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based on

Cluster integrable systems and q-Painlevé equations, JHEP 02 (2018)
077, arXiv:1711.02063

Cluster Toda chains and Nekrasov functions, to appear in L.D.Faddeev
volume of Theor. & Math. Phys., arXiv:1804.10145

with Misha Bershtein & Pasha Gavrylenko (their talks!)

some development (“Spin chain case” etc) yet to appear,
also with Kolya Semenyakin ...
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Tau Functions of Integrable Systems

NOT quite true ...

Actually:

only “traces of integrability” – from CLUSTER integrable systems;

lead to q-difference equations: more simple than differential;

discrete flows, but from “normal” Hamiltonian systems;

the main issue – SOLUTIONS (in the following talk of Misha Bershtein),
coming from 5d supersymmetric gauge theories and topological strings...

Integrable systems – too simple for that ...

DEAUTONOMIZATION!
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Integrability

Many faces of INTEGRABILITY:

Dubrovin-Krichever-Novikov: algebraic curve Σ and two meromorphic
differentials (dE , dW ) with fixed periods;

Flat co-ordinates: a =
∮
A
EdW

∂F
∂a

=

∮
B

EdW (1)

Integrability ensured by the Riemann bilinear identities (e.g. symmetricity of

the period matrix Tij = ∂2F
∂ai∂aj

of Σ).
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Application

Seiberg-Witten integrable systems (from SUSY gauge theories):

Pure gauge theories ≡ Toda chains with g = Lie(G ) of the gauge group;

Lax representation: L ∈ ĝ⊗ K (Σ), algebraic curve

det(L(µ)− λ) = 0 (2)

with differentials of two functions E = λ, W = logµ, i.e. Σ ⊂ C× C×.

“Relativization” (4d → 5d) or “trigonometrization”: symmetric situation

E = log λ, W = logµ for Σ ⊂ C× × C×. Lax operator g“ = exp(L)′′ ∈ Ĝ :
co-extended loop group.

A.Marshakov Cluster integrable systems, deautonomization ... September 3, 2018 5 / 29



Cluster integrable system

a la Goncharov-Kenyon and/or Fock-AM:

Defined by any convex NP ∆ ⊂ Z2 ⊂ R2 for a curve Σ ⊂ C× × C×

f∆(λ, µ) =
∑

(a,b)∈∆

λaµbfa,b = 0. (3)

Realized on a Poisson X-cluster variety X , dimX = 2Area(∆). Poisson
structure

{xi , xj} = εijxixj , {xi} ∈
(
C×
)2Area(∆)

. (4)

is encoded in a quiver Q, with εij = #arrows(i → j).

Integrability: Pick’s formula

2Area(∆)− 1 = (B − 3) + 2g (5)
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Quivers

Q of the “Painlevé cluster varieties” (with their q-Painlevé names), come from
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Newton polygons

∆ with a single internal point and 3 ≤ B ≤ 9 boundary points:

3 4a 4b 4c 5a 5b 6a 6b

6c 6d 7a 7b 8a 8b 8c 9

Here Σ: f∆(λ, µ) =
∑

(a,b)∈∆ λ
aµbfa,b = 0 is always a torus g = 1.
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Example

NP (up to SA(2,Z)-tranform):

f∆(λ, µ) =
∑

(a,b)∈∆

λaµbfa,b = λ+
1

λ
+ µ+

z

µ
+ u = 0 (6)

spectral curve for relativistic affine 2-particle Toda chain at H(~x) = u
(5d pure SU(2) gauge theory).

Remark: renormalizations of λ, µ and f∆ fix 3 of coefficients {fa,b} in the
equation.
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Example

X-cluster Poisson variety with (mutation class of) quiver Q:

1 2

34

encoding logarithmically constant Poisson bracket

{xi , xj} = εijxixj , i , j = 1, . . . , |Q| (7)

with the skew-symmetric matrix

εij = −εji = #arrows (i → j) = ±2 (8)

Obviously q = x1x2x3x4 and z = x1x3 are in the center of Poisson algebra.
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Example

GK definition: the dimer partition function on a bipartite graph
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gives rise (for q = 1!) to an integrable system with a 5d SW spectral curve
Zdimer ∼ f∆ = λ+ 1

λ + µ+ z
µ + H(~x).

A.Marshakov Cluster integrable systems, deautonomization ... September 3, 2018 11 / 29



Example

Dimer configurations:

bipartite graph ⇒ chains ⇒ loops
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Partition function and curve

A ∈ GL(1) connection on a graph. Weights of configuration D:

W (D) = (−)Q(D)
∏

edges∈D

Aedge

D − D0 is a combination of closed loops: ∂(D − D0) = 0.

Parametrization of the connection (integrals over elementary closed loops):∏
e∈∂Facei

Ae = xi ,
∏

e∈A−cycle

Ae = λ,
∏

e∈B−cycle

Ae = µ

Important: q =
∏

i xi =
∏

e∈∂T2

Ae = 1, since ∂T2 = 0.

Partition function:

W (D0)−1
∑

W (D) = Zdimer(λ, µ; ~x) =
∑

(a,b)∈∆

λaµbfa,b(~x)
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Poisson structure

Poisson quiver Q: 1 4

32

1 4

32

1 4

32

is defined by

intersection form in H1(Σ) of dual surface Σ to T2: Darboux co-ordinates;

Poisson quiver Q: cluster variables.

Involution: {fa,b} → {~z , ~H}, so that

{~z , xi} = 0, {HI ,HJ} = 0 (9)
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Mutations

Cluster mutations on X -cluster variety:

1

1

4

32

Mutation µ1

1

1

4

32

Reverse all incoming
and outgoing arrows
x ′1 = 1/x1

1

1

4

32

Complete cycles through
mutation vertex
x ′4 = x4(1 + x1)2

x ′2 = x2(1 + 1/x1)−2

Formulas: µj : εik 7→ −εik , if i = j or k = j , εik 7→ εik +
εij |εjk |+εjk |εij |

2 otherwise.

µj : xj 7→ x−1
j , xi 7→ xi

(
1 + x

sgnεij
j

)εij
, i 6= j . {x ′i , x ′k} = ε′ikx

′
i x
′
k
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Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous
inversions of edges, that preserve quiver GQ ⊃ G∆ (discrete flows of IS).
Example – the flow T:

1 4

32

x1 x4

x2 x3

1 4

32

1/x1 x4(1 + x1)2

x2(1 + x−1
1 )−2 x3

1 4

32

1/x1 x4( 1+x1

1+x−1
3

)2

x2( 1+x3

1+x−1
1

)2
1/x3

1 4

32

x2( 1+x3

1+x−1
1

)2
1/x3

1/x1 x4( 1+x1

1+x−1
3

)2
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Deautonomization

For q = 1 the flow T

T : (x1, x2, x3, x4) 7→
(
x2(

1 + x3

1 + x−1
1

)2, x−1
1 , x4(

1 + x1

1 + x−1
3

)2, x−1
3

)

preserves Hamiltonian H =
√
x1x2 + 1√

x1x2
+
√

x1

x2
+ z
√

x2

x1
.

Let x1x2x3x4 = q 6= 1 (no integrable system!)

T : (x1, x2, z , q) 7→
(
x2(

x1 + z

x1 + 1
)2, x−1

1 , qz , q

)

Casimir z as “time” xi = xi (z), T : xi (z) 7→ xi (qz), satisfying

x1(qz)x1(q−1z) =

(
x1(z) + z

x1(z) + 1

)2

or q-Painlevé III3 equation P(A
(1)′

7 ).
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Quantization

Remark:

In addition to non-autonomous parameter q one may add quantum
deformation p:

x̂i x̂j = p−2εij x̂j x̂i

just quantizing the X-cluster variety.

Quantum mutations

µj : x̂j 7→ x̂−1
j , x̂

1/|εij |
i 7→ x̂

1/|εij |
i

(
1 + px̂

sgn εij
j

)sgn εij
, i 6= j

Quantum q-Painlevé equations, e.g. quantum q-Painlevé III3:x̂1(q−1z)1/2 x̂1(qz)1/2 =
x̂1(z) + pz

x̂1(z) + p
,

x̂1(Z )x̂1(q−1z) = p4x̂1(q−1z)x̂1(qz).

Important since SOLUTION still exists!
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Tau-functions

For the tau-functions x1(z) = z1/2 τ3(z)2

τ1(z)2 one gets bilinear (non-autonomous!)

Hirota equations

τ1(qz)τ1(q−1z) = τ1(z)2 + z1/2τ3(z)2

τ3(qz)τ3(q−1z) = τ3(z)2 + z1/2τ1(z)2

“Generic phenomenon”: for the Toda family (Y N,k -geometry)

τj (qz) τj
(
q−1z

)
= τj(z)2 + z1/Nτj+1

(
qk/Nz

)
τj−1

(
q−k/Nz

)
, j ∈ Z/NZ

generated by Toda discrete flows;

are solved in terms of (dual) Nekrasov functions: “Kiev formulas” (talk by
M.Bershtein).
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Toda family

Y N,k polygons with 0 ≤ k ≤ N: B = 4 boundary points, hyperelliptic curves.

(N,0)

(0,-1)

(0,0)

(N-k,1)

N=6, k=2

Quivers for Y N,k theories can be glued from blocks of three types 0, 1, -1,
respectively. N = N1 + N0 + N−1, k = N1 − N−1.
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Toda discrete flow

N=6, k=2

A.Marshakov Cluster integrable systems, deautonomization ... September 3, 2018 21 / 29



Toda discrete flow

N=6, k=2
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Differential limit

In

τj (qz) τj
(
q−1z

)
= τj(z)2 + z1/Nτj+1

(
qk/Nz

)
τj−1

(
q−k/Nz

)
take q = expR, z = R2Nz send R → 0 (5D → 4D):

(∂log z)2 log τj = z1/N τj+1τj−1

τ 2
j

, j ∈ Z/NZ

for any k. From isomonodromic tau-function (talk of P.Gavrylenko!) one gets

d2φj
dr2

+
1

r

dφj
dr

= eφj+1−φj − eφj−φj−1

for N = 2 – radial sinh-Gordon equation (well-known form of PIII3): for

φj = log τj/τj−1, r=2N z
1

2N .
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Lax representation

Poisson submanifolds in Ĝ/AdĤ (via co-extension Ĝ ]): for any cyclically reduced
u = sj1 . . . sjl Λ

k , sj ∈ (Ŵ × Ŵ )] - the “Lax map” (Fock & AM)

x1, . . . , xl 7→ Ej1Hj1 (x1) · · ·EjlHjl (xl)Λ(λ)k = g(~x ;λ)Tq

Ei = Ei = exp(ei ), Fi = Fi = exp(fi )

Hi (x) = Hi (x)Tx , i 6= 0

here Hi (x) = xh
i

, [hi , ej ] = [hi , fj ] = 0 for i 6= j , and

Tx = xλ∂/∂λ, Tq =
∏
i

Txi = qλ∂/∂λ

in terms of the Chevalley generators.
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Integrable situation

q = 1, Tq = id (cf. with GK, where this is due to ∂T2 = 0).

Lax operator g(x ;λ)Tq = g(~x ;λ) ∈ Ĝ ⊂ Ĝ ] is a (λ-dependent) matrix

det(g(x ;λ) + µ) = f∆(λ, µ) = 0 (10)

gives the spectral curve equation and generates integrals of motion.

The Poisson structure coinsides with restriction of r -matrix Poisson bracket on Ĝ
(Fock & Goncharov), and this is almost immediate proof of integrability.
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q-isomonodromic deformation

Diagonalization of the Lax operator g(~x ;λ)Tq

integrable case: standard spectral parameter dependent Lax matrix, enough
integrals of motion only for q = 1;

how “to diagonalize” for q 6= 1?

The linear system (g± ∈ B̂± ⊂ Ĝ )

g(λ)Tqψ(λ) = ψ(λ) , g+(λ)g−(λ)ψ(qλ) = ψ(λ) .

Isomonodromic transformation ψ(λ) = g+(λ)ψ′(λ), then

g−(λ)g+(qλ)ψ′(qλ) = ψ′(λ) .

hence
g ′(λ) = g−(λ)g+(qλ) = g ′+(λ)g ′−(λ) .

is q-Schlesinger equation, generating discrete flow T : x 7→ x ′.

A.Marshakov Cluster integrable systems, deautonomization ... September 3, 2018 26 / 29



Summary

q-difference equation (arising from cluster integrable systems) are more
transparent, than differential ones;

the corresponding tau-function (not of integrable systems!) satisfy simple
Hirota equations, and ... do have solutions;

there is q-isomonodromic system, following from Poisson structure on
co-extended loop groups.
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Directions of the generalization

4 boundary points, internal points on one line

One
internal
point

Non-autonomous
discrete Hirota
equations

q-difference
Painlevé
equations

? General Newton polygons
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Thank you for your attention!
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