Tau functions from matrix models in enumerative geometry and isomonodromic deformations

Tau Functions of Integrable Systems and Theirs Applications BIRS, Banff, 4 September 2018

Giulio Ruzza (SISSA, Trieste)
joint work with Marco Bertola (SISSA, Trieste/Concordia University, Montreal)

Overview

Some tau functions from enumerative geometry/2D topological field theories have an isomonodromic interpretation.
intersection theory on the moduli space of Riemann surfaces (Kontsevich-Witten tau
function) [Bertola and Cafasso, CMP 2017]
open version (Kontsevich-Penner tau function) [Bertola and R, arXiv:1711.03360]
r-spin version [in progress]
Rrezin-Gross-M/iten tau function [in progress]
stationary sector of the Gromov-Witten theory of \mathbb{P}^{1} [in progress]
rigorous asymptotic study of large N matrix integrals
euplicit gemerating functions for correlators
derivation of Virasoro constraints

Overview

Some tau functions from enumerative geometry/2D topological field theories have an isomonodromic interpretation.

Examples:

- intersection theory on the moduli space of Riemann surfaces (Kontsevich-Witten tau function) [Bertola and Cafasso, CMP 2017]
- open version (Kontsevich-Penner tau function) [Bertola and R , arXiv:1711.03360]
- r-spin version [in progress]
- Brezin-Gross-Witten tau function [in progress]
- stationary sector of the Gromov-Witten theory of \mathbb{P}^{1} [in progress]

Overview

Some tau functions from enumerative geometry/2D topological field theories have an isomonodromic interpretation.

Examples:

- intersection theory on the moduli space of Riemann surfaces (Kontsevich-Witten tau function) [Bertola and Cafasso, CMP 2017]
- open version (Kontsevich-Penner tau function) [Bertola and R , arXiv:1711.03360]
- r-spin version [in progress]
- Brezin-Gross-Witten tau function [in progress]
- stationary sector of the Gromov-Witten theory of \mathbb{P}^{1} [in progress]

Applications:

- rigorous asymptotic study of large N matrix integrals
- explicit generating functions for correlators
- derivation of Virasoro constraints

Plan of the talk

- Detailed exposition of the result in the case of the Kontsevich-Witten tau function
- Outline of the other cases

The Kontsevich-Witten tau function

Let $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle:=\int_{\overline{\mathscr{M}_{g, n}}} \psi_{1}^{d_{1}} \wedge \cdots \wedge \psi_{n}^{d_{n}}$ be the Witten intersection numbers $\left(d_{1}, \ldots, d_{n} \geq 0, d_{1}+\cdots+d_{n}=3 g-3+n\right)$. Form the generating function
$F\left(t_{1}, t_{3}, \ldots\right)=\sum_{n \geq 1} \sum_{d_{1}, \ldots, d_{n} \geq 0} \frac{t_{2 d_{1}+1} \cdots t_{2 d_{n}+1}}{n!}\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=\frac{t_{1}^{3}}{6}+\frac{t_{3}}{24}+\frac{t_{1} t_{5}}{24}+\frac{t_{3}^{2}}{24}+\frac{t_{1}^{2} t_{7}}{48}+\cdots$

Equivalently: $\tau^{k W}\left(t_{1}, t_{3}, \ldots\right)$ satisfies $L_{k} \tau^{k W}=0$ for $k \geq-1$. The operators

The Kontsevich-Witten tau function

Let $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle:=\int_{\overline{\mathscr{M}_{g, n}}} \psi_{1}^{d_{1}} \wedge \cdots \wedge \psi_{n}^{d_{n}}$ be the Witten intersection numbers $\left(d_{1}, \ldots, d_{n} \geq 0, d_{1}+\cdots+d_{n}=3 g-3+n\right)$. Form the generating function
$F\left(t_{1}, t_{3}, \ldots\right)=\sum_{n \geq 1} \sum_{d_{1}, \ldots, d_{n} \geq 0} \frac{t_{2 d_{1}+1} \cdots t_{2 d_{n}+1}}{n!}\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=\frac{t_{1}^{3}}{6}+\frac{t_{3}}{24}+\frac{t_{1} t_{5}}{24}+\frac{t_{3}^{2}}{24}+\frac{t_{1}^{2} t_{7}}{48}+\cdots$
Witten, Kontsevich, Dijkgraaf, Verlinde, Verlinde,...1991-1992
$\tau^{\kappa W}\left(t_{1}, t_{3}, \ldots\right):=\exp F\left(t_{1}, t_{3}, \ldots\right)$ is a KdV tau function, uniquely selected by the string equation $L_{-1} \tau^{\kappa W}=0$,

$$
L_{-1}=-\frac{\partial}{\partial t_{1}}+\sum_{a \geq 1, a \text { odd }} t_{a+2} \frac{\partial}{\partial t_{a}}+\frac{t_{1}^{2}}{2} .
$$

The Kontsevich-Witten tau function

Let $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle:=\int_{\bar{M}_{g, n}} \psi_{1}^{d_{1}} \wedge \cdots \wedge \psi_{n}^{d_{n}}$ be the Witten intersection numbers $\left(d_{1}, \ldots, d_{n} \geq 0, d_{1}+\cdots+d_{n}=3 g-3+n\right)$. Form the generating function
$F\left(t_{1}, t_{3}, \ldots\right)=\sum_{n \geq 1} \sum_{d_{1}, \ldots, d_{n} \geq 0} \frac{t_{2 d_{1}+1} \cdots t_{2 d_{n}+1}}{n!}\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=\frac{t_{1}^{3}}{6}+\frac{t_{3}}{24}+\frac{t_{1} t_{5}}{24}+\frac{t_{3}^{2}}{24}+\frac{t_{1}^{2} t_{7}}{48}+\cdots$
Witten, Kontsevich, Dijkgraaf, Verlinde, Verlinde,...1991-1992
$\tau^{K W}\left(t_{1}, t_{3}, \ldots\right):=\exp F\left(t_{1}, t_{3}, \ldots\right)$ is a $K d V$ tau function, uniquely selected by the string equation $L_{-1} \tau^{K W}=0$,

$$
L_{-1}=-\frac{\partial}{\partial t_{1}}+\sum_{a \geq 1, a \text { odd }} t_{a+2} \frac{\partial}{\partial t_{a}}+\frac{t_{1}^{2}}{2}
$$

Equivalently: $\tau^{K W}\left(t_{1}, t_{3}, \ldots\right)$ satisfies $L_{k} \tau^{K W}=0$ for $k \geq-1$. The operators
$L_{k}=\sum_{a \geq 1, \text { a odd }} \frac{(a+2 k)!!}{(a-2)!!}\left(t_{a}-\delta_{a, 3}\right) \frac{\partial}{\partial t_{a+2 k}}+\frac{1}{2} \sum_{\substack{a, b \geq 1, a, b \text { odd } \\ a+b=2 k}} a!!b!!\frac{\partial^{2}}{\partial t_{a} \partial t_{b}}+\frac{t_{1}^{2}}{2} \delta_{k,-1}+\frac{1}{8} \delta_{k, 0}$
are called Virasoro operators. They commute as $\left[L_{k}, L_{l}\right]=(k-I) L_{k+1}$ for $k, I \geq-1$.

The Kontsevich matrix integral

Fix $N \geq 1$ and take the ratio of determinants

$$
\tau_{N}\left(T_{1}, \ldots, T_{N}\right):=\left.\frac{\operatorname{det}\left[\phi_{j}\left(\lambda_{k}\right)\right]_{j, k=1}^{N}}{\operatorname{det}\left[\lambda_{k}^{\frac{j-1}{2}}\right]_{j, k=1}^{N}}\right|_{T_{\ell}:=\frac{1}{\ell}\left(\lambda_{\mathbf{1}}^{-\ell / \mathbf{2}}+\cdots+\lambda_{N}^{-\ell / \mathbf{2}}\right)}
$$

where $\phi_{j}(\lambda)=\lambda^{\frac{j-1}{2}}\left(1+\mathcal{O}\left(\lambda^{-3 / 2}\right)\right) \in \lambda^{\frac{j-1}{2}} \mathbb{C} \llbracket \lambda^{-\frac{3}{2}} \rrbracket$ are defined by

$$
\left(-\frac{\mathrm{d}}{\mathrm{~d} \lambda}\right)^{j-1} \operatorname{Ai}(\lambda) \sim \frac{\exp \left(-\frac{2}{3} \lambda^{\mathbf{3 / 2}}\right)}{2 \sqrt{\pi} \lambda^{1 / 4}} \phi_{j}(\lambda), \quad \lambda \rightarrow+\infty \quad(j \geq 1)
$$

$z(x)=\int \log \left(\frac{x}{3}-x+x\right) x /$$N \rightarrow \infty$ which is by construction a $K d V$ tau function

The Kontsevich matrix integral

Fix $N \geq 1$ and take the ratio of determinants

$$
\tau_{N}\left(T_{1}, \ldots, T_{N}\right):=\left.\frac{\operatorname{det}\left[\phi_{j}\left(\lambda_{k}\right)\right]_{j, k=1}^{N}}{\operatorname{det}\left[\lambda_{k}^{\frac{j-1}{2}}\right]_{j, k=1}^{N}}\right|_{T_{\ell}:=\frac{1}{\ell}\left(\lambda_{1}^{-\ell / 2}+\cdots+\lambda_{N}^{-\ell / \mathbf{2}}\right)}
$$

where $\phi_{j}(\lambda)=\lambda^{\frac{j-1}{2}}\left(1+\mathcal{O}\left(\lambda^{-3 / 2}\right)\right) \in \lambda^{\frac{j-1}{2}} \mathbb{C} \llbracket \lambda^{-\frac{3}{2}} \rrbracket$ are defined by

$$
\left(-\frac{d}{d \lambda}\right)^{j-1} \operatorname{Ai}(\lambda) \sim \frac{\exp \left(-\frac{2}{3} \lambda^{3 / 2}\right)}{2 \sqrt{\pi} \lambda^{1 / 4}} \phi_{j}(\lambda), \quad \lambda \rightarrow+\infty \quad(j \geq 1) .
$$

Equivalently, $\tau_{N}\left(T_{1}, \ldots, T_{N}\right)$ is the asymptotic expansion of the Kontsevich matrix integral

$$
Z_{N}(\Lambda):=\int_{H_{N}} \exp \operatorname{tr}\left(\mathrm{i} \frac{X^{3}}{3}-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X / \int_{H_{N}} \exp \operatorname{tr}\left(-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X
$$

for positive large $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, expressed in the Miwa variables $T_{\ell}=\frac{1}{\ell} \operatorname{tr} \Lambda^{-\ell / 2}$.

The Kontsevich matrix integral

Fix $N \geq 1$ and take the ratio of determinants

$$
\tau_{N}\left(T_{1}, \ldots, T_{N}\right):=\left.\frac{\operatorname{det}\left[\phi_{j}\left(\lambda_{k}\right)\right]_{j, k=1}^{N}}{\operatorname{det}\left[\lambda_{k}^{\frac{j-1}{2}}\right]_{j, k=1}^{N}}\right|_{T_{\ell}:=\frac{1}{\ell}\left(\lambda_{1}^{-\ell / 2}+\cdots+\lambda_{N}^{-\ell / \mathbf{2}}\right)}
$$

where $\phi_{j}(\lambda)=\lambda^{\frac{j-1}{2}}\left(1+\mathcal{O}\left(\lambda^{-3 / 2}\right)\right) \in \lambda^{\frac{j-1}{2}} \mathbb{C} \llbracket \lambda^{-\frac{3}{2}} \rrbracket$ are defined by

$$
\left(-\frac{d}{d \lambda}\right)^{j-1} \mathbf{A i}(\lambda) \sim \frac{\exp \left(-\frac{2}{3} \lambda^{3 / 2}\right)}{2 \sqrt{\pi} \lambda^{1 / 4}} \phi_{j}(\lambda), \quad \lambda \rightarrow+\infty \quad(j \geq 1) .
$$

Equivalently, $\tau_{N}\left(T_{1}, \ldots, T_{N}\right)$ is the asymptotic expansion of the Kontsevich matrix integral

$$
Z_{N}(\Lambda):=\int_{H_{N}} \exp \operatorname{tr}\left(\mathrm{i} \frac{X^{3}}{3}-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X / \int_{H_{N}} \exp \operatorname{tr}\left(-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X
$$

for positive large $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, expressed in the Miwa variables $T_{\ell}=\frac{1}{\ell} \operatorname{tr} \Lambda^{-\ell / 2}$. The power series $\tau_{N}\left(T_{1}, \ldots, T_{N}\right) \in \mathbb{C} \llbracket T_{1}, \ldots, T_{N} \rrbracket$ have a stable limit $\tau\left(T_{1}, T_{3}, \ldots\right)$ when $N \rightarrow \infty$ which is by construction a KdV tau function.

The Kontsevich matrix integral

Fix $N \geq 1$ and take the ratio of determinants

$$
\tau_{N}\left(T_{1}, \ldots, T_{N}\right):=\left.\frac{\operatorname{det}\left[\phi_{j}\left(\lambda_{k}\right)\right]_{j, k=1}^{N}}{\operatorname{det}\left[\lambda_{k}^{\frac{j-1}{2}}\right]_{j, k=1}^{N}}\right|_{T_{\ell}:=\frac{1}{\ell}\left(\lambda_{1}^{-\ell / 2}+\cdots+\lambda_{N}^{-\ell / \mathbf{2}}\right)}
$$

where $\phi_{j}(\lambda)=\lambda^{\frac{j-1}{2}}\left(1+\mathcal{O}\left(\lambda^{-3 / 2}\right)\right) \in \lambda^{\frac{j-1}{2}} \mathbb{C} \llbracket \lambda^{-\frac{3}{2}} \rrbracket$ are defined by

$$
\left(-\frac{d}{d \lambda}\right)^{j-1} \operatorname{Ai}(\lambda) \sim \frac{\exp \left(-\frac{2}{3} \lambda^{3 / 2}\right)}{2 \sqrt{\pi} \lambda^{1 / 4}} \phi_{j}(\lambda), \quad \lambda \rightarrow+\infty \quad(j \geq 1) .
$$

Equivalently, $\tau_{N}\left(T_{1}, \ldots, T_{N}\right)$ is the asymptotic expansion of the Kontsevich matrix integral

$$
Z_{N}(\Lambda):=\int_{H_{N}} \exp \operatorname{tr}\left(\mathrm{i} \frac{X^{3}}{3}-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X / \int_{H_{N}} \exp \operatorname{tr}\left(-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X
$$

for positive large $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, expressed in the Miwa variables $T_{\ell}=\frac{1}{\ell} \operatorname{tr} \Lambda^{-\ell / 2}$. The power series $\tau_{N}\left(T_{1}, \ldots, T_{N}\right) \in \mathbb{C} \llbracket T_{1}, \ldots, T_{N} \rrbracket$ have a stable limit $\tau\left(T_{1}, T_{3}, \ldots\right)$ when $N \rightarrow \infty$ which is by construction a KdV tau function.

Kontsevich, 1992

$$
\tau^{k W}\left(t_{1}, t_{3}, \ldots\right)=\tau\left(T_{1}, T_{3}, \ldots\right), \quad T_{k}=-\frac{2^{k / 3}}{k!!} t_{k}
$$

The Airy Stokes' phenomenon

To describe the isomonodromic formulation of the Kontsevich-Witten tau function we start by the Airy ODE $\frac{d}{d \lambda} \Psi_{0}(\lambda)=\left[\begin{array}{ll}0 & 1 \\ \lambda & 0\end{array}\right] \Psi_{0}(\lambda)$. Its Stokes' phenomenon at $\lambda=\infty$ can be summarized in the Riemann-Hilbert problem below.

The Airy Stokes' phenomenon

To describe the isomonodromic formulation of the Kontsevich-Witten tau function we start by the Airy ODE $\frac{\mathrm{d}}{\mathrm{d} \lambda} \Psi_{0}(\lambda)=\left[\begin{array}{ll}0 & 1 \\ \lambda & 0\end{array}\right] \Psi_{0}(\lambda)$. Its Stokes' phenomenon at $\lambda=\infty$ can be summarized in the Riemann-Hilbert problem below.

$$
\begin{aligned}
& \Psi_{0}(\lambda+)=\Psi_{0}(\lambda-) M \\
& \Psi_{0}(\lambda) \sim \lambda^{S} G\left(\mathbf{1}+\mathcal{O}\left(\lambda^{-\frac{1}{2}}\right)\right) \mathrm{e}^{\vartheta(\lambda)}, \lambda \rightarrow \infty \\
& \Psi_{0}(\lambda) \text { analytic, analytically invertible }
\end{aligned}
$$

$$
\begin{array}{r}
S=-\frac{1}{4} \sigma_{3} \\
G=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \\
\vartheta(\lambda)=\frac{2}{3} \lambda^{\frac{3}{2}} \sigma_{3}
\end{array}
$$

Schlesinger transformations (à la Bertola-Cafasso)

Fix $N \geq 1$ and points $\lambda_{1}, \ldots, \lambda_{N}$ and introduce the matrix

$$
D_{N}(\lambda)=D_{N}\left(\lambda ; \lambda_{1}, \ldots, \lambda_{N}\right):=\prod_{j=1}^{N} \operatorname{diag}\left(\sqrt{\lambda_{j}}-\sqrt{\lambda}, \sqrt{\lambda_{j}}+\sqrt{\lambda}\right)
$$

Find $\Psi_{N}(\lambda)=\Psi_{N}\left(\lambda ; \lambda_{1}, \ldots, \lambda_{N}\right)$ such that
$\Psi_{N}(\lambda+)=\Psi_{N}(\lambda-) M, \quad \Psi_{N}(\lambda) \sim \lambda^{S} G\left(1+\mathcal{O}\left(\lambda^{-1 / 2}\right)\right) \mathrm{e}^{\vartheta(\lambda)} D_{N}^{-1}(\lambda), \lambda \rightarrow \infty$ $\Psi_{N}(\lambda) D_{n}(\lambda)$ analytic and analytically invertible.

Schlesinger transformations (à la Bertola-Cafasso)

Fix $N \geq 1$ and points $\lambda_{1}, \ldots, \lambda_{N}$ and introduce the matrix

$$
D_{N}(\lambda)=D_{N}\left(\lambda ; \lambda_{1}, \ldots, \lambda_{N}\right):=\prod_{j=1}^{N} \operatorname{diag}\left(\sqrt{\lambda_{j}}-\sqrt{\lambda}, \sqrt{\lambda_{j}}+\sqrt{\lambda}\right)
$$

Find $\Psi_{N}(\lambda)=\Psi_{N}\left(\lambda ; \lambda_{1}, \ldots, \lambda_{N}\right)$ such that

$$
\begin{aligned}
& \Psi_{N}(\lambda+)=\Psi_{N}(\lambda-) M, \quad \Psi_{N}(\lambda) \sim \lambda^{S} G\left(1+\mathcal{O}\left(\lambda^{-1 / 2}\right)\right) \mathrm{e}^{\vartheta(\lambda)} D_{N}^{-1}(\lambda), \lambda \rightarrow \infty \\
& \Psi_{N}(\lambda) D_{n}(\lambda) \text { analytic and analytically invertible. }
\end{aligned}
$$

If solvable, by Liouville Theorem we get an isomonodromic system:
$\frac{\mathrm{d}}{\mathrm{d} \lambda} \Psi_{N}\left(\lambda ; \lambda_{*}\right)=A_{N}\left(\lambda ; \lambda_{*}\right) \Psi_{N}\left(\lambda ; \lambda_{*}\right), \frac{\mathrm{d}}{\mathrm{d} \lambda_{j}} \Psi_{N}\left(\lambda ; \lambda_{*}\right)=\Omega_{j, N}\left(\lambda ; \lambda_{*}\right) \Psi_{N}\left(\lambda ; \lambda_{*}\right)(1 \leq j \leq N)$.

Bertola and Cafasso, 2017

The isomonodromic tau function $\tau_{N}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ coincides with the Kontsevich matrix integral.

The limit $N \rightarrow \infty$

The tau function depends only on $D_{N}^{-1} M D_{N}$ (Bertola-Malgrange form). Then we can pass to the limit $N \rightarrow \infty$ by replacing

$$
D_{N}^{-1}\left(\lambda, \lambda_{1}, \ldots, \lambda_{N}\right) \mapsto \exp \sum_{\ell \geq 1, \ell \text { odd }} \sigma_{3} T_{\ell} \lambda^{\ell / 2}
$$

where $T_{\ell}=\frac{1}{\ell}\left(\lambda_{1}^{-\ell / 2}+\cdots+\lambda_{N}^{-\ell / 2}\right)$.

Again we have an isomonodromic system $\left(A, \Omega_{\ell}\right.$ polynomials in $\left.\lambda\right)$
$\frac{\mathrm{d}}{\mathrm{d} \lambda} \Psi\left(\lambda ; T_{*}\right)=A\left(\lambda ; T_{*}\right) \Psi\left(\lambda ; T_{*}\right), \quad \frac{\mathrm{d}}{\mathrm{d} T_{2 d+1}} \Psi\left(\lambda ; T_{*}\right)=\Omega_{2 d+1}\left(\lambda ; T_{*}\right) \Psi\left(\lambda ; T_{*}\right)(d \geq 1)$ and 't can be proved ('Bertola and Carasso, 2017) that its isomonodromic tau function'

The limit $N \rightarrow \infty$

The tau function depends only on $D_{N}^{-1} M D_{N}$ (Bertola-Malgrange form). Then we can pass to the limit $N \rightarrow \infty$ by replacing

$$
D_{N}^{-1}\left(\lambda, \lambda_{1}, \ldots, \lambda_{N}\right) \mapsto \exp \sum_{\ell \geq 1, \ell \text { odd }} \sigma_{3} T_{\ell} \lambda^{\ell / 2}
$$

where $T_{\ell}=\frac{1}{\ell}\left(\lambda_{1}^{-\ell / 2}+\cdots+\lambda_{N}^{-\ell / 2}\right)$.
Therefore we consider the following Riemann-Hilbert problem:

$$
\begin{aligned}
& \Psi\left(\lambda+; T_{*}\right)=\Psi\left(\lambda-; T_{*}\right) M, \quad \Psi\left(\lambda ; T_{*}\right) \sim \lambda^{S} G\left(1+\mathcal{O}\left(\lambda^{-1 / 2}\right)\right) \mathrm{e}^{\Theta\left(\lambda ; T_{*}\right)}, \lambda \rightarrow \infty \\
& \Psi\left(\lambda ; T_{*}\right) \text { analytic, analytically invertible, } \Theta\left(\lambda ; T_{*}\right)=\exp \sum_{\ell \geq 1, \ell \text { odd }} \sigma_{3}\left(T_{\ell}+\frac{2}{3} \delta_{\ell, 3}\right) \lambda^{\ell / 2}
\end{aligned}
$$

The limit $N \rightarrow \infty$

The tau function depends only on $D_{N}^{-1} M D_{N}$ (Bertola-Malgrange form). Then we can pass to the limit $N \rightarrow \infty$ by replacing

$$
D_{N}^{-1}\left(\lambda, \lambda_{1}, \ldots, \lambda_{N}\right) \mapsto \exp \sum_{\ell \geq 1, \ell \text { odd }} \sigma_{3} T_{\ell} \lambda^{\ell / 2}
$$

where $T_{\ell}=\frac{1}{\ell}\left(\lambda_{1}^{-\ell / 2}+\cdots+\lambda_{N}^{-\ell / 2}\right)$.
Therefore we consider the following Riemann-Hilbert problem:

$$
\begin{aligned}
& \Psi\left(\lambda+; T_{*}\right)=\Psi\left(\lambda-; T_{*}\right) M, \quad \Psi\left(\lambda ; T_{*}\right) \sim \lambda^{S} G\left(1+\mathcal{O}\left(\lambda^{-1 / 2}\right)\right) \mathrm{e}^{\Theta\left(\lambda ; T_{*}\right)}, \lambda \rightarrow \infty \\
& \Psi\left(\lambda ; T_{*}\right) \text { analytic, analytically invertible, } \Theta\left(\lambda ; T_{*}\right)=\exp \sum_{\ell \geq 1, \ell \text { odd }} \sigma_{3}\left(T_{\ell}+\frac{2}{3} \delta_{\ell, 3}\right) \lambda^{\ell / 2}
\end{aligned}
$$

Again we have an isomonodromic system $\left(A, \Omega_{\ell}\right.$ polynomials in $\left.\lambda\right)$

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \Psi\left(\lambda ; T_{*}\right)=A\left(\lambda ; T_{*}\right) \Psi\left(\lambda ; T_{*}\right), \quad \frac{\mathrm{d}}{\mathrm{~d} T_{2 d+1}} \Psi\left(\lambda ; T_{*}\right)=\Omega_{2 d+1}\left(\lambda ; T_{*}\right) \Psi\left(\lambda ; T_{*}\right)(d \geq 1)
$$

and it can be proved (Bertola and Cafasso, 2017) that its isomonodromic tau function $\tau\left(T_{*}\right)$ has $\tau^{K W}\left(T_{*}\right)$ as asymptotic expansion.

One-point function

The isomonodromic tau function is defined by the Jimbo-Miwa-Ueno formula:

$$
\frac{\partial}{\partial T_{2 d+1}} \log \tau\left(T_{*}\right)=-\underset{\lambda=\infty}{\operatorname{res}} \operatorname{tr}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \frac{\partial \Theta}{\partial T_{2 d+1}}\right) \mathrm{d} \lambda=-\underset{\lambda=\infty}{\operatorname{res}} \operatorname{tr}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \sigma_{3}\right) \lambda^{\frac{2 d+1}{2}} \mathrm{~d} \lambda
$$

One-point function

The isomonodromic tau function is defined by the Jimbo-Miwa-Ueno formula:

$$
\frac{\partial}{\partial T_{2 d+1}} \log \tau\left(T_{*}\right)=-\underset{\lambda=\infty}{\text { res }} \operatorname{tr}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \frac{\partial \Theta}{\partial T_{2 d+1}}\right) \mathrm{d} \lambda=-\underset{\lambda=\infty}{\operatorname{res}} \operatorname{tr}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \sigma_{3}\right) \lambda^{\frac{2 d+1}{2}} \mathrm{~d} \lambda
$$

Therefore we can compute the one-point function as follows:

$$
\begin{gathered}
-\sum_{d \geq 0} \frac{(2 d+1)!!}{2^{-\frac{2 d+1}{3}} \lambda^{d+1}}\left\langle\tau_{d}\right\rangle=-\left.\sum_{d \geq 0} \frac{(2 d+1)!!}{2^{-\frac{2 d+1}{3}} \lambda^{d+1}} \frac{\partial \log \tau\left(t_{*}\right)}{\partial t_{2 d+1}}\right|_{t_{*}=0}= \\
=\left.\sum_{d \geq 0} \frac{1}{\lambda^{d+1}} \frac{\partial \log \tau\left(T_{*}\right)}{\partial T_{2 d+1}}\right|_{T_{*}=0}=-\sum_{d \geq 0} \frac{1}{\lambda^{d+1}}{\underset{\mu=\infty}{\mathrm{res}} \operatorname{tr}\left(\mu^{1 / 2} \Psi_{0}^{-1}(\mu) \frac{\mathrm{d} \Psi_{0}(\mu)}{\mathrm{d} \mu} \sigma_{3}\right) \mu^{d} \mathrm{~d} \mu=}_{=} \quad \operatorname{tr}\left(\lambda^{1 / 2} \Psi_{0}^{-1}(\lambda) \frac{\mathrm{d} \Psi_{0}(\lambda)}{\mathrm{d} \lambda} \sigma_{3}\right)
\end{gathered}
$$

and $\Psi\left(\lambda ; T_{*}=0\right)=\Psi_{0}(\lambda)$ is known (Airy functions) therefore (after a simple Laplace-Borel transform) we obtain the well known formula (Itzykson and Zuber, 1991)

$$
\sum_{d \geq 0}\left\langle\tau_{d-2}\right\rangle X^{d}=\exp \frac{X^{3}}{24}, \text { i.e. }\left\langle\tau_{3 g-2}\right\rangle=\frac{1}{24^{g} g!}
$$

n-point function

Following a similar strategy, from the Jimbo-Miwa-Ueno formula we can compute inductively the n-point functions:

Bertola, Dubrovin and Yang, 2015

Let

$$
A(\lambda):=\left[\begin{array}{cc}
-\frac{1}{2} \sum_{g \geq 1} \frac{(6 g-5)!!}{24 g-1(g-1)!} \lambda^{-3 g+2} & -\sum_{g \geq 0} \frac{(6 g-1)!!}{24 g g!} \lambda^{-3 g} \\
\sum_{g \geq 0} \frac{6 g+1}{6 g-1} \frac{(6 g-1)!!}{24 g g!} \lambda^{-3 g+1} & \frac{1}{2} \sum_{g \geq 1} \frac{(6 g-5)!!}{24 g-1(g-1)!} \lambda^{-3 g+2}
\end{array}\right] .
$$

Then

$$
\begin{gathered}
\sum_{d_{1}, d_{2}=0}^{\infty} \frac{\left(2 d_{1}+1\right)!!\left(2 d_{2}+1\right)!!}{\lambda_{1}^{d_{1}+1} \lambda_{2}^{d_{2}+1}}\left\langle\tau_{d_{1}} \tau_{d_{2}}\right\rangle=\operatorname{tr} \frac{A\left(\lambda_{1}\right) A\left(\lambda_{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}}-\frac{\lambda_{1}+\lambda_{2}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} \\
\sum_{d_{1}, \ldots, d_{n}=0}^{\infty} \frac{\left(2 d_{1}+1\right)!!\cdots\left(2 d_{n}+1\right)!!}{\lambda_{1}^{d_{1}+1} \cdots \lambda_{n}^{d_{n}+1}}\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=-\frac{1}{n} \sum_{\sigma \in S_{n}} \frac{\operatorname{tr}\left(A\left(\lambda_{\sigma_{1}}\right) \cdots A\left(\lambda_{\sigma_{n}}\right)\right)}{\prod_{j \in \frac{\mathbb{Z}}{}}\left(\lambda_{\sigma_{j}}-\lambda_{\sigma_{j+1}}\right)} .
\end{gathered}
$$

Virasoro constraints

All the Virasoro constraints follow from the fact that a total differential is residueless:

$$
\underset{\lambda=\infty}{\operatorname{res} \operatorname{tr}} \frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \lambda^{\frac{2(d+k+1)+1}{2}} \sigma_{3}\right) \mathrm{d} \lambda=0 \Rightarrow \frac{\partial}{\partial T_{2 d+1}}\left(L_{k} \tau\right)=0, k \geq-1
$$

Virasoro constraints

All the Virasoro constraints follow from the fact that a total differential is residueless:

$$
\underset{\lambda=\infty}{\operatorname{res} \operatorname{tr}} \frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \lambda^{\frac{2(d+k+1)+1}{2}} \sigma_{3}\right) \mathrm{d} \lambda=0 \Rightarrow \frac{\partial}{\partial T_{2 d+1}}\left(L_{k} \tau\right)=0, k \geq-1
$$

E.g. let us derive the string equation $L_{-1} \tau=0$: we need one preliminary observation

$$
\Omega_{\ell}=\left(\frac{\partial \psi}{\partial T_{\ell}} \psi^{-\mathbf{1}}\right)_{+}=\left(\Psi \frac{\partial \Theta}{\partial T_{\ell}} \psi^{-\mathbf{1}}\right)_{+}=\left(\Psi_{\sigma_{\mathbf{3}}} \psi^{-\mathbf{1}} \lambda^{\ell / \mathbf{2}}\right)_{+}
$$

Virasoro constraints

All the Virasoro constraints follow from the fact that a total differential is residueless:

$$
\underset{\lambda=\infty}{\operatorname{res} \operatorname{tr}} \frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \lambda^{\frac{2(d+k+1)+1}{2}} \sigma_{3}\right) \mathrm{d} \lambda=0 \Rightarrow \frac{\partial}{\partial T_{2 d+1}}\left(L_{k} \tau\right)=0, k \geq-1
$$

E.g. let us derive the string equation $L_{-1} \tau=0$: we need one preliminary observation

$$
\begin{gathered}
\Omega_{\ell}=\left(\frac{\partial \Psi}{\partial T_{\ell}} \Psi^{-\mathbf{1}}\right)_{+}=\left(\Psi \frac{\partial \Theta}{\partial T_{\ell}} \Psi^{-\mathbf{1}}\right)_{+}=\left(\Psi \sigma_{\mathbf{3}} \psi^{-\mathbf{1}} \lambda^{\ell / \mathbf{2}}\right)_{+} \\
A=\left(\frac{\partial \Psi}{\partial \lambda} \Psi^{-\mathbf{1}}\right)_{+}=\left(\Psi \frac{\mathrm{d} \Theta}{\mathrm{~d} \lambda} \Psi^{-\mathbf{1}}\right)_{+}=\sum_{\ell \geq \mathbf{1}, \ell \text { odd }}\left(\Psi \frac{\ell}{\mathbf{2}} \widetilde{T}_{\ell} \lambda^{\frac{\ell}{\mathbf{2}}-\mathbf{1}} \sigma_{\mathbf{3}} \psi^{-\mathbf{1}}\right)_{+}=\sum_{\ell \geq \mathbf{1}, \ell \text { odd }} \frac{\ell}{\mathbf{2}} \widetilde{T}_{\ell} \Omega_{\ell-\mathbf{2}}
\end{gathered}
$$

Virasoro constraints

All the Virasoro constraints follow from the fact that a total differential is residueless:

$$
\underset{\lambda=\infty}{\operatorname{res} \operatorname{tr}} \frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\Psi^{-1} \frac{\mathrm{~d} \Psi}{\mathrm{~d} \lambda} \lambda^{\frac{2(d+k+1)+1}{2}} \sigma_{3}\right) \mathrm{d} \lambda=0 \Rightarrow \frac{\partial}{\partial T_{2 d+1}}\left(L_{k} \tau\right)=0, k \geq-1
$$

E.g. let us derive the string equation $L_{-1} \tau=0$: we need one preliminary observation

$$
\begin{gathered}
\Omega_{\ell}=\left(\frac{\partial \Psi}{\partial T_{\ell}} \psi^{-\mathbf{1}}\right)_{+}=\left(\Psi \frac{\partial \Theta}{\partial T_{\ell}} \psi^{-\mathbf{1}}\right)_{+}=\left(\Psi \sigma_{\mathbf{3}} \Psi^{-\mathbf{1}} \lambda^{\ell / \mathbf{2}}\right)_{+} \\
A=\left(\frac{\partial \Psi}{\partial \lambda} \Psi^{-\mathbf{1}}\right)_{+}=\left(\Psi \frac{\mathrm{d} \Theta}{\mathrm{~d} \lambda} \Psi^{-\mathbf{1}}\right)_{+}=\sum_{\ell \geq \mathbf{1}, \ell \text { odd }}\left(\Psi \frac{\ell}{2} \widetilde{T}_{\ell} \lambda^{\frac{\ell}{\mathbf{2}}-\mathbf{1}} \sigma_{\mathbf{3}} \psi^{-\mathbf{1}}\right)_{+}=\sum_{\ell \geq \mathbf{1}, \ell \text { odd }} \frac{\ell}{\mathbf{2}} \widetilde{T}_{\ell} \Omega_{\ell-\mathbf{2}}
\end{gathered}
$$

where $\widetilde{T}_{\ell}=T_{\ell}+\frac{2}{3} \delta_{\ell, 3}$. Hence

$$
\begin{aligned}
& 0=-\underset{\lambda=\infty}{\text { res }} \operatorname{tr} \frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\Psi^{-\mathbf{1}} A \Psi \lambda^{\frac{\mathbf{2 d}+\mathbf{1}}{\mathbf{2}}} \sigma_{\mathbf{3}}\right) \mathrm{d} \lambda=-\underset{\lambda=\infty}{\operatorname{res}} \operatorname{tr}\left(\Psi^{-\mathbf{1}} \frac{\mathrm{d} A}{\mathrm{~d} \lambda} \Psi_{\left.\sigma_{3} \lambda^{\frac{\mathbf{2 d}+\mathbf{1}}{\mathbf{2}}}+\frac{\mathbf{2 d + 1}}{\mathbf{2}} \Psi^{-\mathbf{1}} \frac{\mathrm{d} \psi}{\mathrm{~d} \lambda} \sigma_{\mathbf{3}} \lambda^{\frac{\mathbf{2 d}-\mathbf{1}}{\mathbf{2}}}\right) \mathrm{d} \lambda=}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\ell \geq \mathbf{1}, \text { odd }} \frac{\ell}{\mathbf{2}} \widetilde{T}_{\ell} \frac{\partial^{\mathbf{2} \log \tau}}{\partial T_{\ell-\mathbf{2}} \partial T_{\mathbf{2 d} d+1}}+\frac{\mathbf{2 d + 1}}{\mathbf{2}} \frac{\partial \log \tau}{\partial T_{\mathbf{2 d - 1}}}+\frac{\mathbf{1}}{\mathbf{2}} \delta_{d, 0} T_{\mathbf{1}}=\frac{\partial}{\partial T_{\mathbf{2} d+\mathbf{1}}}\left(\sum_{\ell \geq \mathbf{1}, \text { odd }} \frac{\ell}{\mathbf{2}} \widetilde{T}_{\ell} \frac{\partial \log \tau}{\partial T_{\ell-\mathbf{2}}}+\frac{T_{\mathbf{1}}^{\mathbf{2}}}{4}\right)=\frac{\partial}{\partial T_{\mathbf{2 d + 1}}}\left(\frac{L_{-\mathbf{1}} \tau}{\tau}\right)
\end{aligned}
$$

The Kontsevich-Penner tau function

The Kontsevich-Penner matrix integral is $\left(\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right), Q\right.$ a parameter $)$

$$
\int_{H_{N}} \frac{\exp \operatorname{tr}\left(\mathrm{i} \frac{X^{3}}{3}-\Lambda^{1 / 2} X^{2}\right)}{\operatorname{det}\left(\mathbf{1}-\mathrm{i} X \Lambda^{-1 / 2}\right)^{Q}} \mathrm{~d} X / \int_{H_{N}} \exp \operatorname{tr}\left(-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X .
$$

As in the Kontsevich case, sending $N \rightarrow \infty$ one can build the Kontsevich-Penner tau function, which is a formal KP tau function $\tau\left(T_{1}, T_{2}, \ldots ; Q\right)$ in the Miwa times

$$
T_{\ell}(\Lambda)=\frac{1}{\ell} \operatorname{tr} \Lambda^{-\ell / 2} .
$$

The Kontsevich-Penner tau function

The Kontsevich-Penner matrix integral is $\left(\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right), Q\right.$ a parameter $)$

$$
\int_{H_{N}} \frac{\exp \operatorname{tr}\left(\mathrm{i} \frac{X^{3}}{3}-\Lambda^{1 / 2} X^{2}\right)}{\operatorname{det}\left(1-\mathrm{i} X \Lambda^{-1 / 2}\right)^{Q}} \mathrm{~d} X / \int_{H_{N}} \exp \operatorname{tr}\left(-\Lambda^{1 / 2} X^{2}\right) \mathrm{d} X
$$

As in the Kontsevich case, sending $N \rightarrow \infty$ one can build the Kontsevich-Penner tau function, which is a formal KP tau function $\tau\left(T_{1}, T_{2}, \ldots ; Q\right)$ in the Miwa times

$$
T_{\ell}(\Lambda)=\frac{1}{\ell} \operatorname{tr} \Lambda^{-\ell / 2}
$$

Conjecture (Pandharipande-Solomon-Tessler, Alexandrov-Buryak-Tessler, Safnuk,...)
Let $F\left(t_{1}, t_{2}, \ldots ; Q\right)$ be the generating function for the (refined) open intersection numbers

$$
\begin{aligned}
& F\left(t_{1}, t_{2}, \ldots ; Q\right):=\sum_{n \geq 1} \sum_{b \geq 0} Q^{b} \sum_{r_{1}, \ldots, r_{n} \geq 0} \frac{t_{r_{1}+1} \cdots t_{r_{n}+1}}{n!}\left\langle\tau_{\frac{r_{1}}{2}} \cdots \tau_{\frac{r_{n}}{2}}\right\rangle_{b}= \\
= & \frac{t_{1}^{3}}{6}+\frac{t_{3}}{24}\left(1+12 Q^{2}\right)+Q t_{1} t_{2}+\frac{t_{2} t_{4}}{2} Q^{2}+\frac{t_{3}^{2}}{24}\left(1+12 Q^{2}\right)+Q t_{1}^{2} t_{4}+\ldots
\end{aligned}
$$

Then $F\left(t_{1}, t_{2}, \ldots ; Q\right)=\log \tau\left(T_{1}, T_{2}, \ldots\right)$ with $T_{k}=(-1)^{k} \frac{2^{k / 3}}{k!!} t_{k}$.

The Kontsevich-Penner tau function as an isomonodromic tau function

As done by Bertola and Cafasso for the Kontsevich tau function, we want to identify the Kontsevich-Penner tau function with an isomonodromic tau function. This is done in the same way as explained above, but starting from the following variation of the Airy equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \Psi_{0}(\lambda)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
Q & \lambda & 0
\end{array}\right] \Psi_{0}(\lambda)
$$

One can pass (formally) to the limit $N \rightarrow \infty$ and apply the same considerations above to identify the Kontsevich-Penner tau function with the isomonodromic tau function of a 3×3 system. Therefore generating functions for $n-p o i n t$ functions and Virasoro constraints can be computed in the same way.

The Kontsevich-Penner tau function as an isomonodromic tau function

As done by Bertola and Cafasso for the Kontsevich tau function, we want to identify the Kontsevich-Penner tau function with an isomonodromic tau function. This is done in the same way as explained above, but starting from the following variation of the Airy equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \Psi_{0}(\lambda)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
Q & \lambda & 0
\end{array}\right] \Psi_{0}(\lambda)
$$

Bertola and R, 2017

The isomonodromic tau function associated to the isomonodromic system obtained as above by Schlesinger transformations of ODE above at the points $\lambda_{1}, \ldots, \lambda_{N}$ coincides with the Kontsevich-Penner matrix integral.

The Kontsevich-Penner tau function as an isomonodromic tau function

As done by Bertola and Cafasso for the Kontsevich tau function, we want to identify the Kontsevich-Penner tau function with an isomonodromic tau function. This is done in the same way as explained above, but starting from the following variation of the Airy equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \Psi_{0}(\lambda)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
Q & \lambda & 0
\end{array}\right] \Psi_{0}(\lambda)
$$

Bertola and R, 2017

The isomonodromic tau function associated to the isomonodromic system obtained as above by Schlesinger transformations of ODE above at the points $\lambda_{1}, \ldots, \lambda_{N}$ coincides with the Kontsevich-Penner matrix integral.
One can pass (formally) to the limit $N \rightarrow \infty$ and apply the same considerations above to identify the Kontsevich-Penner tau function with the isomonodromic tau function of a 3×3 system. Therefore generating functions for n-point functions and Virasoro constraints can be computed in the same way.

One-point function (open case)

By the same strategy explained above we are able to compute the n-point functions.
Bertola and R, 2017

$$
\begin{gathered}
\sum_{r \geq 0}\left\langle\tau_{\frac{r}{2}-2}\right\rangle X^{\frac{r}{2}}=\mathrm{e}^{\frac{X^{3}}{6}}\left({ }_{2} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}-Q \\
\frac{1}{2} \\
\frac{1}{2}+Q \\
\frac{1}{2}
\end{array} \right\rvert\,-\frac{X^{3}}{8}\right)+Q X^{\frac{3}{2}}{ }_{2} F_{2}\left(\left.\begin{array}{c}
1-Q 1+Q \\
1 \\
\frac{3}{2}
\end{array} \right\rvert\,-\frac{X^{3}}{8}\right)\right)= \\
=1+Q X^{\frac{3}{2}}+\frac{1+12 Q^{2}}{24} X^{3}+\frac{Q+Q^{3}}{12} X^{\frac{9}{2}}+\frac{1+56 Q^{2}+16 Q^{4}}{1152} X^{6}+\ldots
\end{gathered}
$$

For $Q=0$ it reduces correctly to the closed case giving $\exp \frac{x^{3}}{24}$.

One-point function (open case)

By the same strategy explained above we are able to compute the n-point functions.
Bertola and R, 2017

$$
\begin{gathered}
\sum_{r \geq 0}\left\langle\tau_{\frac{r}{2}-2}\right\rangle X^{\frac{r}{2}}=\mathrm{e}^{\frac{X^{3}}{6}}\left({ }_{2} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}-Q \frac{1}{2}+Q \\
\frac{1}{2} \\
\frac{1}{2}
\end{array} \right\rvert\,-\frac{X^{3}}{8}\right)+Q X^{\frac{3}{2}}{ }_{2} F_{2}\left(\left.\begin{array}{c}
1-Q 1+Q \\
1 \\
\frac{3}{2}
\end{array} \right\rvert\,-\frac{X^{3}}{8}\right)\right)= \\
=1+Q X^{\frac{3}{2}}+\frac{1+12 Q^{2}}{24} X^{3}+\frac{Q+Q^{3}}{12} X^{\frac{9}{2}}+\frac{1+56 Q^{2}+16 Q^{4}}{1152} X^{6}+\ldots
\end{gathered}
$$

For $Q=0$ it reduces correctly to the closed case giving $\exp \frac{x^{3}}{24}$.
An equivalent alternative expression for the same one-point function:

$$
\sum_{r \geq 0}\left\langle\tau_{\frac{r}{2}-2}\right\rangle X^{\frac{r}{2}}=\mathrm{e}^{\frac{X^{3}}{24}} \sum_{j \geq 0} \frac{A_{j}(Q)}{(j-1)!!} X^{\frac{3 j}{2}}, \quad\left(\frac{2+X}{2-X}\right)^{Q}=\sum_{j \geq 0} A_{j}(Q) X^{j}
$$

\mathbf{n}-point function (open case)

Introduce $P_{a, b}^{k}(Q)$ (polynomials in $Q, a, b=0, \pm 1, k=0,1,2, \ldots$)

$$
\left.\begin{array}{c}
\sum_{m \geq 0} \frac{\Gamma\left(\frac{a-b+1}{2}\right)}{\Gamma\left(\frac{a-b+1+6 m}{2}\right)} Z^{m} P_{a, b}^{2 m}(Q)=\mathrm{e}^{\frac{Z}{3}}{ }_{2} F_{2}\left(\begin{array}{cc}
\frac{1-a-b-2 Q}{\frac{1}{2}} & \left.\frac{1+a+b+2 Q}{\frac{1+2}{2}} \right\rvert\, \\
\frac{1+-b}{2}
\end{array}-\frac{Z}{4}\right) \\
\sum_{m \geq 0} \frac{\Gamma\left(\frac{a-b+2}{2}\right)}{\Gamma\left(\frac{a-b+4+6 m}{2}\right)} Z^{m} P_{a, b}^{2 m+1}(Q)=-\frac{2 Q+a+b}{2} e^{\frac{Z}{3}}{ }_{2} F_{2}\left(\frac{2-a-b-2 Q}{\frac{3}{2}}\right. \\
\left.\frac{2+a+b+2 Q}{\frac{2+2}{2}} \right\rvert\,-\frac{Z}{2}
\end{array}\right)
$$

and the matrix $A(\lambda)$

$$
A(\lambda):=\sum_{k \geq 0}\left[\begin{array}{ccc}
Q P_{1,-1}^{k}(Q) \lambda^{-\frac{3 k+2}{2}} & P_{-1,-1}^{k}(Q) \lambda^{-\frac{3 k}{2}} & P_{0,-1}^{k}(Q) \lambda^{-\frac{3 k+1}{2}} \\
Q P_{1,0}^{k}(Q) \lambda^{-\frac{3 k+1}{2}} & P_{-1,0}^{k}(Q) \lambda^{-\frac{3 k-1}{2}} & P_{0,0}^{k}(Q) \lambda^{-\frac{3 k}{2}} \\
Q P_{1,1}^{k}(Q) \lambda^{-\frac{3 k}{2}} & P_{-1,1}^{k}(Q) \lambda^{-\frac{3-2}{2}} & P_{0,1}^{k}(Q) \lambda^{-\frac{3 k-1}{2}}
\end{array}\right]
$$

Bertola and R, 2017

For $n \geq 2$ we have

Open Virasoro constraints

The Kontsevich-Penner tau function satisfies

$$
L_{k} \tau=0, \quad k \geq-1
$$

where

$$
\begin{aligned}
L_{k}(Q) & =\sum_{a \geq 1} \frac{a}{2}\left(T_{a}+\frac{3}{2} \delta_{a, 3}\right) \frac{\partial}{\partial T_{a+2 k}}+\frac{1}{4} \sum_{a, b \geq 1, a+b=2 k} \frac{\partial^{2}}{\partial T_{a} \partial T_{b}}+ \\
& +\frac{3}{2} Q \frac{\partial}{\partial T_{2 k}}+\left(\frac{T_{1}^{2}}{4}+Q T_{2}\right) \delta_{k,-1}+\left(\frac{1}{16}+\frac{3}{4} Q^{2}\right) \delta_{k, 0}
\end{aligned}
$$

Such Virasoro constraints can be obtained by the isomonodromic method as explained before and they coincide with those computed by Alexandrov (2016).

r-spin intersection numbers

More generally one can consider a model of the form $\left(\Lambda=Y^{r}\right)$

$$
\int_{\mathcal{H}_{N}(\gamma)} \exp \operatorname{tr} \frac{\left(\frac{(X+Y)^{r+1}-Y^{r+1}}{r+1}-X Y^{r}\right)}{\operatorname{det}\left(X Y^{-1}+\mathbf{1}\right)^{Q}} \mathrm{~d} X / \int_{\mathrm{i} \mathcal{H}_{N}} \exp \operatorname{tr}\left(\frac{1}{2} \sum_{a=0}^{r-1} X Y^{a} X Y^{r-1-a}\right) \mathrm{d} X
$$

$r=2 \Rightarrow$ Kontsevich-Penner model; $Q=0 \Rightarrow r$-spin (closed) intersection numbers.

R, in progress

This matrix model coincides with the isomonodromic tau function of the $(r+1) \times(r+1)$ isomonodromic system which is built as above by Schlesinger transformations at the N points $\lambda_{j}=y_{j}^{r}$ of the ODE

$$
\frac{\mathrm{d} \Psi_{0}(\lambda)}{\mathrm{d} \lambda}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & & \cdots & 1 \\
Q & \lambda & \cdots & 0
\end{array}\right] \Psi_{0}(\lambda)
$$

The same arguments about the formal limit $N \rightarrow+\infty$ can be applied to this case \Rightarrow we can compute open r-spin intersection numbers and the open r-spin Virasoro constraints (in progress).

The stationary sector of the GW theory of \mathbb{P}^{1}

The stationary Gromov-Witten invariants of \mathbb{P}^{1} are the rational numbers

$$
\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle_{g, \beta}:=\int_{\left.\overline{\mathcal{M}_{g, n},(} \mathbb{P}^{1}, \beta\right)} \bigwedge_{i=1}^{n} \operatorname{ev}_{i}^{*}(\omega) \bigwedge_{i=1}^{n} c_{1}\left(\mathcal{L}_{i}\right)^{d_{i}}
$$

with nonvanishing condition $d_{1}+\ldots+d_{n}=2 g-2+2 \beta, \beta \in H_{2}\left(\mathbb{P}^{1}, \mathbb{Z}\right)=\mathbb{Z}$, $\omega \in H^{2}\left(\mathbb{P}^{1}, \mathbb{C}\right), \int_{\mathbb{P}^{1}} \omega=1$.

The stationary sector of the GW theory of \mathbb{P}^{1}

The stationary Gromov-Witten invariants of \mathbb{P}^{1} are the rational numbers

$$
\left\langle\tau_{d_{\mathbf{1}}} \cdots \tau_{d_{n}}\right\rangle_{g, \beta}:=\int_{\overline{\mathcal{M}_{g, n}\left(\mathbb{P}^{\mathbf{1}}, \beta\right)}} \bigwedge_{i=1}^{n} \mathrm{ev}_{i}^{*}(\omega) \bigwedge_{i=1}^{n} c_{1}\left(\mathcal{L}_{i}\right)^{d_{i}}
$$

with nonvanishing condition $d_{1}+\ldots+d_{n}=2 g-2+2 \beta, \beta \in H_{2}\left(\mathbb{P}^{1}, \mathbb{Z}\right)=\mathbb{Z}$, $\omega \in H^{2}\left(\mathbb{P}^{1}, \mathbb{C}\right), \int_{\mathbb{P}^{1}} \omega=1$.

Recently Dubrovin and Yang have found explicit formulae for n-point functions; such formulae have been later proved with Zagier (an independent proof which makes use of the Topological Recursion was given by Marchal).

Goal: identify such formulae with the isomonodromic approach; do they come from a matrix model?

The Riemann-Hilbert problem for the stationary sector of the GW theory of \mathbb{P}^{1} : the bare problem

Let us denote by $J_{\nu}(x)$ the standard Bessel function;

$$
J_{\nu}(x):=\left(\frac{x}{2}\right)^{\nu} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n+\nu+1)}\left(\frac{x}{2}\right)^{2 n} .
$$

Introduce the piecewise analytic matrix

$$
\begin{gathered}
a_{I}(\lambda):=\sqrt{2 \pi s} J_{\lambda-\frac{1}{2}}(2 s), \quad b_{l}(\lambda):=\sqrt{\frac{\pi s}{2}}\left(-\frac{2 \mathrm{e}^{2 \pi i \lambda}}{\mathrm{e}^{2 \pi \mathrm{i} \lambda+1}} J_{\lambda+\frac{1}{2}}(2 s)+\frac{\mathbf{1}}{\cos (\pi \lambda)} J_{-\lambda-\frac{1}{2}}(2 s)\right), \\
a_{I V}(\lambda):=\sqrt{2 \pi s} J_{\lambda-\frac{1}{2}}(2 s), \quad b_{I I}(\lambda):=\sqrt{\frac{\pi s}{2}}\left(\frac{2 \mathrm{i}}{\mathrm{e}^{2 \pi \mathrm{i} \lambda+1}} J_{\lambda+\frac{1}{2}}(2 s)+\frac{\mathbf{1}}{\cos (\pi \lambda)} J_{-\lambda-\frac{1}{2}}(2 s)\right), \\
a_{I I}(\lambda):=\mathrm{e}^{-\mathrm{i} \pi \lambda} b_{I V}(-\lambda), \quad b_{I I}(\lambda):=\mathrm{e}^{\mathrm{i} \pi \lambda} a_{I V}(-\lambda), \\
a_{I I I}(\lambda):=\mathrm{e}^{\mathrm{i} \pi \lambda} b_{I}(-\lambda), b_{I I I}(\lambda):=\mathrm{e}^{-\mathrm{i} \pi \lambda} a_{l}(-\lambda) . \\
\left.\Psi(\lambda)\right|_{\lambda \in Q_{\ell}}:=\left[\begin{array}{cc}
a_{\ell}(\lambda ; s) & b_{\ell}(\lambda-1 ; s) \\
a_{\ell}(\lambda+1 ; s) & b_{\ell}(\lambda ; s)
\end{array}\right], \quad \ell \in\{I, I I, I I I, I V\}
\end{gathered}
$$

Bertola and R , in progress

$\Psi(\lambda)$ is analytic and analytically invertible

$$
\begin{gathered}
\Psi(\lambda) \sim\left(1+\mathcal{O}\left(\lambda^{-1}\right)\right)\left(\frac{\mathrm{es}}{\lambda}\right)^{\lambda \sigma_{3}} \\
\Psi(\lambda-1)=\left[\begin{array}{cc}
\frac{\lambda}{s}-\frac{1}{2 s} & -1 \\
1 & 0
\end{array}\right] \Psi(\lambda) \\
\operatorname{det} \Psi(\lambda) \equiv 1
\end{gathered}
$$

The Riemann-Hilbert problem for the stationary sector of the GW theory of \mathbb{P}^{1} : dressing and the tau function

Dress the jump matrices by

$$
\exp \xi\left(\lambda ; t_{*}\right), \quad \xi\left(\lambda ; t_{*}\right):=\frac{1}{2} \sigma_{3} \sum_{k \geq 1} t_{k} \lambda^{k}
$$

and let $\Psi\left(\lambda ; t_{*}\right)=\Gamma\left(\lambda ; t_{*}\right)\left(\frac{\mathrm{es}}{\lambda}\right)^{\lambda \sigma_{\mathbf{3}}}$ the solution of the dressed RHp.
The matrix $\widehat{\Psi}\left(\lambda ; t_{*}\right):=\Psi\left(\lambda ; t_{*}\right) \mathrm{e}^{\xi\left(\lambda ; t_{*}\right)}$ satisfy deformation equations

$$
\partial_{t_{j}} \widehat{\Psi}\left(\lambda ; t_{*}\right)=\Omega_{j}\left(\lambda ; t_{*}\right) \widehat{\Psi}\left(\lambda ; t_{*}\right), \quad \Omega_{j}\left(\lambda ; t_{*}\right)=\frac{1}{2}\left(\Gamma\left(\lambda ; t_{*}\right) \sigma_{3} \Gamma^{-1}\left(\lambda ; t_{*}\right) \lambda^{j}\right)_{+}
$$

and the Jimbo-Miwa-Ueno one-form is closed:

$$
\omega\left(\partial_{t_{j}}\right):=-\operatorname{res}_{\lambda=\infty}^{\operatorname{tr}} \frac{1}{2}\left(\Gamma^{-1} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \lambda} \sigma_{3}\right) \lambda^{j} \mathrm{~d} \lambda, \quad \partial_{t_{a}} \omega\left(\partial_{t_{b}}\right)=\partial_{t_{b}} \omega\left(\partial_{t_{a}}\right) .
$$

Therefore introduce

$$
\partial_{t_{j}} \log \tau\left(t_{*}\right)=\omega\left(\partial_{t_{j}}\right)
$$

Proposition (Bertola and R, in progress)

By construction, the logarithmic derivatives of $\tau\left(t_{*}\right)$ evaluated at $t_{*}=0$ coincide with Dubrovin, Yang and Zagier's formulae for the stationary GW invariants of \mathbb{P}^{1}.

The matrix model for the stationary sector of the GW theory of \mathbb{P}^{1} : two Bessel matrix functions

The following model was conjectured to yield stationary GW invariants of \mathbb{P}^{1} (Aganagic, Dijkgraaf, Klemm, Marino and Vafa, 2006):

$$
f(\lambda):=\int_{-\infty}^{+\infty} \exp \left(\lambda x-\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \mathrm{d} x=\int_{0}^{+\infty} \exp \left(\lambda \log t-t-t^{-1}\right) \frac{\mathrm{d} t}{t}=2 K_{-\lambda}(2)
$$

The matrix model for the stationary sector of the GW theory of \mathbb{P}^{1} : two Bessel matrix functions

The following model was conjectured to yield stationary GW invariants of \mathbb{P}^{1} (Aganagic, Dijkgraaf, Klemm, Marino and Vafa, 2006):

$$
f(\lambda):=\int_{-\infty}^{+\infty} \exp \left(\lambda x-\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \mathrm{d} x=\int_{0}^{+\infty} \exp \left(\lambda \log t-t-t^{-1}\right) \frac{\mathrm{d} t}{t}=2 K_{-\lambda}(2)
$$

$f(\lambda)$ admits two distinct matrix versions $\lambda \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$:

$$
\begin{gathered}
\int_{H_{N}} \exp \operatorname{tr}\left(\Lambda X-\mathrm{e}^{X}-\mathrm{e}^{-X}\right) \mathrm{d} X=c_{N} \frac{\operatorname{det}\left[\partial_{\lambda}^{b-1} f\left(\lambda_{a}\right)\right]_{a, b=1}^{N}}{\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)} \\
\int_{H_{N}^{+}} \exp \operatorname{tr}\left(\Lambda \log T-T-T^{-1}\right) \frac{\mathrm{d} T}{\operatorname{det} T}=c_{N}^{\prime} \frac{\operatorname{det}\left[f\left(\lambda_{a}+b-1\right)\right]_{a, b=1}^{N}}{\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)}
\end{gathered}
$$

The matrix model for the stationary sector of the GW theory of \mathbb{P}^{1} : two Bessel matrix functions

The following model was conjectured to yield stationary GW invariants of \mathbb{P}^{1} (Aganagic, Dijkgraaf, Klemm, Marino and Vafa, 2006):

$$
f(\lambda):=\int_{-\infty}^{+\infty} \exp \left(\lambda x-\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \mathrm{d} x=\int_{0}^{+\infty} \exp \left(\lambda \log t-t-t^{-1}\right) \frac{\mathrm{d} t}{t}=2 K_{-\lambda}(2)
$$

$f(\lambda)$ admits two distinct matrix versions $\lambda \rightarrow \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$:

$$
\begin{gathered}
\int_{H_{N}} \exp \operatorname{tr}\left(\Lambda X-\mathrm{e}^{X}-\mathrm{e}^{-X}\right) \mathrm{d} X=c_{N} \frac{\operatorname{det}\left[\partial_{\lambda}^{b-1} f\left(\lambda_{a}\right)\right]_{a, b=1}^{N}}{\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)} \\
\int_{H_{N}^{+}} \exp \operatorname{tr}\left(\Lambda \log T-T-T^{-1}\right) \frac{\mathrm{d} T}{\operatorname{det} T}=c_{N}^{\prime} \frac{\operatorname{det}\left[f\left(\lambda_{a}+b-1\right)\right]_{a, b=1}^{N}}{\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)}
\end{gathered}
$$

The matrix model we obtain from Schlesinger transformations is

$$
\tau_{N}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{\operatorname{det}\left[\Psi_{22}\left(\lambda_{a}+b-1\right)\left(\frac{\mathrm{es}}{\lambda_{\mathrm{a}}}\right)^{\lambda_{\mathrm{a}}}\right]_{a, b=1}^{N}}{\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)}
$$

Open problems

- Understand better the relation with the matrix models
- Add descendants of the identity operator
- Compare with the Eguchi-Yang model:

$$
\begin{gathered}
\int_{H_{N}} \exp \operatorname{tr} N\left(V(X)+\sum_{\ell \geq 1} \frac{t_{\ell}}{\ell} X^{\ell}+2 \sum_{\ell \geq 1} \widehat{t}_{\ell} X^{\ell}\left(\log X-c_{\ell}\right)\right) \mathrm{d} X \\
V(x):=-2 x(\log x-1), \quad c_{\ell}:=\sum_{j=1}^{\ell} \frac{1}{j}
\end{gathered}
$$

Thank you for your attention!

