banff International Research Station September 2018
Craig Tracy, UC Davis
Harold Widom, UC Santa Cruz

Simple Random Walk

Lattice \mathbb{Z}

- Can make time continuous by giving particle a "random alarm clock", i.e. exponential distr. with mean 1.
- This is arguably one of the most important, if elementary, stochastic processes.
- Want many particles-to be interesting these particles must interact.

Asymmetric Simple Exclusion Process (ASEP)

A continuous time Markov process

Lattice \mathbb{Z}

- Particles move on \mathbb{Z} according to two rules:
- A particle waits at x an exponential time with parameter one, and then chooses y with probability $p(x, y)$.
- If y is vacant at that time it moves to y, while if y is occupied it remains at x.
- "Simple" refers to the fact that jumps are allowed only one step to either the right or left
- "Asymmetric" refers to the case $p \neq q$.

Transition Probability: $P_{Y}(x ; t)$

For one particle the probability that the particle is initially at y is at x at time t is

$$
P_{y}(x ; t)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathcal{C}_{r}} \xi^{x-y-1} \mathrm{e}^{t \varepsilon(\xi)} d \xi
$$

where

$$
\varepsilon(\xi)=\frac{p}{\xi}+q \xi-1
$$

and \mathcal{C}_{r} is a circle of radius r centered at the origin.
This result is elementary but the generalization to more than one particle is rather subtle

N-particle ASEP

Initial configuration: $Y:=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ with $y_{1}<y_{2}<\cdots<y_{N}$.
Final configuration: $X:=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ with $x_{1}<x_{2}<\cdots<x_{N}$.
Let \mathfrak{S}_{N} denote the permutation group and set

$$
\begin{aligned}
U\left(\xi, \xi^{\prime}\right) & =\frac{p+q \xi \xi^{\prime}-\xi}{\xi^{\prime}-\xi} \\
A_{\sigma}(\xi) & =\prod_{1 \leq i<j \leq N} \frac{U\left(\xi_{\sigma(i)}, \xi_{\sigma(j)}\right)}{U\left(\xi_{i}, \xi_{j}\right)}, \quad \sigma \in \mathfrak{S}_{N} .
\end{aligned}
$$

Theorem (TW, 2008).

$$
P_{Y}(X ; t)=\sum_{\sigma \in \mathfrak{S}_{N}} \int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} A_{\sigma}(\xi) \prod_{j=1}^{N} \xi_{\sigma(j)}^{x_{j}-y_{\sigma(j)}-1} \mathrm{e}^{t \varepsilon\left(\xi_{j}\right)} d \xi_{1} \cdots d \xi_{N}
$$

where \mathcal{C}_{r} has radius so small that all the poles of A_{σ} lie outside of \mathcal{C}_{r}.
Remarks:

- $P_{Y}(X ; t)$ satisfies $P_{Y}(X ; 0)=\delta_{X, Y}$.
- This is a sum of N ! terms with each term an N-dimensional contour integral.
- We are ultimately interested in $N \rightarrow \infty$. Not at all clear how to proceed!
- To extract information from $P_{Y}(x ; t)$, we start by looking at marginal distributions; the simplest are one-point functions:

$$
\mathbb{P}_{Y}\left(x_{m}(t)=x\right)
$$

Must sum $P_{Y}(X ; t)$ over all configurations satisfying $x_{m}(t)=x$.
For example, for $m=2$ we must sum over configurations X

$$
X=\left\{x-v_{1}, x, x+v_{2}, x+v_{2}+v_{3}, \ldots, x+v_{2}+v_{3}+\cdots+v_{N}\right\}
$$

where $v_{i}=1,2,3, \ldots$

Second Example: ASEP Blocks

$m^{\text {th }}$ particle is the left-most one in a contiguous block of L particles

Case m=1, left-most particle

Identity One. For $N \geq L$,

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{S}_{N}} \prod_{1 \leq i, j \leq N} U\left(\xi_{\sigma(i)}, \xi_{\sigma(j)}\right) & \frac{\xi_{\sigma(2)} \xi_{\sigma(3)}^{2} \cdots \xi_{\sigma(N)}^{N-1}}{\left(1-\xi_{\sigma(L+1)} \cdots \xi_{\sigma(N)}\right) \cdots\left(1-\xi_{\sigma(N-1)} \xi_{\sigma(N)}\right)\left(1-\xi_{\sigma(N)}\right)} \\
& =p^{N(N-1) / 2} \frac{\mathfrak{f}_{L}(\xi)}{\prod_{i}\left(1-\xi_{i}\right)}
\end{aligned}
$$

where $\mathfrak{f}_{L}(\xi)$ are symmetric polynomials in the variables $\xi=\left(\xi_{1}, \ldots, \xi_{N}\right)$.
For the definition of $\mathfrak{f}_{L}(\xi)$ we first define
$\varphi_{L}\left(z_{1}, \ldots, z_{L} ; \xi\right)=\frac{\prod_{1 \leq j \leq N} U\left(z_{1}, \xi_{j}\right) U\left(z_{2}, \xi_{j}\right) \cdots U\left(z_{L}, \xi_{j}\right)}{z_{1}^{L}\left(q z_{1}-p\right) z_{2}^{L-1}\left(q z_{2}-p\right) \cdots z_{L}\left(q z_{L}-p\right)} \prod_{1 \leq i<j \leq L} \frac{1}{U\left(z_{j}, z_{i}\right)}$
then $\mathfrak{f}_{L}(\xi)=p^{L(L+1) / 2-L N} \prod_{i} \xi_{i}^{L} \int_{\Gamma_{\xi}} \cdots \int_{\Gamma_{\xi}} \varphi_{L}\left(z_{1}, \ldots, z_{L} ; \xi\right) d z_{1} \cdots d z_{L}$,
Γ_{ξ} consists of simple closed curves enclosing the points ξ_{j} but no other singularities of the integrand.

For $L=1$,

$$
\mathfrak{f}_{1}(\xi)=1-\prod_{i} \xi_{i} .
$$

but the complexity of \mathfrak{f}_{L} increases with L.

General m Identity Two

Notation:

- S is a subset of $\{1,2, \ldots, N\}$.
- $\widehat{\xi}_{S}$ denotes the variables ξ_{k} with $k \notin S$.
- Set $\tau:=p / q<1$ and recall the τ-binomial coefficients

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\tau}=\frac{\left(1-\tau^{n}\right) \cdots\left(1-\tau^{n-k+1}\right)}{(1-\tau) \cdots\left(1-\tau^{k}\right)}
$$

Identity Two: For $0 \leq m \leq N-L$,

$$
\sum_{\substack{|S|=m}} \prod_{\substack{i \in S \\
j \notin S}} U\left(\xi_{i}, \xi_{j}\right) \cdot \mathfrak{f}_{L}\left(\widehat{\xi}_{S}\right)=q^{m(N-m)}\left[\begin{array}{c}
N-L \\
m
\end{array}\right]_{\tau} \mathfrak{f}_{L}(\xi)
$$

where $\mathfrak{f}_{L}(\xi)$ are the symmetric polynomials from Identity One and

$$
U\left(\xi, \xi_{8}^{\prime}\right)=\frac{p+q \xi \xi^{\prime}-\xi}{\xi^{\prime}-\xi}
$$

What do the Identities buy for you?

Notation:

- $\mathcal{P}_{L, Y}(x, m, t)$: probability that at time t the m th particle from the left is the beginning of a block of length L starting at x.

$$
I_{L}(x, Y, \xi):=\prod_{1 \leq i<j \leq N} \frac{1}{U\left(\xi_{i}, \xi_{j}\right)} \prod_{i} \frac{1}{1-\xi_{i}} \mathfrak{f}_{L}(\xi) \prod_{i}\left(\xi_{i}^{x-y_{i}-1} \mathrm{e}^{\varepsilon\left(\xi_{i}\right) t}\right)
$$

- S a subset of $\{1, \ldots, N\}, S^{c}$ complement of S.
- $I_{L}\left(x, Y_{S}, \xi_{S}\right)$ indices lie in S.
- $\sigma\left(S^{c}\right)$ is the sum of the elements in S^{c}.

Theorem (TW, $L=1,2008$; general $L, 2017$): For $q>0$

$$
\begin{aligned}
\mathcal{P}_{L, Y}(x, m, t)= & p^{(N-m+1)(N-m) / 2} q^{(m-1)(N-m / 2)} \sum_{\left|S^{c}\right|<m}(-1)^{m-1-\left|S^{c}\right|}\left[\begin{array}{c}
|S|-L \\
m-1-\left|S^{c}\right|
\end{array}\right]_{\tau} \\
& \times \frac{q^{\sigma\left(S^{c}\right)-N\left|S^{c}\right|}}{p^{\left.\sigma\left(S^{c}\right)-\left|S^{c}\right|| | S^{c} \mid+1\right) / 2}} \int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} I_{L}\left(x, Y_{S}, \xi_{S}\right) d^{|S|} \xi
\end{aligned}
$$

Remarks:

- The proof for general L proceeds exactly the same as for $L=1$ given the general L identities and the fact that $\mathfrak{f}_{L}(\xi)$ are polynomials-no new poles introduced in the argument.
- As was the case for $L=1$, there is a formula for $\mathcal{P}_{L, Y}(x, m, t)$ but with integrations over large contours. In this expression one can let $N \rightarrow \infty$.

Large contour representation

Notation:

- $\mathcal{P}_{L, Y}(x, m, t)$: probability that at time t the m th particle from the left is the beginning of a block of length L starting at x.

$$
I_{L}(x, Y, \xi):=\prod_{1 \leq i<j \leq N} \frac{1}{U\left(\xi_{i}, \xi_{j}\right)} \prod_{i} \frac{1}{1-\xi_{i}} \mathfrak{f}_{L}(\xi) \prod_{i}\left(\xi_{i}^{x-y_{i}-1} \mathrm{e}^{\varepsilon\left(\xi_{i}\right) t}\right)
$$

- S a subset of $\{1, \ldots, N\}$.
- $I_{L}\left(x, Y_{S}, \xi_{S}\right)$ indices lie in S.
- $\sigma(S)$ is the sum of the elements in S.

Theorem (TW, $L=1,2008$; general $L, 2017$): For $q>0$

$$
\begin{aligned}
\mathcal{P}_{L, Y}(x, m, t)= & (-1)^{m+1} p^{m(m-1) / 2} \sum_{|S| \geq m+L-1} q^{(m-1)(|S|-m / 2)}\left[\begin{array}{c}
|S|-L \\
m-1
\end{array}\right]_{\tau} \\
& \times \frac{p^{\sigma(S)-m|S|}}{q^{\sigma(S)-|S| \mid(S \mid+1) / 2}} \int_{\mathcal{C}_{R}} \cdots \int_{\mathcal{C}_{R}} I_{L}\left(x, Y_{S}, \xi_{S}\right) d^{|S|} \xi
\end{aligned}
$$

where R is so large that the poles of the integrand lie inside \mathcal{C}_{R}.
Remarks:

- This theorem extends to infinite systems unbounded on the right. The sum is then taken over finite subsets of \mathbb{Z}^{+}.
- Up to this point the initial configuration $Y=\left\{y_{1}, y_{2}, \ldots\right\}, y_{1}<y_{2}<\cdots$, is completely general (though bounded below). We now turn to the special case of step initial condition.

Step Initial Condition

Drift to the left, $p<q$
Particles initially occupy \mathbb{Z}^{+}

Remarks:

- In the stochastic growth interpretation of ASEP, the step initial condition corresponds to the droplet initial condition.
- We are interested in $\mathcal{P}_{L, \mathbb{Z}^{+}}(x, m, t)$.
- One starts with the large contour representation of $\mathcal{P}_{L, \mathbb{Z}^{+}}(x, m, t)$, and then first sums over all S with $|S|$ equal to a fixed k.

Fredholm Determinant Representation

Notation:

- Denote by $K_{L, x}(z)$ the integral operator acting on functions on \mathcal{C}_{R} with kernel

$$
\begin{aligned}
K_{L, x}\left(\xi, \xi^{\prime} ; z\right) & =K_{x}\left(\xi, \xi^{\prime}\right) \prod_{j=1}^{L} U\left(z_{j}, \xi\right), \text { where } \\
K_{x}\left(\xi, \xi^{\prime}\right) & =\frac{\xi^{x} \mathrm{e}^{\varepsilon(\xi) t}}{p+q \xi \xi^{\prime}-\xi}
\end{aligned}
$$

- τ-Pochhammer symbol, $(\lambda ; \tau)_{m}:=\prod_{j=0}^{m-1}\left(1-\lambda \tau^{j}\right)$.

Theorem (TW, $L=1,2008$; general L, 2017). For $p, q>0$,

$$
\begin{gathered}
\mathcal{P}_{L, \mathbb{Z}^{+}}(x, m, t)=(-1)^{L-1} p^{L(L+1) / 2} \tau^{-(m-1)(L-1)} \\
\times \int_{\Gamma_{0, \tau}} \cdots \int_{\Gamma_{0, \tau}} \frac{1}{z_{1}^{L}\left(q z_{1}-p\right) z_{2}^{L-1}\left(q z_{2}-p\right) \cdots z_{L}\left(q z_{L}-p\right)} \prod_{i<j} \frac{1}{U\left(z_{j}, z_{i}\right)} \\
\times\left[\int \frac{\operatorname{det}\left(I-p^{-L} q \lambda K_{L, x+L-1}(z)\right)}{(\lambda ; \tau)_{m}} \frac{d \lambda}{\lambda^{L}}\right] d z_{L} \cdots d z_{1}
\end{gathered}
$$

Remarks:

- The z-iterated integral is interpreted as follows: First take the sum of the residues at $z_{L}=0$ and $z_{L}=\tau$. In the resulting integrand take the sum of the residues at $z_{L-1}=0$ and $z_{L-1}=\tau$; and so on.
- The λ-integration is over a contour enclosing the singularities of the integrand at τ^{-j} for $j=0, \ldots, m-1$.
- For $L=1$, evaluating the z_{1}-integral leads to the result

$$
\mathbb{P}_{\mathbb{Z}^{+}}\left(x_{m}(t) \leq x\right)=\int \frac{\operatorname{det}\left(I-q \lambda K_{x}\right)}{(\lambda ; \tau)_{m}} \frac{d \lambda}{\lambda}
$$

which is the 2008 result.

J-Kernel

- Proposition 1: Suppose $r \rightarrow \mathcal{C}_{r}$ is a deformation of closed curves and a kernel $H\left(\eta, \eta^{\prime}\right)$ is analytic in a neighborhood of $\mathcal{C}_{r} \times \mathcal{C}_{r} \subset \mathbb{C}^{2}$ for each r. Then the Fredholm det of H acting on \mathcal{C}_{r} is independent of r.
- Proposition 2: Suppose $H_{1}\left(\eta, \eta^{\prime}\right)$ and $H_{2}\left(\eta, \eta^{\prime}\right)$ are two kernels acting on a simple closed contour Γ, that $H_{1}\left(\eta, \eta^{\prime}\right)$ extends analytically to η inside Γ or to η^{\prime} inside Γ, and $H_{2}\left(\eta, \eta^{\prime}\right)$ extends analytically to η inside Γ and η^{\prime} inside Γ. Then the Fredholm determinants of $H_{1}\left(\eta, \eta^{\prime}\right)+H_{2}\left(\eta, \eta^{\prime}\right)$ and $H_{1}\left(\eta, \eta^{\prime}\right)$ are equal.

$$
\xi=\frac{1-\tau \eta}{1-\eta}, \quad \xi^{\prime}=\frac{1-\tau \eta^{\prime}}{1-\eta^{\prime}}, \quad z_{i}=\frac{w_{i}-\tau}{w_{i}-1}
$$

- After using these two proposition (among other things) we arrive at an operator $J_{L, x, m}(w)$ acting on functions on a circle with center zero and radius $r \in(\tau, 1)$

J-Kernel

$$
J_{L, x, m}\left(\eta, \eta^{\prime} ; w\right)=\int \frac{\phi_{\infty, x}(\zeta)}{\phi_{\infty, x}\left(\eta^{\prime}\right)} \frac{\zeta^{m-L}}{\left(\eta^{\prime}\right)^{m-L+1}} \frac{f\left(\mu, \zeta / \eta^{\prime}\right)}{\zeta-\eta} \prod_{j=1}^{L} V\left(\zeta, \eta^{\prime} ; w_{j}\right) d \zeta,
$$

where
$\phi_{\infty, x}(\eta)=(1-\eta)^{-x-L+1} e^{\frac{\eta}{1-\eta} t}, \quad f(\mu, z)=\sum_{k \in \mathbb{Z}} \frac{\tau^{k}}{1-\tau^{k} \mu} z^{k}, \quad V\left(\zeta, \eta^{\prime} ; w\right)=\frac{w \zeta-\tau}{w \eta^{\prime}-\tau}$.
The ζ-integration is over a circle with center zero and radius in the interval $(1, r / \tau)$.
$\mathcal{P}_{L, \mathbb{Z}}(x, m, t)=-\tau^{-\left(L^{2}-5 L+2\right) / 2} \int_{\Gamma_{0, \tau}} \ldots \int_{\Gamma_{0, \tau}} \prod_{j=1}^{L} \frac{\left(w_{j}-1\right)^{L-j}}{w_{j}\left(w_{j}-\tau\right)^{L-j+1}} \prod_{i<j} \frac{w_{j}-w_{i}}{w_{j}-\tau w_{i}}$ $\times \int\left[\left(\tau^{L} \mu ; \tau\right)_{\infty} \operatorname{det}\left(I+\mu J_{L, x, m}(w)\right) \frac{d \mu}{\mu^{L}}\right] d w_{L} \cdots d w_{1}$.
Here μ runs over a circle of radius larger than τ^{-L+1} and the w_{j} contours inside the w_{j-1} contours.

Recall
$\mathcal{P}_{L, \mathbb{Z}^{+}}(x, m, t)=$ The probability that at time t the m th particle from the left is the beginning of a block of particles of length L with step initial condition.

Asymptotics: KPZ Scaling

$m=\sigma t, 0<\sigma<1, \gamma=q-p>0, c_{1}=-1+2 \sqrt{\sigma}, c_{2}=\sigma^{-1 / 6}(1-\sqrt{\sigma})^{2 / 3}$
Theorem (TW 2017)
When $x=c_{1} t+c_{2} s t^{1 / 3}, t \rightarrow \infty$,

$$
\mathcal{P}_{L, \mathbb{Z}^{+}}(x, m, t / \gamma)=c_{2}^{-1} \sigma^{(L-1) / 2} F_{2}^{\prime}(s) t^{-1 / 3}+\mathrm{o}\left(t^{-1 / 3}\right)
$$

For $L=1$ this reduces to 2008 result.
Corollary 1.
The conditional probability that the m th particle from the left is the beginning of an L-block, given that it is at x at time t / γ, has the limit $\sigma^{(L-1) / 2}$.
The conditional probability that there is a block of precisely L particles, and no more, has the limit $\sigma^{(L-1) / 2}-\sigma^{L / 2}=\sigma^{(L-1) / 2}(1-\sqrt{\sigma})$.
Corollary 2.
The conditional probability that the m th particle from the left is followed by a gap of G unoccupied sites, given that it is at x at time t / γ, has the limit $(1-\sqrt{\sigma})^{G}$.
The conditional probability that there is a gap of precisely G sites, and no more, has the limit $(1-\sqrt{\sigma})^{G} \sqrt{\sigma}$.
No gap is the same as a block of at least two, so this is consistent with Corollary 1 with $L=2$.

Thank you for your attention

