Entanglement of disjoint intervals in 2D CFT and Riemann surfaces

Erik Tonni SISSA

Based on various papers in collaboration with:
John Cardy, Pasquale Calabrese, Andrea Coser, Cristiano De Nobili, Luca Tagliacozzo

Tau Functions of Integrable Systems and Their Applications Banff International Research Station, September 2018

Entanglement: a crossroad of interests

Quantum Information

Entanglement: a crossroad of interests

Quantum Information

Outline

\rightarrow Entanglement negativity in 2D CFT

O Two adjacent intervals

- Two disjoint intervals

Entanglement entropies: definition

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle$ Density matrix $\rho=|\Psi\rangle\langle\Psi| \quad \Longrightarrow \quad \operatorname{Tr} \rho^{n}=1$
\square Hilbert space

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

Entanglement entropies: definition

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle$ Density matrix $\rho=|\Psi\rangle\langle\Psi| \quad \Longrightarrow \quad \operatorname{Tr} \rho^{n}=1$
\square Hilbert space

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

e.g.: spatial bipartition
$\square A$'s reduced density matrix $\quad \rho_{A}=\operatorname{Tr}_{B} \rho \quad\left(\operatorname{Tr}_{A} \rho_{A}=1\right)$
if ρ describes a pure state then ρ_{A} describes a mixed state

Entanglement entropies: definition

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle$ Density matrix $\rho=|\Psi\rangle\langle\Psi| \quad \Longrightarrow \quad \operatorname{Tr} \rho^{n}=1$
\square Hilbert space

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

e.g.: spatial bipartition
$\square A$'s reduced density matrix $\quad \rho_{A}=\operatorname{Tr}_{B} \rho \quad\left(\operatorname{Tr}_{A} \rho_{A}=1\right)$
if ρ describes a pure state then ρ_{A} describes a mixed state
\square Entanglement entropy \equiv Von Neumann entropy of ρ_{A}

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)
$$

Entanglement entropies: definition

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle$ Density matrix $\rho=|\Psi\rangle\langle\Psi| \quad \Longrightarrow \quad \operatorname{Tr} \rho^{n}=1$
\square Hilbert space

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

e.g.: spatial bipartition
$\square A$'s reduced density matrix $\quad \rho_{A}=\operatorname{Tr}_{B} \rho \quad\left(\operatorname{Tr}_{A} \rho_{A}=1\right)$
if ρ describes a pure state then ρ_{A} describes a mixed state
\square Entanglement entropy \equiv Von Neumann entropy of ρ_{A}

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)
$$

\square Replica trick

$$
S_{A}=\lim _{n \rightarrow 1} \frac{\log \left(\operatorname{Tr} \rho_{A}^{n}\right)}{1-n}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n}
$$

Entanglement entropies: definition

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle$ Density matrix $\rho=|\Psi\rangle\langle\Psi| \quad \Longrightarrow \quad \operatorname{Tr} \rho^{n}=1$
\square Hilbert space

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

e.g.: spatial bipartition
$\square A$'s reduced density matrix $\quad \rho_{A}=\operatorname{Tr}_{B} \rho \quad\left(\operatorname{Tr}_{A} \rho_{A}=1\right)$
if ρ describes a pure state then ρ_{A} describes a mixed state
\square Entanglement entropy \equiv Von Neumann entropy of ρ_{A}

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)
$$

\square Replica trick

$$
S_{A}=\lim _{n \rightarrow 1} \frac{\log \left(\operatorname{Tr} \rho_{A}^{n}\right)}{1-n}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n}
$$

Rényi entropies $S_{A}^{(n)}$

Entanglement entropies: definition

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle$ Density matrix $\rho=|\Psi\rangle\langle\Psi| \quad \Longrightarrow \quad \operatorname{Tr} \rho^{n}=1$
\square Hilbert space

$$
\left.\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)
$$

e.g.: spatial bipartition
$\square A$'s reduced density matrix $\quad \rho_{A}=\operatorname{Tr}_{B} \rho \quad\left(\operatorname{Tr}_{A} \rho_{A}=1\right)$
if ρ describes a pure state then ρ_{A} describes a mixed state
\square Entanglement entropy \equiv Von Neumann entropy of ρ_{A}

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)
$$

\square Replica trick

$$
S_{A}=\lim _{n \rightarrow 1} \frac{\log \left(\operatorname{Tr} \rho_{A}^{n}\right)}{1-n}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n}
$$

Rényi entropies $S_{A}^{(n)}$

Entanglement entropy: some properties

\square Bipartition $\quad \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \rho=|\Psi\rangle\langle\Psi| \quad$ pure state

Entanglement entropy: some properties

$\square \quad$ Bipartition $\quad \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \rho=|\Psi\rangle\langle\Psi| \quad$ pure state

$$
|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{A}\left|\Psi_{k}\right\rangle_{B}
$$

$c_{k} \geqslant 0$

$$
\sum_{k} c_{k}^{2}=1
$$

$$
\begin{gathered}
S_{A}=-\sum_{k} c_{k}^{2} \log c_{k}^{2}=S_{B} \\
\Longrightarrow S_{A} \text { is not extensive }
\end{gathered}
$$

Entanglement entropy: some properties

$\square \quad$ Bipartition $\quad \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \rho=|\Psi\rangle\langle\Psi| \quad$ pure state

$$
|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{A}\left|\Psi_{k}\right\rangle_{B}
$$

$c_{k} \geqslant 0$

$$
\sum_{k} c_{k}^{2}=1
$$

$$
\begin{gathered}
S_{A}=-\sum_{k} c_{k}^{2} \log c_{k}^{2}=S_{B} \\
\Longrightarrow S_{A} \text { is not extensive }
\end{gathered}
$$

Araki-Lieb inequality
$\square \quad \rho$ mixed state

$$
\delta S_{A} \equiv S_{A}-S_{B}
$$

$$
\left|\delta S_{A}\right| \leqslant S_{A \cup B}=S_{\rho}
$$

Entanglement entropy: some properties

$\square \quad$ Bipartition $\quad \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \rho=|\Psi\rangle\langle\Psi| \quad$ pure state

$$
\begin{aligned}
& |\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{A}\left|\Psi_{k}\right\rangle_{B} \\
& c_{k} \geqslant 0 \quad \sum_{k} c_{k}^{2}=1
\end{aligned}
$$

$$
S_{A}=-\sum_{k} c_{k}^{2} \log c_{k}^{2}=S_{B}
$$

$\Longrightarrow \quad S_{A}$ is not extensive

Schmidt decomposition
Araki-Lieb inequality
$\square \quad \rho$ mixed state

$$
\delta S_{A} \equiv S_{A}-S_{B}
$$

$$
\left|\delta S_{A}\right| \leqslant S_{A \cup B}=S_{\rho}
$$

$\square \quad$ Subadditivity
$A_{1} \cap A_{2}=\emptyset$

$$
S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \cup A_{2}}
$$

$\square \quad$ Strong Subadditivity

$$
\begin{aligned}
& S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \cup A_{2}}+S_{A_{1} \cap A_{2}} \\
& S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \backslash A_{2}}+S_{A_{2} \backslash A_{1}}
\end{aligned}
$$

Geometric entropy: area law

\square Assume that A and B correspond to a spatial bipartition of the system

Geometric entropy: area law

$\square \quad$ Assume that A and B correspond to a spatial bipartition of the system

$\square \quad$ Area law: In d spatial dimensions when $\rho=|\Psi\rangle\langle\Psi|\left(S_{A}=S_{A^{c}}\right)$

$$
S_{A} \propto \frac{\operatorname{Area}(\partial A)}{a^{d-1}}+\ldots
$$

[Bombelli, Koul, Lee, Sorkin, (1986)]
[Srednicki, (1993)]

Geometric entropy: area law

$\square \quad$ Assume that A and B correspond to a spatial bipartition of the system

$\square \quad$ Area law: In d spatial dimensions when $\rho=|\Psi\rangle\langle\Psi|\left(S_{A}=S_{A^{c}}\right)$

$$
S_{A} \propto \frac{\operatorname{Area}(\partial A)}{a^{d-1}}+\ldots
$$

[Bombelli, Koul, Lee, Sorkin, (1986)]
[Srednicki, (1993)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

$$
S_{A}=\gamma \frac{2 \pi R}{a}-f
$$

\square Area law violated in presence of Fermi surfaces: $S_{A} \sim L^{d-1} \log L$ [Wolf, (2005)] [Gioev, Klich, (2005)]

2D CFT: Renyi entropies as correlation functions

\square Single interval $(N=1)$:

2D CFT: Renyi entropies as correlation functions

\square Single interval $(N=1)$:

$\operatorname{Tr} \rho_{A}^{n}$

2D CFT: Renyi entropies as corvelation functions

\square Single interval $(N=1)$: the Rényi entropies can be written as a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{1, n}}{\mathcal{Z}^{n}}=\left\langle\mathcal{T}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle=\frac{c_{n}}{|u-v|^{2 \Delta_{n}}}
$$

$$
\Delta_{n}=\frac{c}{12}\left(n-\frac{1}{n}\right)
$$

2D CFT: Renyi entropies as correlation functions

\square Single interval $(N=1)$: the Rényi entropies can be written as a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]

2D CFT: Renyi entropies as correlation functions

\square Single interval $(N=1)$: the Rényi entropies can be written as a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]

\square Twist fields have been largely studied in the 1980s [Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)] [Knizhnik, (1987)] [Bershadsky, Radul, (1987)]
\square Integrable field theories [Casini, Fosco, Huerta, (2005)] [Casini, Huerta, (2005)] [Cardy, Castro-Alvaredo, Doyon, (2008)]

Boundary conditions \& Twist fields in 2D CFT

\square Global symmetry $j \mapsto j+1 \bmod n$
\square Boundary conditions:

$$
\varphi_{j}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=\varphi_{j-1}(z, \bar{z})
$$

Boundary conditions \& Twist fields in 2D CFT

\square Global symmetry $j \mapsto j+1 \bmod n$
\square Boundary conditions:

$$
\varphi_{j}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=\varphi_{j-1}(z, \bar{z})
$$

\square Linear combinations of basic fields which diagonalize the twist [Casini, Fosco, Huerta, JSTAT (2005)]

$$
\tilde{\varphi}_{k} \equiv \sum_{j=1}^{n} e^{2 \pi i \frac{k}{n} j} \varphi_{j}
$$

$$
k=0,1, \ldots, n-1
$$

Boundary conditions \& Twist fields in 2D CFT

\square Global symmetry $j \mapsto j+1 \bmod n$
\square Boundary conditions:

$$
\varphi_{j}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=\varphi_{j-1}(z, \bar{z})
$$

\square Linear combinations of basic fields which diagonalize the twist [Casini, Fosco, Huerta, JSTAT (2005)]

$$
\tilde{\varphi}_{k} \equiv \sum_{j=1}^{n} e^{2 \pi i \frac{k}{n} j} \varphi_{j}
$$

$$
k=0,1, \ldots, n-1
$$

$$
\tilde{\varphi}_{k}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=e^{2 \pi i \frac{k}{n}} \tilde{\varphi}_{k}(z, \bar{z})=\theta_{k} \tilde{\varphi}_{k}(z, \bar{z}) \quad \theta_{k} \equiv e^{2 \pi i \frac{k}{n}}
$$

Boundary conditions \& Twist fields in 2D CFT

\square Global symmetry $j \mapsto j+1 \bmod n$
\square Boundary conditions:

$$
\varphi_{j}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=\varphi_{j-1}(z, \bar{z})
$$

\square Linear combinations of basic fields which diagonalize the twist [Casini, Fosco, Huerta, JSTAT (2005)]

$$
\tilde{\varphi}_{k} \equiv \sum_{j=1}^{n} e^{2 \pi i \frac{k}{n} j} \varphi_{j}
$$

$$
k=0,1, \ldots, n-1
$$

$\tilde{\varphi}_{k}\left(e^{2 \pi i} z, e^{-2 \pi i} \bar{z}\right)=e^{2 \pi i \frac{k}{n}} \tilde{\varphi}_{k}(z, \bar{z})=\theta_{k} \tilde{\varphi}_{k}(z, \bar{z}) \quad \theta_{k} \equiv e^{2 \pi i \frac{k}{n}}$
\square Branch-point twist field $\mathcal{T}_{n, k}$ in the origin
[Dixon, Friedan, Martinec, Shenker, NPB (1987)] [Zamolodchikov, NPB (1987)]
[Calabrese, Cardy, JSTAT (2004)] [Cardy, Castro-Alvaredo, Doyon, JSP (2008)]

Entanglement entropy of a single interval in CFT

\square Two-point function of twist fields for a free complex boson φ
[Dixon, Friedan, Martinec, Shenker, NPB (1987)]

$$
\left\langle\mathcal{T}_{k, n}(u) \bar{T}_{k, n}(v)\right\rangle \propto \frac{1}{|u-v|^{4 \Delta_{k / n}}} \quad \quad \quad \Delta{ }_{\frac{k}{n}}=\bar{\Delta}_{\frac{k}{n}}=\frac{1}{2} \frac{k}{n}\left(1-\frac{k}{n}\right)
$$

Entanglement entropy of a single interval in CFT

\square Two-point function of twist fields for a free complex boson φ
[Dixon, Friedan, Martinec, Shenker, NPB (1987)]

$$
\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle \propto \frac{1}{|u-v|^{4 \Delta_{k / n}}}
$$

$$
\Delta_{\frac{k}{n}}=\bar{\Delta}_{\frac{k}{n}}=\frac{1}{2} \frac{k}{n}\left(1-\frac{k}{n}\right)
$$

\square Partition function on $\mathcal{R}_{n, 1}$ [Calabrese, Cardy, JSTAT (2004)] [Ryu, Takayanagi JHEP (2006)]

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{n}}{\mathcal{Z}_{1}^{n}}=\left\langle\mathcal{T}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle=\prod_{k=0}^{n-1}\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle=\frac{c_{n}}{|u-v|^{\frac{1}{3}\left(n-\frac{1}{n}\right)}}
$$

Entanglement entropy of a single interval in CFT

$\square \quad$ Two-point function of twist fields for a free complex boson φ [Dixon, Friedan, Martinec, Shenker, NPB (1987)]

$$
\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle \propto \frac{1}{|u-v|^{4 \Delta_{k / n}}}
$$

$$
\Delta_{\frac{k}{n}}=\bar{\Delta}_{\frac{k}{n}}=\frac{1}{2} \frac{k}{n}\left(1-\frac{k}{n}\right)
$$

\square Partition function on $\mathcal{R}_{n, 1}$ [Calabrese, Cardy, JSTAT (2004)] [Ryu, Takayanagi JHEP (2006)]

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{n}}{\mathcal{Z}_{1}^{n}}=\left\langle\mathcal{T}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle=\prod_{k=0}^{n-1}\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle=\frac{c_{n}}{|u-v|^{\frac{1}{3}\left(n-\frac{1}{n}\right)}}
$$

Entanglement entropy of a single interval for the free real boson

$$
S_{A}=-\left.\partial_{n} \operatorname{Tr} \rho_{A}^{n}\right|_{n=1}=\frac{1}{3} \log \frac{\ell}{a}+c_{1}^{\prime}
$$

Entanglement entropy of a single interval in CFT

\square Two-point function of twist fields for a free complex boson φ [Dixon, Friedan, Martinec, Shenker, NPB (1987)]

$$
\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle \propto \frac{1}{|u-v|^{4 \Delta_{k / n}}}
$$

$$
\Delta_{\frac{k}{n}}=\bar{\Delta}_{\frac{k}{n}}=\frac{1}{2} \frac{k}{n}\left(1-\frac{k}{n}\right)
$$

\square Partition function on $\mathcal{R}_{n, 1}$ [Calabrese, Cardy, JSTAT (2004)] [Ryu, Takayanagi JHEP (2006)]

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{n}}{\mathcal{Z}_{1}^{n}}=\left\langle\mathcal{T}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle=\prod_{k=0}^{n-1}\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle=\frac{c_{n}}{|u-v|^{\frac{1}{3}\left(n-\frac{1}{n}\right)}}
$$

Entanglement entropy of a single interval for the free real boson

$$
S_{A}=-\left.\partial_{n} \operatorname{Tr} \rho_{A}^{n}\right|_{n=1}=\frac{1}{3} \log \frac{\ell}{a}+c_{1}^{\prime}
$$

Entanglement entropy of a single interval in CFT

$\square \quad$ Two-point function of twist fields for a free complex boson φ
[Dixon, Friedan, Martinec, Shenker, NPB (1987)]

$$
\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle \propto \frac{1}{|u-v|^{4 \Delta_{k / n}}}
$$

$$
\Delta_{\frac{k}{n}}=\bar{\Delta}_{\frac{k}{n}}=\frac{1}{2} \frac{k}{n}\left(1-\frac{k}{n}\right)
$$

\square Partition function on $\mathcal{R}_{n, 1}$ [Calabrese, Cardy, JSTAT (2004)] [Ryu, Takayanagi JHEP (2006)]

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{n}}{\mathcal{Z}_{1}^{n}}=\left\langle\mathcal{T}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle=\prod_{k=0}^{n-1}\left\langle\mathcal{T}_{k, n}(u) \overline{\mathcal{T}}_{k, n}(v)\right\rangle=\frac{c_{n}}{|u-v|^{\frac{1}{3}\left(n-\frac{1}{n}\right)}}
$$

Entanglement entropy of a single interval for the free real boson

$$
S_{A}=-\left.\partial_{n} \operatorname{Tr} \rho_{A}^{n}\right|_{n=1}=\frac{1}{3} \log \frac{\ell}{a}+c_{1}^{\prime}
$$

[Holzhey, Larsen, Wilczek, NPB (1994)]
$\square \mathcal{R}_{n, 1}$ is topologically a sphere \Rightarrow it can be uniformized into a sphere This allows to find S_{A} for any CFT

2D CFT: Renyi entropies for two disjoint intervals

\square Two disjoint intervals:

2D CFT: Renyi entropies for two disjoint intervals

\square Two disjoint intervals: Four point function of twist fields
[Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]

$\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{2, n}}{\mathcal{Z}^{n}}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$

$\mathcal{Z}_{2, n}$ is the partition function of $\mathcal{R}_{2, n}$, a particular genus $n-1$ Riemann surface obtained through replication

2D CFT: Renyi entropies for two disjoint intervals

\square Two disjoint intervals: Four point function of twist fields [Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]

$\mathbf{- = - -}$| u_{1} | A_{1} | v_{1} | u_{2} | A_{2} | v_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \mathcal{T}_{n} | | $\overline{\mathcal{T}}_{n}$ | \mathcal{T}_{n} | | $\overline{\mathcal{T}}_{n}$ |
| 0 | | x | 1 | | ∞ |

$$
\begin{aligned}
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{2, n}}{\mathcal{Z}^{n}} & =\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle \\
& =c_{n}^{2}\left(\frac{1}{\left(v_{1}-u_{1}\right)\left(v_{2}-u_{2}\right)\left(v_{2}-u_{1}\right)\left(v_{1}-u_{2}\right)}\right)^{2 \Delta_{n}} \mathcal{F}_{n}(x)
\end{aligned}
$$

$\mathcal{Z}_{2, n}$ is the partition function of $\mathcal{R}_{2, n}$, a particular genus $n-1$ Riemann surface obtained through replication

2D CFT: Renyi entropies for two disjoint intervals

\square Two disjoint intervals: Four point function of twist fields [Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]

u_{1}	A_{1}	v_{1}	u_{2}	A_{2}	v_{2}
\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$
0	x	1		∞	

$$
\begin{aligned}
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{2, n}}{\mathcal{Z}^{n}} & =\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle \\
& =c_{n}^{2}\left(\frac{\left(u_{2}-u_{1}\right)\left(v_{2}-v_{1}\right)}{\left(v_{1}-u_{1}\right)\left(v_{2}-u_{2}\right)\left(v_{2}-u_{1}\right)\left(v_{1}-u_{2}\right)}\right)^{2 \Delta_{n}} \mathcal{F}_{n}(x)
\end{aligned}
$$

$\mathcal{Z}_{2, n}$ is the partition function of $\mathcal{R}_{2, n}$, a particular genus $n-1$ Riemann surface obtained through replication

Higher genus Riemann surfaces from replication

A key object is the period matrix τ

$$
\oint_{a_{i}} \omega_{j}=\delta_{i j} \quad \oint_{b_{i}} \omega_{j}=\tau_{i j}
$$

$$
\tau \text { is } g \times g, \text { symmetric and } \operatorname{Im}(\tau)>0
$$

$3 g-3$ complex moduli for $g \geqslant 2$

Higher genus Riemann surfaces from replication

A key object is the period matrix τ

$$
\oint_{a_{i}} \omega_{j}=\delta_{i j} \quad \oint_{b_{i}} \omega_{j}=\tau_{i j}
$$

$$
\tau \text { is } g \times g, \text { symmetric and } \operatorname{Im}(\tau)>0
$$

$3 g-3$ complex moduli for $g \geqslant 2$

We are dealing with a subclass of Riemann surfaces of genus $g=(N-1)(n-1)$ obtained from replication Indeed $\tau=\tau(\boldsymbol{x})$

Higher genus Riemann surfaces from replication

\square

We are dealing with a subclass of Riemann surfaces of genus $g=(N-1)(n-1)$ obtained from replication Indeed $\tau=\tau(\boldsymbol{x})$

A key object is the period matrix τ

$$
\oint_{a_{i}} \omega_{j}=\delta_{i j} \quad \oint_{b_{i}} \omega_{j}=\tau_{i j}
$$

τ is $g \times g$, symmetric and $\operatorname{Im}(\tau)>0$
$3 g-3$ complex moduli for $g \geqslant 2$

Higher genus Riemann surfaces from replication

A key object is the period matrix τ

$$
\oint_{a_{i}} \omega_{j}=\delta_{i j} \quad \oint_{b_{i}} \omega_{j}=\tau_{i j}
$$

τ is $g \times g$, symmetric and $\operatorname{Im}(\tau)>0$
$3 g-3$ complex moduli for $g \geqslant 2$

We are dealing with a subclass of Riemann surfaces of genus $g=(N-1)(n-1)$ obtained from replication Indeed $\tau=\tau(\boldsymbol{x})$

Higher genus Riemann surfaces from replication

A key object is the period matrix τ

$$
\oint_{a_{i}} \omega_{j}=\delta_{i j} \quad \oint_{b_{i}} \omega_{j}=\tau_{i j}
$$

τ is $g \times g$, symmetric and $\operatorname{Im}(\tau)>0$
$3 g-3$ complex moduli for $g \geqslant 2$

We are dealing with a subclass of Riemann surfaces of genus $g=(N-1)(n-1)$ obtained from replication Indeed $\tau=\tau(\boldsymbol{x})$

Higher genus Riemann surfaces from replication

A key object is the period matrix τ

$$
\oint_{a_{i}} \omega_{j}=\delta_{i j} \quad \oint_{b_{i}} \omega_{j}=\tau_{i j}
$$

τ is $g \times g$, symmetric and $\operatorname{Im}(\tau)>0$
$3 g-3$ complex moduli for $g \geqslant 2$

We are dealing with a subclass of Riemann surfaces of genus $g=(N-1)(n-1)$ obtained from replication Indeed $\tau=\tau(\boldsymbol{x})$

Free compactified boson: Renyi entropies

[Calabrese, Cardy, E.T., JSTAT (2009)]
$\square \underline{\text { Riemann-Siegel theta function }} \quad \Theta(0 \mid \Gamma) \equiv \sum_{m \in \mathbf{Z}^{G}} \exp \left[i \pi m^{t} \cdot \Gamma \cdot m\right]$

$$
\mathcal{F}_{n}(x)=\left[\frac{\Theta(0 \mid \eta \Gamma) \Theta(0 \mid \Gamma / \eta)}{\Theta(0 \mid \Gamma)^{2}}\right]^{2}
$$

Free compactified boson: Renyi entropies

[Calabrese, Cardy, E.T., JSTAT (2009)]
$\square \underline{\text { Riemann-Siegel theta function }} \quad \Theta(0 \mid \Gamma) \equiv \sum_{m \in \mathbf{Z}^{G}} \exp \left[i \pi m^{\mathrm{t}} \cdot \Gamma \cdot m\right]$

$$
\eta \equiv g R^{2}
$$

$$
\mathcal{F}_{n}(x)=\left[\frac{\Theta(0 \mid \eta \Gamma) \Theta(0 \mid \Gamma / \eta)^{2}}{\Theta(0 \mid \Gamma)^{2}}\right] \longrightarrow \begin{gathered}
\text { complex } \\
\text { boson }
\end{gathered}
$$

Free compactified boson: Renyi entropies

[Calabrese, Cardy, E.T., JSTAT (2009)]
$\square \underline{\text { Riemann-Siegel theta function }} \quad \Theta(0 \mid \Gamma) \equiv \sum_{m \in \mathbf{Z}^{G}} \exp \left[i \pi m^{\mathrm{t}} \cdot \Gamma \cdot m\right]$

$$
\eta \equiv g R^{2}
$$

$$
\mathcal{F}_{n}(x)=\left[\frac{\Theta(0 \mid \eta \Gamma) \Theta(0 \mid \Gamma / \eta)^{2}}{\Theta(0 \mid \Gamma)^{2}}\right] \longrightarrow \begin{gathered}
\text { complex } \\
\text { boson }
\end{gathered}
$$

$$
\Gamma_{r s} \equiv \frac{2}{n} \sum_{k=1}^{n-1} \sin \left(\pi \frac{k}{n}\right) i \frac{F_{k / n}(1-x)}{F_{k / n}(x)} \cos \left[2 \pi \frac{k}{n}(r-s)\right]
$$

$$
F_{y}(x) \equiv{ }_{2} F_{1}(y, 1-y ; 1 ; x)
$$

$$
0<x<1
$$

$r, s=1, \ldots, n-1$

Free compactified boson: Renyi entropies

[Calabrese, Cardy, E.T., JSTAT (2009)]
$\square \quad$ Riemann-Siegel theta function

$$
\Theta(0 \mid \Gamma) \equiv \sum_{m \in \mathbf{Z}^{G}} \exp \left[i \pi m^{\mathrm{t}} \cdot \Gamma \cdot m\right]
$$

$$
\eta \equiv g R^{2}
$$

$$
\mathcal{F}_{n}(x)=\left[\frac{\Theta(0 \mid \eta \Gamma) \Theta(0 \mid \Gamma / \eta)^{2}}{\Theta(0 \mid \Gamma)^{2}}\right] \longrightarrow \begin{gathered}
\text { complex } \\
\text { boson }
\end{gathered}
$$

$$
\Gamma_{r s} \equiv \frac{2}{n} \sum_{k=1}^{n-1} \sin \left(\pi \frac{k}{n}\right) i \frac{F_{k / n}(1-x)}{F_{k / n}(x)} \cos \left[2 \pi \frac{k}{n}(r-s)\right]
$$

$$
F_{y}(x) \equiv{ }_{2} F_{1}(y, 1-y ; 1 ; x)
$$

$$
0<x<1
$$

$r, s=1, \ldots, n-1$
nasty n dependence

Free compactified boson: Renyi entropies

[Calabrese, Cardy, E.T., JSTAT (2009)]
$\square \quad$ Riemann-Siegel theta function

$$
\Theta(0 \mid \Gamma) \equiv \sum_{m \in \mathbf{Z}^{G}} \exp \left[i \pi m^{\mathrm{t}} \cdot \Gamma \cdot m\right]
$$

$\eta \equiv g R^{2}$

$$
\mathcal{F}_{n}(x)=\left[\frac{\Theta(0 \mid \eta \Gamma) \Theta(0 \mid \Gamma / \eta)^{2}}{\Theta(0 \mid \Gamma)^{2}}\right] \longrightarrow \begin{gathered}
\text { complex } \\
\text { boson }
\end{gathered}
$$

$\Gamma_{r s} \equiv \frac{2}{n} \sum_{k=1}^{n-1} \sin \left(\pi \frac{k}{n}\right) i \frac{F_{k / n}(1-x)}{F_{k / n}(x)} \cos \left[2 \pi \frac{k}{n}(r-s)\right]$

$$
F_{y}(x) \equiv{ }_{2} F_{1}(y, 1-y ; 1 ; x)
$$

$$
0<x<1
$$

$r, s=1, \ldots, n-1<$ nasty n dependence
$\rightarrow \mathcal{F}_{n}(x)$ is invariant under $\eta \leftrightarrow 1 / \eta$
$\rightarrow \mathcal{F}_{n}(x)$ is invariant under $x \leftrightarrow 1-x \quad\left(S_{A}=S_{B}\right)$

Free compactified boson: Renyi entropies

[Calabrese, Cardy, E.T., JSTAT (2009)]
$\square \quad$ Riemann-Siegel theta function

$$
\Theta(0 \mid \Gamma) \equiv \sum_{m \in \mathbf{Z}^{G}} \exp \left[i \pi m^{\mathrm{t}} \cdot \Gamma \cdot m\right]
$$

$\eta \equiv g R^{2}$

$$
\mathcal{F}_{n}(x)=\left[\frac{\Theta(0 \mid \eta \Gamma) \Theta(0 \mid \Gamma / \eta)^{2}}{\Theta(0 \mid \Gamma)^{2}}\right] \longrightarrow \begin{gathered}
\text { complex } \\
\text { boson }
\end{gathered}
$$

$\Gamma_{r s} \equiv \frac{2}{n} \sum_{k=1}^{n-1} \sin \left(\pi \frac{k}{n}\right) i \frac{F_{k / n}(1-x)}{F_{k / n}(x)} \cos \left[2 \pi \frac{k}{n}(r-s)\right]$

$$
F_{y}(x) \equiv{ }_{2} F_{1}(y, 1-y ; 1 ; x)
$$

$r, s=1, \ldots, n-1<$ nasty n dependence
$\rightarrow \mathcal{F}_{n}(x)$ is invariant under $\eta \leftrightarrow 1 / \eta$
$\Rightarrow \mathcal{F}_{n}(x)$ is invariant under $x \leftrightarrow 1-x \quad\left(S_{A}=S_{B}\right)$
Orevious studies of the period matrix in [Korotkin, (2003)] [Enolski, Grava, (2003)]

Bosonization on higher genus Riemann surfaces

[Alvarez-Gaume, Moore, Vafa; CMP (1986)]
[Dijkgraaf, Verlinde, Verlinde; CMP (1988)]
$\square \quad c=1$ theories in 2D
(compact boson and \mathbb{Z}_{2} orbifold)

Bosonization on higher genus Riemann surfaces

[Alvarez-Gaume, Moore, Vafa; CMP (1986)]
[Dijkgraaf, Verlinde, Verlinde; CMP (1988)]
$\square \quad c=1$ theories in 2D (compact boson and \mathbb{Z}_{2} orbifold)

Bosonization on higher genus Riemann surfaces

[Alvarez-Gaume, Moore, Vafa; CMP (1986)]
[Dijkgraaf, Verlinde, Verlinde; CMP (1988)]
$\square \quad c=1$ theories in 2D (compact boson and \mathbb{Z}_{2} orbifold)

Bosonization on higher genus Riemann surfaces

[Alvarez-Gaume, Moore, Vafa; CMP (1986)]
[Dijkgraaf, Verlinde, Verlinde; CMP (1988)]
$\square \quad c=1$ theories in 2D (compact boson and \mathbb{Z}_{2} orbifold)

Bosonization on higher genus Riemann surfaces

[Alvarez-Gaume, Moore, Vafa; CMP (1986)]
[Dijkgraaf, Verlinde, Verlinde; CMP (1988)]
$\square \quad c=1$ theories in 2D (compact boson and \mathbb{Z}_{2} orbifold)

\square For the Ising model τ is enough to write \mathcal{Z}

Ising model: Renyi entropies

$\square H_{X Y} \equiv-\sum_{j=1}^{L}\left(\frac{1+\gamma}{4} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{4} \sigma_{j}^{y} \sigma_{j+1}^{y}+\frac{h}{2} \sigma_{j}^{z}\right)$

$$
\gamma=\text { anisotropy } \quad \begin{cases}1 & \text { Ising model } \\ 0 & \text { XX model }\end{cases}
$$

$h=$ magnetic field

Ising model: Renyi entropies

$\square H_{X Y} \equiv-\sum_{j=1}^{L}\left(\frac{1+\gamma}{4} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{4} \sigma_{j}^{y} \sigma_{j+1}^{y}+\frac{h}{2} \sigma_{j}^{z}\right)$

$$
\gamma=\text { anisotropy } \quad \begin{cases}1 & \text { Ising model } \\ 0 & \text { XX model }\end{cases}
$$

$h=$ magnetic field
[Calabrese, Cardy, E.T.; JSTAT (2011)]

Ising model: Renyi entropies

$\square \quad H_{X Y} \equiv-\sum_{j=1}^{L}\left(\frac{1+\gamma}{4} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{4} \sigma_{j}^{y} \sigma_{j+1}^{y}+\frac{h}{2} \sigma_{j}^{z}\right)$
[Calabrese, Cardy, E.T.; JSTAT (2011)]
$\gamma=$ anisotropy $\quad \begin{cases}1 & \text { Ising model } \\ 0 & \text { XX model }\end{cases}$
$h=$ magnetic field
$\square \quad$ Continuum limit: CFT.
Bosonization on higher genus Riemann surfaces

$$
\mathcal{F}_{n}(x)=\frac{1}{2^{n-1} \Theta(0 \mid \Gamma)} \sum_{\varepsilon, \delta}\left|\Theta\left[\begin{array}{l}
\varepsilon \\
\delta
\end{array}\right](0 \mid \Gamma)\right|
$$

$\square \quad$ Riemann-Siegel theta function with characteristic
ε and δ are vectors with
$n-1$ elements $\in\{0,1 / 2\}$

$$
\Theta\left[\begin{array}{l}
\varepsilon \\
\delta
\end{array}\right](z \mid \Gamma) \equiv \sum_{m \in \mathbf{Z}^{G}} \exp \left[i \pi(m+\varepsilon)^{\mathrm{t}} \cdot \Gamma \cdot(m+\varepsilon)+2 \pi i(m+\varepsilon)^{\mathrm{t}} \cdot(z+\delta)\right]
$$

$\square \quad \mathcal{F}_{n}(x)$ is invariant under $x \leftrightarrow 1-x \quad\left(S_{A}=S_{B}\right)$

Two disjoint intervals: comparison with numerics

\square Mutual information in XXZ model
(exact diagonalization) [Furukawa, Pasquier, Shiraishi, (2009)]

Rational interpolation: an example

\square Mutual information in critical Ising chain
(Tree Tensor Network) [Alba, Tagliacozzo, Calabrese, (2010)]

\square Rational interpolation:
[De Nobili, Coser, E.T., (2015)]

$$
W_{(p, q)}^{(n)}(x) \equiv \frac{a_{0}(x)+a_{1}(x) n+\cdots+a_{p}(x) n^{p}}{b_{0}(x)+b_{1}(x) n+\cdots+b_{q}(x) n^{q}}
$$

Method first employed for Riemann theta functions in $2+1$ dimensions [Agón, Headrick, Jafferis, Kasko, (2014)]

Why disjoint intervals?

\square One interval on the infinite line at $T=0$
[Holzhey, Larsen, Wilczek, (1994)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

Why disjoint intervals?

\square One interval on the infinite line at $T=0$
[Holzhey, Larsen, Wilczek, (1994)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

\square Two intervals A_{1} and $A_{2}: \operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ for small intervals w.r.t. to other characteristc lengths of the system
[Headrick, (2010)]
[Calabrese, Cardy, E.T., (2011)]

\square Generalization to higher dimensions [Cardy, (2013)]

Why disjoint intervals?

\square One interval on the infinite line at $T=0$
[Holzhey, Larsen, Wilczek, (1994)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

\square Two intervals A_{1} and $A_{2}: \operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ for small intervals w.r.t. to other characteristc lengths of the system

$$
\operatorname{Tr} \rho_{A}^{n}=c_{n}^{2}\left(\ell_{1} \ell_{2}\right)^{-c / 6(n-1 / n)} \sum_{\left\{k_{j}\right\}}\left(\frac{\ell_{1} \ell_{2}}{n^{2} r^{2}}\right)^{\sum_{j}\left(\Delta_{j}+\bar{\Delta}_{j}\right)}\left\langle\prod_{j=1}^{n} \phi_{k_{j}}\left(e^{2 \pi i j / n}\right)\right\rangle_{\mathbf{C}}^{2}
$$

$\operatorname{Tr} \rho_{A}^{n}$ for disjoint intervals contains all the data of the CFT (conformal dimensions and OPE coefficients)
\square Generalization to higher dimensions [Cardy, (2013)]

Why disjoint intervals?

\square One interval on the infinite line at $T=0$
[Holzhey, Larsen, Wilczek, (1994)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

\square Two intervals A_{1} and $A_{2}: \operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ for small intervals w.r.t. to other characteristc lengths of the system
[Headrick, (2010)]
[Calabrese, Cardy, E.T., (2011)]

$$
\operatorname{Tr} \rho_{A}^{n}=c_{n}^{2}\left(\ell_{1} \ell_{2}\right)^{-c / 6(n-1 / n)} \sum_{\left\{k_{j}\right\}}\left(\frac{\ell_{1} \ell_{2}}{n^{2} r^{2}}\right)^{\sum_{j}\left(\Delta_{j}+\bar{\Delta}_{j}\right)}\left\langle\prod_{j=1}^{n} \phi_{k_{j}}\left(e^{2 \pi i j / n}\right)\right\rangle_{\mathbf{C}}^{2}
$$

$\operatorname{Tr} \rho_{A}^{n}$ for disjoint intervals contains all the data of the CFT (conformal dimensions and OPE coefficients)

The vacuum is not empty!
\square Generalization to higher dimensions [Cardy, (2013)]

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

$$
\operatorname{Tr}_{\rho_{A}^{n}}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}=\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{i}\right) \overline{\mathcal{T}}_{n}\left(v_{i}\right)\right\rangle=c_{n}^{N}\left|\frac{\prod_{i<j}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right)}{\prod_{i, j}\left(v_{j}-u_{i}\right)}\right|^{2 \Delta_{n}} \mathcal{F}_{N, n}(\boldsymbol{x})
$$

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

$\square \mathcal{Z}_{N, n}$ partition function of $\mathcal{R}_{N, n}$, a particular
Riemann surface of genus $g=(N-1)(n-1)$
obtained through replication

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

$$
\begin{aligned}
& \mathbf{- -} v_{N} .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}=\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{i}\right) \overline{\mathcal{T}}_{n}\left(v_{i}\right)\right\rangle=c_{n}^{N}\left|\frac{\prod_{i<j}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right)}{\prod_{i, j}\left(v_{j}-u_{i}\right)}\right|^{2 \Delta_{n}} \mathcal{F}_{N, n}(\boldsymbol{x})
\end{aligned}
$$

$\square \mathcal{Z}_{N, n}$ partition function of $\mathcal{R}_{N, n}$, a particular Riemann surface of genus $g=(N-1)(n-1)$ obtained through replication

The period matrix

$$
y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad g=(N-1)(n-1)
$$

The period matrix

$$
y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad g=(N-1)(n-1)
$$

\square canonical homology basis $\left\{a_{\alpha, j}, b_{\alpha, j}\right\}$

The period matrix

$$
\left.y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad g=(N-1)(n-1)\right]
$$

\square canonical homology basis $\left\{a_{\alpha, j}, b_{\alpha, j}\right\}$

The period matrix

$$
y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad g=(N-1)(n-1)
$$

\square canonical homology basis $\left\{a_{\alpha, j}, b_{\alpha, j}\right\}$

$\square \omega_{\alpha, j}=\frac{z^{\alpha-1} v(z)^{j-1}}{y^{j}} d z$

$$
\begin{gathered}
\alpha=1, \ldots, N-1 \\
j=1, \ldots, n-1
\end{gathered}
$$

The period matrix

$$
y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad g=(N-1)(n-1)
$$

\square canonical homology basis $\left\{a_{\alpha, j}, b_{\alpha, j}\right\}$
$\square \omega_{\alpha, j}=\frac{z^{\alpha-1} v(z)^{j-1}}{y^{j}} d z$
$\begin{aligned} \alpha & =1, \ldots, N-1 \\ j & =1, \ldots, n-1\end{aligned}$
$\mathcal{A}_{k, j}^{\beta, \alpha}=\oint_{a_{\alpha, j}} \omega_{\beta, k}$

$$
\mathcal{B}_{k, j}^{\beta, \alpha}=\oint_{b_{\alpha, j}} \omega_{\beta, k}
$$

The period matrix

$$
y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad g=(N-1)(n-1)
$$

\square canonical homology basis $\left\{a_{\alpha, j}, b_{\alpha, j}\right\}$
$\square \omega_{\alpha, j}=\frac{z^{\alpha-1} v(z)^{j-1}}{y^{j}} d z$

$$
\begin{gathered}
\alpha=1, \ldots, N-1 \\
j=1, \ldots, n-1
\end{gathered}
$$

$\begin{aligned} \mathcal{A}_{k, j}^{\beta, \alpha} & =\oint_{a_{\alpha, j}} \omega_{\beta, k} \\ \mathcal{B}_{k, j}^{\beta, \alpha} & =\oint_{b_{\alpha, j}} \omega_{\beta, k}\end{aligned} \longrightarrow \begin{aligned} & \tau=\mathcal{A}^{-1} \cdot \mathcal{B} \\ & \tau=\tau(\boldsymbol{x})\end{aligned}$

N intervals: free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is $y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad \begin{aligned} & g=(N-1)(n-1) \\ & {[\text { Korotkin, (2003)] }} \\ & {[\text { Enolski, Grava, (2003)] }}\end{aligned}$
\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]

Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

N intervals: free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is $y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \begin{aligned} & g=(N-1)(n-1) \\ & \begin{array}{l}\text { [Korotkin, (2003)] } \\ \text { [Enolski, Grava, (2003)] }\end{array}\end{aligned}$
\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]

Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

\square Free compactified boson $\left(\eta \propto R^{2}\right)$
[Coser, Tagliacozzo, E.T., JSTAT (2014)]

$$
\mathcal{F}_{N, n}(\boldsymbol{x})=\frac{\Theta\left(\mathbf{0} \mid T_{\eta}\right)}{|\Theta(\mathbf{0} \mid \tau)|^{2}} \quad T_{\eta}=\left(\begin{array}{cc}
\mathrm{i} \eta \mathcal{I} & \mathcal{R} \\
\mathcal{R} & \mathrm{i} \mathcal{I} / \eta
\end{array}\right) \quad \begin{gathered}
\tau=\mathcal{R}+\mathrm{i} \mathcal{I} \\
\text { period matrix } \\
(g \times g)
\end{gathered}
$$

N intervals: free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is $y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \begin{aligned} & g=(N-1)(n-1) \\ & \begin{array}{l}\text { [Korotkin, (2003)] } \\ \text { [Enolski, Grava, (2003)] }\end{array}\end{aligned}$
\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]

Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

\square Free compactified boson $\left(\eta \propto R^{2}\right)$
[Coser, Tagliacozzo, E.T., JSTAT (2014)]

$$
\mathcal{F}_{N, n}(\boldsymbol{x})=\frac{\Theta\left(\mathbf{0} \mid T_{\eta}\right)}{|\Theta(\mathbf{0} \mid \tau)|^{2}} \quad T_{\eta}=\left(\begin{array}{cc}
\mathrm{i} \eta \mathcal{I} & \mathcal{R} \\
\mathcal{R} & \mathrm{i} \mathcal{I} / \eta
\end{array}\right) \quad \begin{gathered}
\tau=\mathcal{R}+\mathrm{i} \mathcal{I} \\
\text { period matrix } \\
(g \times g)
\end{gathered}
$$

\square Ising model

$$
\mathcal{F}_{N, n}^{\text {Ising }}(\boldsymbol{x})=\frac{\sum_{e}|\Theta[e](\mathbf{0} \mid \tau)|}{2^{g}|\Theta(\mathbf{0} \mid \tau)|}
$$

N intervals: free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is $y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \begin{aligned} & g=(N-1)(n-1) \\ & \text { [Korotkin, (2003)] } \\ & \text { [Enolski, Grava, (2003)] }\end{aligned}$
\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]

Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

\square Free compactified boson $\left(\eta \propto R^{2}\right)$
[Coser, Tagliacozzo, E.T., JSTAT (2014)]

$$
\mathcal{F}_{N, n}(\boldsymbol{x})=\frac{\Theta\left(\mathbf{0} \mid T_{\eta}\right)}{|\Theta(\mathbf{0} \mid \tau)|^{2}} \quad T_{\eta}=\left(\begin{array}{cc}
\mathrm{i} \eta \mathcal{I} & \mathcal{R} \\
\mathcal{R} & \mathrm{i} \mathcal{I} / \eta
\end{array}\right) \quad \begin{gathered}
\tau=\mathcal{R}+\mathrm{i} \mathcal{I} \\
(g \times g) \\
\text { period matrix } \\
(g \times \log
\end{gathered}
$$

\square Ising model

$$
\mathcal{F}_{N, n}^{\operatorname{Ising}}(\mathfrak{C})=\frac{\sum_{e}|\Theta[\boldsymbol{e}](\mathbf{0} \mid \tau)|}{2 g|\Theta(\mathbf{0} \mid \tau)|}
$$

Nasty n dependence

The periodic harmonic chain

\square Periodic chain of harmonic oscillators
$H=\sum_{n=0}^{L-1}\left(\frac{1}{2 M} p_{n}^{2}+\frac{M \omega^{2}}{2} q_{n}^{2}+\frac{K}{2}\left(q_{n+1}-q_{n}\right)^{2}\right)$
The massless case in the continuum limit is the $c=1$ free boson on the line
[Peschel, Chung, JPA (1999)] [Botero, Reznik, PRA (2004)]
[Audenaert, Eisert, Plenio, Werner, PRA (2002)]

The periodic harmonic chain

\square Periodic chain of harmonic oscillators
$H=\sum_{n=0}^{L-1}\left(\frac{1}{2 M} p_{n}^{2}+\frac{M \omega^{2}}{2} q_{n}^{2}+\frac{K}{2}\left(q_{n+1}-q_{n}\right)^{2}\right)$
The massless case in the continuum limit is the $c=1$ free boson on the line
[Peschel, Chung, JPA (1999)] [Botero, Reznik, PRA (2004)]
[Audenaert, Eisert, Plenio, Werner, PRA (2002)]

\square Decompactification regime (large η)

$$
\mathcal{F}_{N, n}^{\mathrm{dec}}(\boldsymbol{x})=\frac{\eta^{g / 2}}{\sqrt{\operatorname{det}(\mathcal{I})}|\Theta(\mathbf{0} \mid \tau)|^{2}}
$$

[Coser, Tagliacozzo, E.T., JSTAT (2014)]

The periodic harmonic chain

\square Periodic chain of harmonic oscillators
$H=\sum_{n=0}^{L-1}\left(\frac{1}{2 M} p_{n}^{2}+\frac{M \omega^{2}}{2} q_{n}^{2}+\frac{K}{2}\left(q_{n+1}-q_{n}\right)^{2}\right)$
The massless case in the continuum limit is the $c=1$ free boson on the line
[Peschel, Chung, JPA (1999)] [Botero, Reznik, PRA (2004)]
[Audenaert, Eisert, Plenio, Werner, PRA (2002)]

\square Decompactification regime (large η)

$$
\mathcal{F}_{N, n}^{\mathrm{dec}}(\boldsymbol{x})=\frac{\eta^{g / 2}}{\sqrt{\operatorname{det}(\mathcal{I})}|\Theta(\mathbf{0} \mid \tau)|^{2}}
$$

[Coser, Tagliacozzo, E.T., JSTAT (2014)]

Numerics for the Ising model: Matrix Product States (I)

[White, Noack, PRL (1992)] [Ostuld, Rommer, PRL (1995)] [Vidal, PRL (2003)] [Verstraete, Cirac, PRB (2006)] [Hastings, JSTAT (2007)] ...

Ground
state

$$
|\Psi\rangle=\sum_{i_{1}, \ldots, i_{8}=1}^{\delta} \sum_{\alpha_{1}, \ldots, \alpha_{8}=1}^{\chi} t_{i_{1}}^{\alpha_{1} \alpha_{2}} t_{i_{2}}^{\alpha_{2} \alpha_{3}} \cdots t_{i_{8}}^{\alpha_{8} \alpha_{1}}!\left|i_{1}\right\rangle\left|i_{2}\right\rangle \cdots\left|i_{8}\right\rangle
$$

Reduced density matrix ρ_{A}
$\square t_{i}^{\alpha \beta}$ are obtained
by minimizing $\langle\Psi| H|\Psi\rangle$
\square The accuracy of the result
depends on the bond dimension χ

Numerics for the Ising model: Matrix Product States (II)

\square The $N=2$ case has been studied numerically through various methods
[Caraglio, Gliozzi, JHEP (2008)] [Furukawa, Pasquier, Shiraishi, PRL (2009)]
[Alba, Tagliacozzo, Calabrese, PRB (2010); JSTAT (2011)]
[Fagotti, Calabrese, JSTAT (2010)]
\square For $N>2$ we considered Ising chain with $30 \leqslant L \leqslant 500$.
Variational algorithm of [Pirvu, Verstraete, Vidal, PRB (2011)]
Finite size corrections must be taken into account
[Coser, Tagliacozzo, E.T., JSTAT (2014)]

Motivations for Negativity

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle \quad \Longrightarrow \rho=|\Psi\rangle\langle\Psi| \quad\left(\operatorname{Tr} \rho^{n}=1\right)$
\square Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Entanglement entropy

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)
$$

$S_{A}=S_{B}$ for pure states

Motivations for Negativity

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle \quad \Longrightarrow \rho=|\Psi\rangle\langle\Psi| \quad\left(\operatorname{Tr} \rho^{n}=1\right)$
\square Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

Entanglement entropy
$S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$
$S_{A}=S_{B}$ for pure states
\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B}$

Motivations for Negativity

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle \quad \Longrightarrow \rho=|\Psi\rangle\langle\Psi| \quad\left(\operatorname{Tr} \rho^{n}=1\right)$
\square Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Entanglement entropy
$S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$
$S_{A}=S_{B}$ for pure states
\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \Longrightarrow \quad \rho_{A_{1} \cup A_{2}}$ is mixed

Motivations for Negativity

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle \quad \Longrightarrow \rho=|\Psi\rangle\langle\Psi| \quad\left(\operatorname{Tr} \rho^{n}=1\right)$
\square Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

Entanglement entropy
$S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$
$S_{A}=S_{B}$ for pure states
\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \Longrightarrow \quad \rho_{A_{1} \cup A_{2}}$ is mixed

$S_{A_{1} \cup A_{2}}$: entanglement between $A_{1} \cup A_{2}$ and B

Motivations for Negativity

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle \quad \Longrightarrow \rho=|\Psi\rangle\langle\Psi| \quad\left(\operatorname{Tr} \rho^{n}=1\right)$
\square Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

reduced
density matrix

Entanglement
entropy
$S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$
$S_{A}=S_{B}$ for pure states
\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \Longrightarrow \quad \rho_{A_{1} \cup A_{2}}$ is mixed

$S_{A_{1} \cup A_{2}}$: entanglement between $A_{1} \cup A_{2}$ and B
What about the entanglement between A_{1} and A_{2} ?

Motivations for Negativity

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle \quad \Longrightarrow \rho=|\Psi\rangle\langle\Psi| \quad\left(\operatorname{Tr} \rho^{n}=1\right)$
\square Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

reduced density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

Entanglement
entropy
$S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$
$S_{A}=S_{B}$ for pure states
\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \Longrightarrow \quad \rho_{A_{1} \cup A_{2}}$ is mixed

$S_{A_{1} \cup A_{2}}$: entanglement between $A_{1} \cup A_{2}$ and B
What about the entanglement between A_{1} and A_{2} ?
A computable measure of the entanglement is the logarithmic negativity

Partial transpose \& Negativity: definitions

$\square \quad \rho=\rho_{A_{1} \cup A_{2}} \quad$ is a mixed state
$\left|e_{i}^{(1)}\right\rangle$ and $\left|e_{j}^{(2)}\right\rangle$ bases of $\mathcal{H}_{A_{1}}$ and $\mathcal{H}_{A_{2}}$

Partial transpose \& Negativity: definitions

$\square \quad \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state
$\left|e_{i}^{(1)}\right\rangle$ and $\left|e_{j}^{(2)}\right\rangle$ bases of $\mathcal{H}_{A_{1}}$ and $\mathcal{H}_{A_{2}}$
$\rho^{T_{2}}$ is the partial transpose of ρ

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle
$$

[Peres, PRL (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, PRA (1998)] [Eisert, (2001)] [Vidal, Werner, PRA (2002)]

Partial transpose \& Negativity: definitions

$\square \quad \rho=\rho_{A_{1} \cup A_{2}} \quad$ is a mixed state $\left|e_{i}^{(1)}\right\rangle$ and $\left|e_{j}^{(2)}\right\rangle$ bases of $\mathcal{H}_{A_{1}}$ and $\mathcal{H}_{A_{2}}$ $\rho^{T_{2}}$ is the partial transpose of ρ

$\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle$
[Peres, PRL (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, PRA (1998)] [Eisert, (2001)] [Vidal, Werner, PRA (2002)]
\square Trace norm $\left|\left|\rho^{T_{2}} \|=\operatorname{Tr}\right| \rho^{T_{2}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i} \begin{aligned} & \lambda_{j} \text { eigenvalues of } \rho^{T_{2}} \\ & \operatorname{Tr} \rho^{T_{2}}=1\end{aligned}$

Partial transpose \& Negativity: definitions

$\square \quad \rho=\rho_{A_{1} \cup A_{2}} \quad$ is a mixed state $\left|e_{i}^{(1)}\right\rangle$ and $\left|e_{j}^{(2)}\right\rangle$ bases of $\mathcal{H}_{A_{1}}$ and $\mathcal{H}_{A_{2}}$ $\rho^{T_{2}}$ is the partial transpose of ρ

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle
$$

[Peres, PRL (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, PRA (1998)] [Eisert, (2001)] [Vidal, Werner, PRA (2002)]
\square Trace norm $\left\|\rho^{T_{2}}\right\|=\operatorname{Tr}\left|\rho^{T_{2}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i} \begin{aligned} & \lambda_{j} \text { eigenvalues of } \rho^{T_{2}} \\ & \operatorname{Tr} \rho^{T_{2}}=1\end{aligned}$
Logarithmic negativity

$$
\mathcal{E}_{A_{2}}=\ln \left\|\rho^{T_{2}}\right\|=\ln \operatorname{Tr}\left|\rho^{T_{2}}\right|
$$

Partial transpose \& Negativity: definitions

$\square \quad \rho=\rho_{A_{1} \cup A_{2}} \quad$ is a mixed state $\left|e_{i}^{(1)}\right\rangle$ and $\left|e_{j}^{(2)}\right\rangle$ bases of $\mathcal{H}_{A_{1}}$ and $\mathcal{H}_{A_{2}}$ $\rho^{T_{2}}$ is the partial transpose of ρ

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle
$$

[Peres, PRL (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, PRA (1998)] [Eisert, (2001)] [Vidal, Werner, PRA (2002)]
\square Trace norm $\quad\left|\rho^{T_{2}} \|=\operatorname{Tr}\right| \rho^{T_{2}}\left|=\sum\right| \lambda_{i} \mid=1-2 \sum \lambda_{i} \quad \lambda_{j}$ eigenvalues of $\rho^{T_{2}}$

$$
\begin{array}{lll}
\lambda_{i}<0
\end{array}
$$

$$
\operatorname{Tr} \rho^{T_{2}}=1
$$

Logarithmic negativity

$$
\mathcal{E}_{A_{2}}=\ln \left\|\rho^{T_{2}}\right\|=\ln \operatorname{Tr}\left|\rho^{T_{2}}\right|
$$

$\square \quad$ Same definition for a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ in a generic state $\rho \longrightarrow \mathcal{E}_{A}=\mathcal{E}_{B}$

Replica approach to Negativity

$\square S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n} \quad \begin{gathered}\text { Renyi } \\ \text { entropies }\end{gathered} \quad S_{n}=\frac{\log \operatorname{Tr} \rho_{A}^{n}}{1-n} \xrightarrow[n \rightarrow 1]{\longrightarrow} S_{A}$

Replica approach to Negativity

$\square S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n} \quad \begin{gathered}\text { Renyi } \\ \text { entropies }\end{gathered} \quad S_{n}=\frac{\log \operatorname{Tr} \rho_{A}^{n}}{1-n} \xrightarrow[n \rightarrow 1]{\longrightarrow} S_{A}$
[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$

Replica approach to Negativity

$\square S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n} \quad \begin{gathered}\text { Renyi } \\ \text { entropies }\end{gathered} \quad S_{n}=\frac{\log \operatorname{Tr} \rho_{A}^{n}}{1-n} \xrightarrow[n \rightarrow 1]{\longrightarrow} S_{A}$
[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\end{aligned} \begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} & =\sum_{i} \lambda_{i}^{n_{e}}\end{aligned}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}}$

Replica approach to Negativity

$S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n} \quad \begin{gathered}\text { Renyi } \\ \text { entropies }\end{gathered} \quad S_{n}=\frac{\log \operatorname{Tr} \rho_{A}^{n}}{1-n} \xrightarrow[n \rightarrow 1]{\longrightarrow} S_{A}$
[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\quad \begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\end{aligned} \begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} & =\sum_{i} \lambda_{i}^{n_{e}}\end{aligned}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}}$
\square Replica approach to negativity \mathcal{E}_{A}

$$
\mathcal{E}_{A}=\log \left\|\rho^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]
$$

Replica approach to Negativity

$S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n} \quad \begin{gathered}\text { Renyi } \\ \text { entropies }\end{gathered} \quad S_{n}=\frac{\log \operatorname{Tr} \rho_{A}^{n}}{1-n} \xrightarrow[n \rightarrow 1]{\longrightarrow} S_{A}$
[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\end{aligned} \begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} & =\sum_{i} \lambda_{i}^{n_{e}}\end{aligned}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}}$
\square Replica approach to negativity \mathcal{E}_{A}

$$
\mathcal{E}_{A}=\log \left\|\rho^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]
$$

$$
\lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

Replica approach to Negativity

$$
S_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n} \quad \underset{\substack{\text { Renyi } \\ \text { entropies }}}{ } S_{n}=\frac{\log \operatorname{Tr} \rho_{A}^{n}}{1-n} \underset{n \rightarrow 1}{\longrightarrow} S_{A}
$$

[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\begin{array}{r}\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n} \\ \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}=\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \\ \operatorname{Tr}=\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}\end{array}$
\square Replica approach to negativity \mathcal{E}_{A}

$$
\mathcal{E}_{A}=\log \left\|\rho^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]
$$

$$
\lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	
B	u_{1}	A_{1}	$\bar{v}_{1} B$	${ }^{u} u_{2}$	A_{2}	\bar{v}_{2}	B

$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$
[Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)]
[Alba, Tagliacozzo, Calabrese, (2010), (2011)]

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	
B	u_{1}	A_{1}	\bar{v}_{1}	B	u_{2}	A_{2}	v_{2}

$\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$

[Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)]
[Alba, Tagliacozzo, Calabrese, (2010), (2011)]
\square The partial transposition exchanges \mathcal{T}_{n} and $\overline{\mathcal{T}}_{n}$
[Calabrese, Cardy, E.T., (2012)]

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	
B	u_{1}	A_{1}	$\bar{v}_{1} B$	u_{n}	A_{2}	v_{2}	B

$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$
[Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)]
[Alba, Tagliacozzo, Calabrese, (2010), (2011)]
$\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	$\overline{\mathcal{T}}_{n}$		\mathcal{T}_{n}								
B	u_{1}	A_{1}	$\bar{v}_{1} B$	u_{2}	A_{2}	v_{2}	B							

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \overline{\mathcal{T}}_{n}\left(u_{2}\right) \mathcal{T}_{n}\left(v_{2}\right)\right\rangle$
\square The partial transposition exchanges \mathcal{T}_{n} and $\overline{\mathcal{T}}_{n}$
[Calabrese, Cardy, E.T., (2012)]

Renyi entropies us traces of the Partial Transpose

Renyi entropies us traces of the Partial Transpose

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

Renyi entropies us traces of the Partial Transpose

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

$\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$

Partial Transposition for bipartite systems: pure states (I)

$$
\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}
$$

Partial Transposition for bipartite systems: pure states (I)

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
[Calabrese, Cardy and E.T.; PRL (2012), JSTAT (2013)]
\square

B	A_{1}	B		A_{2}	B
	u_{1}	v_{1}	u_{2}	v_{2}	
\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	

Partial Transposition for bipartite systems: pure states (I)

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
[Calabrese, Cardy and E.T.; PRL (2012), JSTAT (2013)]
\square

Partial Transposition for bipartite systems: pure states (I)

$$
\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}
$$

[Calabrese, Cardy and E.T.; PRL (2012), JSTAT (2013)]

Partial Transposition for bipartite systems: pure states (I)

$$
\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}
$$

[Calabrese, Cardy and E.T.; PRL (2012), JSTAT (2013)]
$\square \quad \lim _{B \rightarrow \emptyset}\left(\begin{array}{cccccc}B & A_{1} & B & A_{2} & B \\ \hline & u_{1} & v_{1} & u_{2} & & v_{2} \\ \mathcal{T}_{n} & \overline{\mathcal{T}}_{n} & \mathcal{T}_{n} & \longleftrightarrow & \overline{\mathcal{T}}_{n}\end{array}\right)$

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

Partial Transposition for bipartite systems: pure states (I)

$$
\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}
$$

[Calabrese, Cardy and E.T.; PRL (2012), JSTAT (2013)]

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$\square \quad \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one

Partial Transposition for bipartite systems: pure states (I)

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
[Calabrese, Cardy and E.T.; PRL (2012), JSTAT (2013)]

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$\square \quad \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}
$$

$n=5$

Partial Transposition for bipartite systems: pure states (I)

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
[Calabrese, Cardy and E.T.; PRL (2012), JSTAT (2013)]
$\square \quad \lim _{B \rightarrow \emptyset}\left(\begin{array}{cccccc}B & A_{1} & B & A_{2} & B \\ \hline & u_{1} & v_{1} & u_{2} & & v_{2} \\ \mathcal{T}_{n} & \overline{\mathcal{T}}_{n} & \mathcal{T}_{n} & \longleftrightarrow & \overline{\mathcal{T}}_{n}\end{array}\right)$

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

Partial $=$ exchange
$\underset{\text { Transposition }}{\text { Partial }}=\underset{\text { two twist fields }}{\text { exchange }}$
$\square \quad \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one
$\square \quad$ Even $n=n_{e} \Longrightarrow$ decoupling
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n_{e} / 2}\right)^{2}$
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}$

$n=4$

$n=5$

Partial Transpose: pure states (II)

$\square \quad \rho=|\Psi\rangle\langle\Psi| \quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$

$$
\Rightarrow \quad \text { Schmidt decomposition } \quad|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{1}\left|\Psi_{k}\right\rangle_{2} \quad c_{k} \geqslant 0 \quad \sum_{k} c_{k}^{2}=1
$$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

Partial Transpose: pure states (II)

$\square \quad \rho=|\Psi\rangle\langle\Psi| \quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
\Rightarrow Schmidt decomposition $\quad|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{1}\left|\Psi_{k}\right\rangle_{2} \quad c_{k} \geqslant 0 \quad \sum_{k} c_{k}^{2}=1$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

$\square \quad$ Two dimensional CFTs

$$
\Delta_{\mathcal{T}_{n_{e}}^{2}}=\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right) \quad \Delta_{\mathcal{T}_{n_{o}}^{2}}=\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)=\Delta_{\mathcal{T}_{n_{o}}}
$$

Partial Transpose: pure states (II)

$\square \quad \rho=|\Psi\rangle\langle\Psi| \quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
\Rightarrow Schmidt decomposition $\quad|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{1}\left|\Psi_{k}\right\rangle_{2} \quad c_{k} \geqslant 0 \quad \sum_{k} c_{k}^{2}=1$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

$\square \quad$ Two dimensional CFTs

$$
\Delta_{\mathcal{T}_{n_{e}}^{2}}=\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right) \quad \Delta_{\mathcal{T}_{n_{o}}^{2}}=\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)=\Delta_{\mathcal{T}_{n_{o}}}
$$

$$
\left\|\rho_{A}^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto \ell^{c / 2}
$$

Partial Transpose: pure states (II)

$\square \quad \rho=|\Psi\rangle\langle\Psi| \quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
\Rightarrow Schmidt decomposition $\quad|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{1}\left|\Psi_{k}\right\rangle_{2} \quad c_{k} \geqslant 0 \quad \sum_{k} c_{k}^{2}=1$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

$\square \quad$ Two dimensional CFTs

$$
\Delta_{\mathcal{T}_{n_{e}}^{2}}=\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right) \quad \Delta_{\mathcal{T}_{n_{o}}^{2}}=\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)=\Delta_{\mathcal{T}_{n_{o}}}
$$

$$
\left\|\rho_{A}^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto \ell^{c / 2} \longrightarrow \mathcal{E}=\frac{c}{2} \ln \ell+\text { const }
$$

Partial Transpose: pure states (II)

$\square \quad \rho=|\Psi\rangle\langle\Psi| \quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
\Rightarrow Schmidt decomposition $\quad|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{1}\left|\Psi_{k}\right\rangle_{2} \quad c_{k} \geqslant 0 \quad \sum_{k} c_{k}^{2}=1$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right\}
$$

$\square \quad$ Two dimensional CFTs

$$
\left.\Delta_{\mathcal{T}_{n_{e}}^{2}}=\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)\right) \quad \Delta_{\mathcal{T}_{n_{o}}^{2}}=\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)=\Delta_{\mathcal{T}_{n_{o}}}
$$

$$
\left\|\rho_{A}^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto \ell^{c / 2} \longrightarrow \mathcal{E}=\frac{c}{2} \ln \ell+\text { const }
$$

$\square \quad$ For $n_{e} \rightarrow 1$ we find $\mathcal{E}=2 \log \operatorname{Tr} \rho_{2}^{1 / 2}$ (Renyi entropy $1 / 2$)

Partial Transpose in 2D CFT: two adjacent intervals

B	A_{1}	A_{2}	B

Partial Transpose in 2D CFT: two adjacent intervals

\square Three point function

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

Partial Transpose in 2D CFT: two adjacent intervals

\square Three point function

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto\left(\ell_{1} \ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)}\left(\ell_{1}+\ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}+\frac{1}{n_{e}}\right)} \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}} \propto\left(\ell_{1} \ell_{2}\left(\ell_{1}+\ell_{2}\right)\right)^{-\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)}
\end{aligned}
$$

Partial Transpose in 2D CFT: two adjacent intervals

B	A_{1}		A_{2}
$\mathcal{T}_{n}\left(-\ell_{1}\right)$	$\overline{\mathcal{T}}_{n}^{2}(0)$		$\mathcal{T}_{n}\left(\ell_{2}\right)$

\square Three point function

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

$$
\left\{\begin{array}{l}
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto\left(\ell_{1} \ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)}\left(\ell_{1}+\ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}+\frac{1}{n_{e}}\right)} \\
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}} \propto\left(\ell_{1} \ell_{2}\left(\ell_{1}+\ell_{2}\right)\right)^{-\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)}
\end{array}\right.
$$

$$
\mathcal{E}=\frac{c}{4} \ln \left(\frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}\right)+\text { const }
$$

Partial Transpose in 2D CFT: two disjoint intervals

Partial Transpose in 2D CFT: two disjoint intervals

$\square \operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ is obtained from $\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ by exchanging two twist fields

$$
\mathcal{G}_{n}(y)=(1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_{n}\left(\frac{y}{y-1}\right)
$$

$\square \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ involves a new genus $n-1$ Riemann surface for $n \geqslant 3$ whose period matrix is $\tilde{\tau}(y) \equiv \tau\left(\frac{y}{y-1}\right)$

Partial Transpose in 2D CFT: two disjoint intervals

$\square \operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ is obtained from $\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ by exchanging two twist fields

$$
\mathcal{G}_{n}(y)=(1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_{n}\left(\frac{y}{y-1}\right)
$$

$\square \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ involves a new genus $n-1$ Riemann surface for $n \geqslant 3$ whose period matrix is $\tilde{\tau}(y) \equiv \tau\left(\frac{y}{y-1}\right)$
\square

$$
\mathcal{E}(y)=\lim _{n_{e} \rightarrow 1} \mathcal{G}_{n_{e}}(y)=\lim _{n_{e} \rightarrow 1}\left[\mathcal{F}_{n}\left(\frac{y}{y-1}\right)\right]
$$

Two adjacent intervals: harmonic chain \& Ising model

\square Critical periodic harmonic chain
Finite system: $\ell \longrightarrow(L / \pi) \sin (\pi \ell / L)$

$$
r_{n}=\ln \frac{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}=\ell}}\right)^{n}}{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}=L / 4}}\right)^{n}}
$$

$$
\frac{1}{4} \log \frac{\sin \left(\pi \ell_{1} / L\right) \sin \left(\pi \ell_{2} / L\right)}{\sin \left(\pi\left[\ell_{1}+\ell_{2}\right] / L\right)}+\mathrm{cnst}
$$

\square Ising model:
Monte-Carlo analysis [Alba, (2013)]

Tree Tensor Network [Calabrese, Tagliacozzo, E.T., (2013)]

Two disjoint intervals: periodic harmonic chains

\square Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains
[Wichterich, Molina-Vilaplana, Bose, (2009)]
[Marcovitch, Retzker, Plenio, Reznik, (2009)]
\square Non compact free boson [Calabrese, Cardy, E.T., (2012)]

$$
R_{n}=\frac{\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}}{\operatorname{Tr} \rho_{A}^{n}} \quad R_{n}=\left[\frac{(1-x)^{\frac{2}{3}\left(n-\frac{1}{n}\right)} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(x) F_{\frac{k}{n}}(1-x)}{\prod_{k=1}^{n-1} \operatorname{Re}\left(F_{\frac{k}{n}}\left(\frac{x}{x-1}\right) \bar{F}_{\frac{k}{n}}\left(\frac{1}{1-x}\right)\right)}\right]^{\frac{1}{2}}
$$

[De Nobili, Coser, E.T., (2015)]

Two disjoint intervals: periodic harmonic chains

\square Analytic continuation for $x \sim 1$ [Calabrese, Cardy, E.T., (2012)]

$$
\mathcal{E}=-\frac{1}{4} \log (1-x)+\log K(x)+\mathrm{cnst}
$$

- Analytic continuation $n_{e} \rightarrow 1$ for $0<x<1$ not known

〇 $\mathcal{E}(x)$ for $x \sim 0$ vanishes faster than any power
\square Numerical extrapolations (rational interpolation method) [De Nobili, Coser, E.T., (2015)]

Two disjoint intervals: Ising model

[Alba, (2013)] [Calabrese, Tagliacozzo, E.T., (2013)]
0 ar

$$
0<y<1
$$

\square Tree tensor network:

[Calabrese, Tagliacozzo, E.T., (2013)]

XY spin chain: two disjoint blocks

$\square \quad \mathrm{XY}$ spin chain with periodic b.c.

$$
H_{X Y}=-\frac{1}{2} \sum_{j=1}^{L}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}+h \sigma_{j}^{z}\right)
$$

Ising model in a transverse field for $\gamma=1, \mathbf{X X}$ spin chain for $\gamma=0$

XY spin chain: two disjoint blocks

$\square \quad \mathrm{XY}$ spin chain with periodic b.c.

$$
H_{X Y}=-\frac{1}{2} \sum_{j=1}^{L}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}+h \sigma_{j}^{z}\right)
$$

Ising model in a transverse field for $\gamma=1$, XX spin chain for $\gamma=0$
\square Jordan-Wigner transformation $\quad c_{j}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}-\mathrm{i} \sigma_{j}^{z}}{2} \quad c_{j}^{\dagger}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}+\mathrm{i} \sigma_{j}^{z}}{2}$
Then introduce the Majorana fermions $a_{j}^{x}=c_{j}+c_{j}^{\dagger}$ and $a_{j}^{y}=\mathrm{i}\left(c_{j}-c_{j}^{\dagger}\right)$

XY spin chain: two disjoint blocks

$\square \quad$ XY spin chain with periodic b.c.

$$
H_{X Y}=-\frac{1}{2} \sum_{j=1}^{L}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}+h \sigma_{j}^{z}\right)
$$

Ising model in a transverse field for $\gamma=1$, XX spin chain for $\gamma=0$
\square Jordan-Wigner transformation

$$
c_{j}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}-\mathrm{i} \sigma_{j}^{z}}{2} \quad c_{j}^{\dagger}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}+\mathrm{i} \sigma_{j}^{z}}{2}
$$

Then introduce the Majorana fermions $a_{j}^{x}=c_{j}+c_{j}^{\dagger}$ and $a_{j}^{y}=\mathrm{i}\left(c_{j}-c_{j}^{\dagger}\right)$
\square Two disjoint blocks [Igloi, Peschel, (2010)] [Alba, Tagliacozzo, Calabrese, (2010)] [Fagotti, Calabrese, (2010)]

Crucial role played by the following strings of Majorana operators

$$
P_{B_{1}}=\prod_{j \in B_{1}} \mathrm{i} a_{j}^{x} a_{j}^{y} \quad P_{A_{2}}=\prod_{j \in A_{2}} \mathrm{i} a_{j}^{x} a_{j}^{y}
$$

XY spin chain: two disjoint blocks

\square The moments of ρ_{A} can be computed through four Gaussian operator
[Fagotti, Calabrese, (2010)]
$\rho_{1} \equiv \rho_{A}^{1} \quad \rho_{2} \equiv P_{A_{2}} \rho_{A}^{1} P_{A_{2}} \quad \rho_{3} \equiv\left\langle P_{B_{1}}\right\rangle \rho_{A}^{B_{1}} \quad \rho_{4} \equiv\left\langle P_{B_{1}}\right\rangle P_{A_{2}} \rho_{A}^{B_{1}} P_{A_{2}}$
where ρ_{A}^{1} is the fermionic reduced density matrix and $\rho_{A}^{B_{1}}$ is the auxiliary density matrix

$$
\rho_{A}^{B_{1}} \equiv \frac{\operatorname{Tr}_{B}\left(P_{B_{1}}|\Psi\rangle\langle\Psi|\right)}{\left\langle P_{B_{1}}\right\rangle}
$$

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{1}{2^{n}} \operatorname{Tr}\left(\rho_{1}+\rho_{2}+\rho_{3}-\rho_{4}\right)^{n}=\frac{1}{2^{n-1}} \sum_{\boldsymbol{q}}(-1)^{\# 4} \operatorname{Tr}\left[\prod_{k=1}^{n} \rho_{q_{k}}\right]
$$

XY spin chain: two disjoint blocks

\square The moments of ρ_{A} can be computed through four Gaussian operator
[Fagotti, Calabrese, (2010)]

$$
\rho_{1} \equiv \rho_{A}^{1} \quad \rho_{2} \equiv P_{A_{2}} \rho_{A}^{1} P_{A_{2}} \quad \rho_{3} \equiv\left\langle P_{B_{1}}\right\rangle \rho_{A}^{B_{1}} \quad \rho_{4} \equiv\left\langle P_{B_{1}}\right\rangle P_{A_{2}} \rho_{A}^{B_{1}} P_{A_{2}}
$$

where ρ_{A}^{1} is the fermionic reduced density matrix and $\rho_{A}^{B_{1}}$ is the auxiliary density matrix

$$
\rho_{A}^{B_{1}} \equiv \frac{\operatorname{Tr}_{B}\left(P_{B_{1}}|\Psi\rangle\langle\Psi|\right)}{\left\langle P_{B_{1}}\right\rangle}
$$

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{1}{2^{n}} \operatorname{Tr}\left(\rho_{1}+\rho_{2}+\rho_{3}-\rho_{4}\right)^{n}=\frac{1}{2^{n-1}} \sum_{q}(-1)^{\# 4} \operatorname{Tr}\left[\prod_{k=1}^{n} \rho_{q_{k}}\right]
$$

\square Simplest examples: $n=2$ and $n=3$

$$
\begin{aligned}
\operatorname{Tr} \rho_{A}^{2} & =\frac{1}{2}\left[\operatorname{Tr}\left(\rho_{1}^{2}\right)+\operatorname{Tr}\left(\rho_{1} \rho_{2}\right)+\operatorname{Tr}\left(\rho_{3}^{2}\right)-\operatorname{Tr}\left(\rho_{3} \rho_{4}\right)\right] \\
\operatorname{Tr} \rho_{A}^{3} & =\frac{1}{4}\left[\operatorname{Tr}\left(\rho_{1}^{3}\right)+3 \operatorname{Tr}\left(\rho_{1}^{2} \rho_{2}\right)+3 \operatorname{Tr}\left(\rho_{1} \rho_{3}^{2}\right)+3 \operatorname{Tr}\left(\rho_{2} \rho_{3}^{2}\right)-6 \operatorname{Tr}\left(\rho_{1} \rho_{4} \rho_{3}\right)\right]
\end{aligned}
$$

XY spin chain: two disjoint blocks

\square The moments of ρ_{A} can be computed through four Gaussian operator
[Fagotti, Calabrese, (2010)]

$$
\rho_{1} \equiv \rho_{A}^{1} \quad \rho_{2} \equiv P_{A_{2}} \rho_{A}^{1} P_{A_{2}} \quad \rho_{3} \equiv\left\langle P_{B_{1}}\right\rangle \rho_{A}^{B_{1}} \quad \rho_{4} \equiv\left\langle P_{B_{1}}\right\rangle P_{A_{2}} \rho_{A}^{B_{1}} P_{A_{2}}
$$

where ρ_{A}^{1} is the fermionic reduced density matrix and $\rho_{A}^{B_{1}}$ is the auxiliary density matrix

$$
\rho_{A}^{B_{1}} \equiv \frac{\operatorname{Tr}_{B}\left(P_{B_{1}}|\Psi\rangle\langle\Psi|\right)}{\left\langle P_{B_{1}}\right\rangle}
$$

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{1}{2^{n}} \operatorname{Tr}\left(\rho_{1}+\rho_{2}+\rho_{3}-\rho_{4}\right)^{n}=\frac{1}{2^{n-1}} \sum_{q}(-1)^{\# 4} \operatorname{Tr}\left[\prod_{k=1}^{n} \rho_{q_{k}}\right]
$$

$\square \quad$ Simplest examples: $n=2$ and $n=3$

$$
\begin{aligned}
\operatorname{Tr} \rho_{A}^{2} & =\frac{1}{2}\left[\operatorname{Tr}\left(\rho_{1}^{2}\right)+\operatorname{Tr}\left(\rho_{1} \rho_{2}\right)+\operatorname{Tr}\left(\rho_{3}^{2}\right)-\operatorname{Tr}\left(\rho_{3} \rho_{4}\right)\right] \\
\operatorname{Tr} \rho_{A}^{3} & =\frac{1}{4}\left[\operatorname{Tr}\left(\rho_{1}^{3}\right)+3 \operatorname{Tr}\left(\rho_{1}^{2} \rho_{2}\right)+3 \operatorname{Tr}\left(\rho_{1} \rho_{3}^{2}\right)+3 \operatorname{Tr}\left(\rho_{2} \rho_{3}^{2}\right)-6 \operatorname{Tr}\left(\rho_{1} \rho_{4} \rho_{3}\right)\right]
\end{aligned}
$$

\square We focus on the XX and Ising spin chain at criticality

Spin structures in CFT: Dirac fermion and Ising model

[Calabrese, Cardy, E.T., (2011)]

$$
\mathcal{F}_{n}^{\mathrm{Ising}}(x)=\frac{1}{2^{n-1}} \sum_{e}(-1)^{4 \varepsilon \cdot \boldsymbol{\delta}}\left|\frac{\Theta[\boldsymbol{e}](\mathbf{0} \mid \tau)}{\Theta(\mathbf{0} \mid \tau)}\right| \quad \boldsymbol{e} \equiv\binom{\boldsymbol{\varepsilon}}{\boldsymbol{\delta}}
$$

A similar formula con be written for the modular invariant Dirac fermion
\rightarrow The characteristic \boldsymbol{e} provides the spin structure i.e. the set of boundary conditions along the canonical homology cycles

\square The lattice term whose scaling limit is the term with characteristic \boldsymbol{e} in $\mathcal{F}_{n}(x)$ can be found [Coser, E.T., Calabrese, (2015)]

Spin structures in CFT \& lattice terms: numerical analysis

XY spin chain: partial transpose of two disjoint blocks

\square Free fermion: $\rho_{A}^{T_{2}}$ is a sum of 2 fermionic Gaussian operators [Eisler, Zimboras, (2015)]
μ_{2} number of
Majorana operators in O_{2}

$$
O_{2}^{T}=(-1)^{\tau\left(\mu_{2}\right)} O_{2} \quad \tau\left(\mu_{2}\right)= \begin{cases}0 & \left(\mu_{2} \bmod 4\right) \in\{0,1\} \\ 1 & \left(\mu_{2} \bmod 4\right) \in\{2,3\}\end{cases}
$$

\square XY spin chain [Coser, E.T., Calabrese, (2015)]

$$
\tilde{\rho}_{A}^{1} \equiv \frac{1}{2^{\ell_{1}+\ell_{2}}} \sum \mathrm{i}^{\mu_{2}}\left\langle O_{2}^{\dagger} O_{1}^{\dagger}\right\rangle O_{1} O_{2} \quad \tilde{\rho}_{A}^{B_{1}} \equiv \frac{1}{2^{\ell_{1}+\ell_{2}}} \sum \mathrm{i}^{\mu_{2}} \frac{\left\langle O_{2}^{\dagger} P_{B_{1}} O_{1}^{\dagger}\right\rangle}{\left\langle P_{B_{1}}\right\rangle} O_{1} O_{2}
$$

XY spin chain: partial transpose of two disjoint blocks

\square Free fermion: $\rho_{A}^{T_{2}}$ is a sum of 2 fermionic Gaussian operators [Eisler, Zimboras, (2015)]
μ_{2} number of
Majorana operators in O_{2}

$$
O_{2}^{T}=(-1)^{\tau\left(\mu_{2}\right)} O_{2} \quad \tau\left(\mu_{2}\right)= \begin{cases}0 & \left(\mu_{2} \bmod 4\right) \in\{0,1\} \\ 1 & \left(\mu_{2} \bmod 4\right) \in\{2,3\}\end{cases}
$$

\square XY spin chain [Coser, E.T., Calabrese, (2015)]

$$
\tilde{\rho}_{A}^{1} \equiv \frac{1}{2^{\ell_{1}+\ell_{2}}} \sum \mathrm{i}^{\mu_{2}}\left\langle O_{2}^{\dagger} O_{1}^{\dagger}\right\rangle O_{1} O_{2} \quad \tilde{\rho}_{A}^{B_{1}} \equiv \frac{1}{2^{\ell_{1}+\ell_{2}}} \sum \mathrm{i}^{\mu_{2}} \frac{\left\langle O_{2}^{\dagger} P_{B_{1}} O_{1}^{\dagger}\right\rangle}{\left\langle P_{B_{1}}\right\rangle} O_{1} O_{2}
$$

The moments $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ can be written in terms of four Gaussian operators

$$
\tilde{\rho}_{1} \equiv \tilde{\rho}_{A}^{1} \quad \tilde{\rho}_{2} \equiv P_{A_{2}} \tilde{\rho}_{A}^{1} P_{A_{2}} \quad \tilde{\rho}_{3} \equiv\left\langle P_{B_{1}}\right\rangle \tilde{\rho}_{A}^{B_{1}} \quad \tilde{\rho}_{4} \equiv\left\langle P_{B_{1}}\right\rangle P_{A_{2}} \tilde{\rho}_{A}^{B_{1}} P_{A_{2}}
$$

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\frac{1}{2^{n}} \operatorname{Tr}\left(\tilde{\rho}_{1}+\tilde{\rho}_{2}-\mathrm{i} \tilde{\rho}_{3}+\mathrm{i} \tilde{\rho}_{4}\right)^{n}=\frac{1}{2^{n-1}} \sum_{\tilde{\boldsymbol{q}}}(-1)^{\frac{\# 4-\# 3}{2}} \operatorname{Tr}\left[\prod_{k=1}^{n} \tilde{\rho}_{\tilde{q}_{k}}\right]
$$

XY spin chain: partial transpose of two disjoint blocks

\square Free fermion: $\rho_{A}^{T_{2}}$ is a sum of 2 fermionic Gaussian operators [Eisler, Zimboras, (2015)]
μ_{2} number of
Majorana operators in O_{2}

$$
O_{2}^{T}=(-1)^{\tau\left(\mu_{2}\right)} O_{2} \quad \tau\left(\mu_{2}\right)= \begin{cases}0 & \left(\mu_{2} \bmod 4\right) \in\{0,1\} \\ 1 & \left(\mu_{2} \bmod 4\right) \in\{2,3\}\end{cases}
$$

\square XY spin chain [Coser, E.T., Calabrese, (2015)]

$$
\tilde{\rho}_{A}^{1} \equiv \frac{1}{2^{\ell_{1}+\ell_{2}}} \sum \mathrm{i}^{\mu_{2}}\left\langle O_{2}^{\dagger} O_{1}^{\dagger}\right\rangle O_{1} O_{2} \quad \tilde{\rho}_{A}^{B_{1}} \equiv \frac{1}{2^{\ell_{1}+\ell_{2}}} \sum \mathrm{i}^{\mu_{2}} \frac{\left\langle O_{2}^{\dagger} P_{B_{1}} O_{1}^{\dagger}\right\rangle}{\left\langle P_{B_{1}}\right\rangle} O_{1} O_{2}
$$

The moments $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ can be written in terms of four Gaussian operators

$$
\tilde{\rho}_{1} \equiv \tilde{\rho}_{A}^{1} \quad \tilde{\rho}_{2} \equiv P_{A_{2}} \tilde{\rho}_{A}^{1} P_{A_{2}} \quad \tilde{\rho}_{3} \equiv\left\langle P_{B_{1}}\right\rangle \tilde{\rho}_{A}^{B_{1}} \quad \tilde{\rho}_{4} \equiv\left\langle P_{B_{1}}\right\rangle P_{A_{2}} \tilde{\rho}_{A}^{B_{1}} P_{A_{2}}
$$

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\frac{1}{2^{n}} \operatorname{Tr}\left(\tilde{\rho}_{1}+\tilde{\rho}_{2}-\mathrm{i} \tilde{\rho}_{3}+\mathrm{i} \tilde{\rho}_{4}\right)^{n}=\frac{1}{2^{n-1}} \sum_{\tilde{\boldsymbol{q}}}(-1)^{\frac{\# 4-\# 3}{2}} \operatorname{Tr}\left[\prod_{k=1}^{n} \tilde{\rho}_{\tilde{q}_{k}}\right]
$$

- e.g.: $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{3}=\frac{1}{4}\left[\operatorname{Tr}\left(\tilde{\rho}_{1}^{3}\right)+3 \operatorname{Tr}\left(\tilde{\rho}_{1}^{2} \tilde{\rho}_{2}\right)+6 \operatorname{Tr}\left(\tilde{\rho}_{1} \tilde{\rho}_{4} \tilde{\rho}_{3}\right)-3 \operatorname{Tr}\left(\tilde{\rho}_{1} \tilde{\rho}_{3}^{2}\right)-3 \operatorname{Tr}\left(\tilde{\rho}_{2} \tilde{\rho}_{3}^{2}\right)\right]$

Moments of the partial transpose: Ising chain \& XX chain

\square CFT regime: modular invariant Dirac fermion (scaling limit of the XX chain)

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=c_{n}^{2}\left(\frac{1-x}{\ell_{1} \ell_{2}}\right)^{2 \Delta_{n}} \frac{1}{2^{n-1}} \sum_{e}(-1)^{4 \varepsilon \cdot \boldsymbol{\delta}}\left|\frac{\Theta[\boldsymbol{e}](\mathbf{0} \mid \tilde{\tau})}{\Theta(\mathbf{0} \mid \tilde{\tau})}\right|^{2} \quad \boldsymbol{e} \equiv\binom{\varepsilon}{\boldsymbol{\delta}}
$$

where $\tilde{\tau}(x)=\tau\left(\frac{x}{x-1}\right)$. A similar formula can be written for the Ising model

Moments of the partial transpose: Ising chain \& XX chain

\square CFT regime: modular invariant Dirac fermion (scaling limit of the XX chain)

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=c_{n}^{2}\left(\frac{1-x}{\ell_{1} \ell_{2}}\right)^{2 \Delta_{n}} \frac{1}{2^{n-1}} \sum_{e}(-1)^{4 \varepsilon \cdot \boldsymbol{\delta}}\left|\frac{\Theta[\boldsymbol{e}](\mathbf{0} \mid \tilde{\tau})}{\Theta(\mathbf{0} \mid \tilde{\tau})}\right|^{2} \quad \boldsymbol{e} \equiv\binom{\varepsilon}{\boldsymbol{\delta}}
$$

where $\tilde{\tau}(x)=\tau\left(\frac{x}{x-1}\right)$. A similar formula can be written for the Ising model \square Numerics: e.g. $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n} / \operatorname{Tr} \rho_{A}^{n}$ for $n=4$
[Coser, E.T., Calabrese, (2015)]

Ising chain

XX chain

Moments of the partial transpose: Ising chain \& XX chain

\square CFT regime: modular invariant Dirac fermion (scaling limit of the XX chain)

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=c_{n}^{2}\left(\frac{1-x}{\ell_{1} \ell_{2}}\right)^{2 \Delta_{n}} \frac{1}{2^{n-1}} \sum_{\boldsymbol{e}}(-1)^{4 \varepsilon \cdot \boldsymbol{\delta}}\left|\frac{\Theta[\boldsymbol{e}](\mathbf{0} \mid \tilde{\tau})}{\Theta(\mathbf{0} \mid \tilde{\tau})}\right|^{2} \quad \boldsymbol{e} \equiv\binom{\varepsilon}{\boldsymbol{\delta}}
$$

where $\tilde{\tau}(x)=\tau\left(\frac{x}{x-1}\right)$. A similar formula can be written for the Ising model \square Numerics: e.g. $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n} / \operatorname{Tr} \rho_{A}^{n}$ for $n=4$
[Coser, E.T., Calabrese, (2015)]

Ising chain

XX chain

\square The lattice term in $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ whose scaling limit is the term with characteristic \boldsymbol{e} in the CFT formula can be found

Partial transpose: spin structures in CFT \& lattice terms

Free fermion: partial transpose of two disjoint intervals

[Coser, E.T., Calabrese, (2015)]

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=c_{n}^{2}\left(\frac{1-x}{\ell_{1} \ell_{2}}\right)^{2 \Delta_{n}} \frac{1}{2^{n / 2-1}} \sum_{\delta} \cos \left[\frac{\pi}{4}\left(1+\sum_{i=1}^{n-1}(-1)^{2 \sum_{j=i}^{n-1} \delta_{j}}\right)\right]\left|\frac{\Theta[e](\tilde{\tau})}{\Theta(\tilde{\tau})}\right|^{2}
$$

where $\tilde{\tau} \equiv \tau(x /(x-1))$ and the sum is over the characteristics $\quad e=\binom{0}{\boldsymbol{\delta}}$

Free fermion: partial transpose of two disjoint intervals

[Coser, E.T., Calabrese, (2015)]

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=c_{n}^{2}\left(\frac{1-x}{\ell_{1} \ell_{2}}\right)^{2 \Delta_{n}} \frac{1}{2^{n / 2-1}} \sum_{\delta} \cos \left[\frac{\pi}{4}\left(1+\sum_{i=1}^{n-1}(-1)^{2 \sum_{j=i}^{n-1} \delta_{j}}\right)\right]\left|\frac{\Theta[e](\tilde{\tau})}{\Theta(\tilde{\tau})}\right|^{2}
$$

where $\tilde{\tau} \equiv \tau(x /(x-1))$ and the sum is over the characteristics $\boldsymbol{e}=\binom{\mathbf{0}}{\boldsymbol{\delta}}$
\square Same result for the compact boson at selfdual radius

Free fermion: partial transpose of two disjoint intervals

\square CFT expression:
[Coser, E.T., Calabrese, (2015)]
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=c_{n}^{2}\left(\frac{1-x}{\ell_{1} \ell_{2}}\right)^{2 \Delta_{n}} \frac{1}{2^{n / 2-1}} \sum_{\delta} \cos \left[\frac{\pi}{4}\left(1+\sum_{i=1}^{n-1}(-1)^{2 \sum_{j=i}^{n-1} \delta_{j}}\right)\right]\left|\frac{\Theta[e](\tilde{\tau})}{\Theta(\tilde{\tau})}\right|^{2}$
where $\tilde{\tau} \equiv \tau(x /(x-1))$ and the sum is over the characteristics $\boldsymbol{e}=\binom{\mathbf{0}}{\boldsymbol{\delta}}$
\square Same result for the compact boson at selfdual radius
\square The lattice counterpart of each term in the sum can be found

Conclusions \& open issues

\square Entanglement entropies for disjoint intervals for some 2D CFT
\rightarrow free boson and Ising model
\square Entanglement for mixed states. Entanglement negativity in QFT ($1+1 \mathrm{CFTs}$): $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E} \rightarrow free boson on the line, Ising model and free fermion

Conclusions \& open issues

\square Entanglement entropies for disjoint intervals for some 2D CFT
\rightarrow free boson and Ising model
\square Entanglement for mixed states.
Entanglement negativity in QFT ($1+1 \mathrm{CFTs}$): $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E}
\rightarrow free boson on the line, Ising model and free fermion

Analytic continuations
More complicated models
Higher dimensions

Conclusions \& open issues

\square Entanglement entropies for disjoint intervals for some 2D CFT
\rightarrow free boson and Ising model
\square Entanglement for mixed states.
Entanglement negativity in QFT ($1+1 \mathrm{CFTs}$): $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E}
\rightarrow free boson on the line, Ising model and free fermion

Analytic continuations
More complicated models
Higher dimensions

