Cluster integrable systems, deautonomization and q-difference isomonodromic problem

Andrei Marshakov
Center for Advanced Studies, Skoltech; Dept Math NRU HSE, ITEP, Lebedev

Tau Functions of Integrable Systems and Their Applications
Banff, September, 2018

based on

Cluster integrable systems and q-Painlevé equations, JHEP 02 (2018) 077, arXiv:1711.02063

Cluster Toda chains and Nekrasov functions, to appear in L.D.Faddeev volume of Theor. \& Math. Phys., arXiv:1804.10145
with Misha Bershtein \& Pasha Gavrylenko (their talks!)
some development ("Spin chain case" etc) yet to appear, also with Kolya Semenyakin ...

Tau Functions of Integrable Systems

NOT quite true ...

Actually:

- only "traces of integrability" - from CLUSTER integrable systems;
- lead to q-difference equations: more simple than differential;
- discrete flows, but from "normal" Hamiltonian systems;
- the main issue - SOLUTIONS (in the following talk of Misha Bershtein), coming from 5d supersymmetric gauge theories and topological strings...

Integrable systems - too simple for that ...

DEAUTONOMIZATION!

Integrability

Many faces of INTEGRABILITY:

- Dubrovin-Krichever-Novikov: algebraic curve Σ and two meromorphic differentials ($d E, d W$) with fixed periods;
- Flat co-ordinates: $a=\oint_{A} E d W$

$$
\begin{equation*}
\frac{\partial \mathcal{F}}{\partial a}=\oint_{B} E d W \tag{1}
\end{equation*}
$$

- Integrability ensured by the Riemann bilinear identities (e.g. symmetricity of the period matrix $T_{i j}=\frac{\partial^{2} \mathcal{F}}{\partial a_{i} \partial \partial_{j}}$ of $\left.\Sigma\right)$.

Application

Seiberg-Witten integrable systems (from SUSY gauge theories):

- Pure gauge theories \equiv Toda chains with $\mathfrak{g}=\operatorname{Lie}(G)$ of the gauge group;
- Lax representation: $L \in \widehat{\mathfrak{g}} \otimes K(\Sigma)$, algebraic curve

$$
\begin{equation*}
\operatorname{det}(L(\mu)-\lambda)=0 \tag{2}
\end{equation*}
$$

with differentials of two functions $E=\lambda, W=\log \mu$, i.e. $\Sigma \subset \mathbb{C} \times \mathbb{C}^{\times}$.

- "Relativization" ($4 \mathrm{~d} \rightarrow 5 \mathrm{~d}$) or "trigonometrization": symmetric situation $E=\log \lambda, W=\log \mu$ for $\Sigma \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$. Lax operator $g^{\prime \prime}=\exp (L)^{\prime \prime} \in \widehat{G}$: co-extended loop group.

Cluster integrable system

a la Goncharov-Kenyon and/or Fock-AM:

- Defined by any convex NP $\Delta \subset \mathbb{Z}^{2} \subset \mathbb{R}^{2}$ for a curve $\Sigma \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$

$$
\begin{equation*}
f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0 \tag{3}
\end{equation*}
$$

- Realized on a Poisson X-cluster variety $\mathcal{X}, \operatorname{dim} \mathcal{X}=2$ Area(Δ). Poisson structure

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=\epsilon_{i j} x_{i} x_{j}, \quad\left\{x_{i}\right\} \in\left(\mathbb{C}^{\times}\right)^{2 \operatorname{Area}(\Delta)} \tag{4}
\end{equation*}
$$

is encoded in a quiver \mathcal{Q}, with $\epsilon_{i j}=\# \operatorname{arrows}(i \rightarrow j)$.

- Integrability: Pick's formula

$$
\begin{equation*}
2 \operatorname{Area}(\Delta)-1=(B-3)+2 g \tag{5}
\end{equation*}
$$

Quivers

\mathcal{Q} of the "Painlevé cluster varieties" (with their q-Painlevé names), come from

Newton polygons

Δ with a single internal point and $3 \leq B \leq 9$ boundary points:

Here $\Sigma: f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0$ is always a torus $g=1$.

Example

NP (up to $S A(2, \mathbb{Z})$-tranform):

$$
\begin{equation*}
f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=\lambda+\frac{1}{\lambda}+\mu+\frac{z}{\mu}+u=0 \tag{6}
\end{equation*}
$$

spectral curve for relativistic affine 2-particle Toda chain at $H(\vec{x})=u$ (5d pure $S U(2)$ gauge theory).

Remark: renormalizations of λ, μ and f_{Δ} fix 3 of coefficients $\left\{f_{a, b}\right\}$ in the equation.

Example

X-cluster Poisson variety with (mutation class of) quiver \mathcal{Q} :

encoding logarithmically constant Poisson bracket

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=\epsilon_{i j} x_{i} x_{j}, \quad i, j=1, \ldots,|\mathcal{Q}| \tag{7}
\end{equation*}
$$

with the skew-symmetric matrix

$$
\begin{equation*}
\epsilon_{i j}=-\epsilon_{j i}=\text { \#arrows }(i \rightarrow j)= \pm 2 \tag{8}
\end{equation*}
$$

Obviously $q=x_{1} x_{2} x_{3} x_{4}$ and $z=x_{1} x_{3}$ are in the center of Poisson algebra.

Example

GK definition: the dimer partition function on a bipartite graph

gives rise (for $q=1$!) to an integrable system with a 5 d SW spectral curve $Z_{\text {dimer }} \sim f_{\Delta}=\lambda+\frac{1}{\lambda}+\mu+\frac{z}{\mu}+H(\vec{x})$.

Example

Dimer configurations:

bipartite graph \Rightarrow chains \Rightarrow loops

Example

Dimer configurations:

bipartite graph \Rightarrow chains \Rightarrow loops

Partition function and curve

$A \in G L(1)$ connection on a graph. Weights of configuration $D:$

$$
W(D)=(-)^{Q(D)} \prod_{\text {edges } \in D} A_{\text {edge }}
$$

$D-D_{0}$ is a combination of closed loops: $\partial\left(D-D_{0}\right)=0$.
Parametrization of the connection (integrals over elementary closed loops):

$$
\prod_{e \in \partial \text { Face }_{i}} A_{e}=x_{i}, \quad \prod_{e \in A-c y c l e} A_{e}=\lambda, \quad \prod_{e \in B-\text { cycle }} A_{e}=\mu
$$

Important: $q=\prod_{i} x_{i}=\prod_{e \in \partial \mathbb{T}^{2}} A_{e}=1$, since $\partial \mathbb{T}^{2}=0$.
Partition function:

$$
W\left(D_{0}\right)^{-1} \sum W(D)=Z_{\text {dimer }}(\lambda, \mu ; \vec{x})=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}(\vec{x})
$$

Poisson structure

Poisson quiver \mathcal{Q} :

is defined by

- intersection form in $H_{1}(\Sigma)$ of dual surface Σ to \mathbb{T}^{2} : Darboux co-ordinates;
- Poisson quiver \mathcal{Q} : cluster variables.

Involution: $\left\{f_{a, b}\right\} \rightarrow\{\vec{z}, \vec{H}\}$, so that

$$
\begin{equation*}
\left\{\vec{z}, x_{i}\right\}=0, \quad\left\{H_{l}, H_{J}\right\}=0 \tag{9}
\end{equation*}
$$

Mutations

Cluster mutations on X-cluster variety:

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}
Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}
Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}
Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations

Cluster mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Formulas: $\mu_{j}: \epsilon_{i k} \mapsto-\epsilon_{i k}$, if $i=j$ or $k=j, \quad \epsilon_{i k} \mapsto \epsilon_{i k}+\frac{\epsilon_{i j}\left|\epsilon_{j k}\right|+\epsilon_{j k}\left|\epsilon_{j}\right|}{2} \quad$ otherwise.
$\mu_{j}: x_{j} \mapsto x_{j}^{-1}, \quad x_{i} \mapsto x_{i}\left(1+x_{j}^{\mathrm{sgn}} \epsilon_{i j}\right)^{\epsilon_{i j}}, \quad i \neq j . \quad\left\{x_{i}^{\prime}, x_{k}^{\prime}\right\}=\epsilon_{i k}^{\prime} x_{i}^{\prime} x_{k}^{\prime}$

Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous inversions of edges, that preserve quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS). Example - the flow T:

Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous inversions of edges, that preserve quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS). Example - the flow T:

Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous inversions of edges, that preserve quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS). Example - the flow T:

Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous inversions of edges, that preserve quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS). Example - the flow T:

Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous inversions of edges, that preserve quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS). Example - the flow T:

Deautonomization

For $q=1$ the flow T

$$
T:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{2}\left(\frac{1+x_{3}}{1+x_{1}^{-1}}\right)^{2}, x_{1}^{-1}, x_{4}\left(\frac{1+x_{1}}{1+x_{3}^{-1}}\right)^{2}, x_{3}^{-1}\right)
$$

preserves Hamiltonian $H=\sqrt{x_{1} x_{2}}+\frac{1}{\sqrt{x_{1} x_{2}}}+\sqrt{\frac{x_{1}}{x_{2}}}+z \sqrt{\frac{x_{2}}{x_{1}}}$.
Let $x_{1} x_{2} x_{3} x_{4}=q \neq 1$ (no integrable system!)

$$
T:\left(x_{1}, x_{2}, z, q\right) \mapsto\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, q z, q\right)
$$

Casimir z as "time" $x_{i}=x_{i}(z), T: x_{i}(z) \mapsto x_{i}(q z)$, satisfying

$$
x_{1}(q z) x_{1}\left(q^{-1} z\right)=\left(\frac{x_{1}(z)+z}{x_{1}(z)+1}\right)^{2}
$$

or q-Painlevé $I I I_{3}$ equation $P\left(A_{7}^{(1)^{\prime}}\right)$.

Quantization

Remark:

- In addition to non-autonomous parameter q one may add quantum deformation p :

$$
\hat{x}_{i} \hat{x}_{j}=p^{-2 \epsilon_{i j}} \hat{x}_{j} \hat{x}_{i}
$$

just quantizing the X-cluster variety.

- Quantum mutations

$$
\mu_{j}: \quad \hat{x}_{j} \mapsto \hat{x}_{j}^{-1}, \quad \hat{x}_{i}^{1 /\left|\epsilon_{i j}\right|} \mapsto \hat{x}_{i}^{1 /\left|\epsilon_{i j}\right|}\left(1+p \hat{x}_{j}^{\operatorname{sgn} \epsilon_{i j}}\right)^{\operatorname{sgn} \epsilon_{i j}}, i \neq j
$$

- Quantum q-Painlevé equations, e.g. quantum q-Painlevé II_{3} :

$$
\left\{\begin{aligned}
\hat{x}_{1}\left(q^{-1} z\right)^{1 / 2} \hat{x}_{1}(q z)^{1 / 2} & =\frac{\hat{x}_{1}(z)+p z}{\hat{x}_{1}(z)+p} \\
\hat{x}_{1}(Z) \hat{x}_{1}\left(q^{-1} z\right) & =p^{4} \hat{x}_{1}\left(q^{-1} z\right) \hat{x}_{1}(q z)
\end{aligned}\right.
$$

- Important since SOLUTION still exists!

Tau-functions

For the tau-functions $x_{1}(z)=z^{1 / 2} \frac{\tau_{3}(z)^{2}}{\tau_{1}(z)^{2}}$ one gets bilinear (non-autonomous!) Hirota equations

$$
\begin{aligned}
& \tau_{1}(q z) \tau_{1}\left(q^{-1} z\right)=\tau_{1}(z)^{2}+z^{1 / 2} \tau_{3}(z)^{2} \\
& \tau_{3}(q z) \tau_{3}\left(q^{-1} z\right)=\tau_{3}(z)^{2}+z^{1 / 2} \tau_{1}(z)^{2}
\end{aligned}
$$

$$
\tau_{j}(q z) \tau_{j}\left(q^{-1} z\right)=\tau_{j}(z)^{2}+z^{1 / N} \tau_{j+1}\left(q^{k / N} z\right) \tau_{j-1}\left(q^{-k / N} z\right), \quad j \in \mathbb{Z} / N \mathbb{Z}
$$

- generated by Toda discrete flows;
- are solved in terms of (dual) Nekrasov functions: "Kiev formulas" (talk by M.Bershtein).

Toda family

$Y^{N, k}$ polygons with $0 \leq k \leq N: B=4$ boundary points, hyperelliptic curves.

Quivers for $Y^{N, k}$ theories can be glued from blocks of three types $0,1,-1$, respectively. $N=N_{1}+N_{0}+N_{-1}, k=N_{1}-N_{-1}$.

Toda discrete flow

Toda discrete flow

Differential limit

In

$$
\tau_{j}(q z) \tau_{j}\left(q^{-1} z\right)=\tau_{j}(z)^{2}+z^{1 / N} \tau_{j+1}\left(q^{k / N} z\right) \tau_{j-1}\left(q^{-k / N_{z}}\right)
$$

take $q=\exp R, z=R^{2 N}$ z send $R \rightarrow 0(5 \mathrm{D} \rightarrow 4 \mathrm{D})$:

$$
\left(\partial_{\log z}\right)^{2} \log \tau_{j}=z^{1 / N} \frac{\tau_{j+1} \tau_{j-1}}{\tau_{j}^{2}}, \quad j \in \mathbb{Z} / N \mathbb{Z}
$$

for any k. From isomonodromic tau-function (talk of P.Gavrylenko!) one gets

$$
\frac{d^{2} \phi_{j}}{d r^{2}}+\frac{1}{r} \frac{d \phi_{j}}{d r}=e^{\phi_{j+1}-\phi_{j}}-e^{\phi_{j}-\phi_{j-1}}
$$

for $N=2$ - radial sinh-Gordon equation (well-known form of PII_{3}): for $\phi_{j}=\log \tau_{j} / \tau_{j-1}, \mathrm{r}=2 \mathrm{Nz}^{\frac{1}{2 N}}$.

Lax representation

Poisson submanifolds in $\widehat{G} /$ Ad \widehat{H} (via co-extension \widehat{G}^{\sharp}): for any cyclically reduced $u=s_{j_{1}} \ldots s_{j l} \Lambda^{k}, s_{j} \in(\hat{W} \times \hat{W})^{\sharp}$ - the "Lax map" (Fock \& AM)

$$
\begin{gathered}
x_{1}, \ldots, x_{l} \mapsto \mathbf{E}_{j_{1}} \mathbf{H}_{j_{1}}\left(x_{1}\right) \cdots \mathbf{E}_{j_{l}} \mathbf{H}_{j_{l}}\left(x_{l}\right) \wedge(\lambda)^{k}=g(\vec{x} ; \lambda) T_{q} \\
\mathbf{E}_{i}=E_{i}=\exp \left(e_{i}\right), \quad \mathbf{F}_{i}=F_{i}=\exp \left(f_{i}\right) \\
\mathbf{H}_{i}(x)=H_{i}(x) T_{x}, \quad i \neq 0
\end{gathered}
$$

here $H_{i}(x)=x^{h^{i}},\left[h^{i}, e_{j}\right]=\left[h^{i}, f_{j}\right]=0$ for $i \neq j$, and

$$
T_{x}=x^{\lambda \partial / \partial \lambda}, \quad T_{q}=\prod_{i} T_{x_{i}}=q^{\lambda \partial / \partial \lambda}
$$

in terms of the Chevalley generators.

Integrable situation

$q=1, T_{q}=\mathrm{id}$ (cf. with GK , where this is due to $\partial \mathbb{T}^{2}=0$).

Lax operator $g(\boldsymbol{x} ; \lambda) T_{q}=g(\vec{x} ; \lambda) \in \widehat{G} \subset \widehat{G}^{\sharp}$ is a (λ-dependent) matrix

$$
\begin{equation*}
\operatorname{det}(g(\boldsymbol{x} ; \lambda)+\mu)=f_{\Delta}(\lambda, \mu)=0 \tag{10}
\end{equation*}
$$

gives the spectral curve equation and generates integrals of motion.

The Poisson structure coinsides with restriction of r-matrix Poisson bracket on \widehat{G} (Fock \& Goncharov), and this is almost immediate proof of integrability.

q-isomonodromic deformation

Diagonalization of the Lax operator $g(\vec{x} ; \lambda) T_{q}$

- integrable case: standard spectral parameter dependent Lax matrix, enough integrals of motion only for $q=1$;
- how "to diagonalize" for $q \neq 1$?

The linear system $\left(g_{ \pm} \in \widehat{B}_{ \pm} \subset \widehat{G}\right)$

$$
g(\lambda) T_{q} \psi(\lambda)=\psi(\lambda), \quad g_{+}(\lambda) g_{-}(\lambda) \psi(q \lambda)=\psi(\lambda) .
$$

Isomonodromic transformation $\psi(\lambda)=g_{+}(\lambda) \psi^{\prime}(\lambda)$, then

$$
g_{-}(\lambda) g_{+}(q \lambda) \psi^{\prime}(q \lambda)=\psi^{\prime}(\lambda) .
$$

hence

$$
g^{\prime}(\lambda)=g_{-}(\lambda) g_{+}(q \lambda)=g_{+}^{\prime}(\lambda) g_{-}^{\prime}(\lambda) .
$$

is q -Schlesinger equation, generating discrete flow $T: x \mapsto x^{\prime}$.

Summary

- q-difference equation (arising from cluster integrable systems) are more transparent, than differential ones;
- the corresponding tau-function (not of integrable systems!) satisfy simple Hirota equations, and ... do have solutions;
- there is q-isomonodromic system, following from Poisson structure on co-extended loop groups.

Directions of the generalization

Non-autonomous discrete Hirota equations

Thank you for your attention!

