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Cluster integrable systems and g-Painlevé equations, JHEP 02 (2018)
077, arXiv:1711.02063

Cluster Toda chains and Nekrasov functions, to appear in L.D.Faddeev
volume of Theor. & Math. Phys., arXiv:1804.10145

with Misha Bershtein & Pasha Gavrylenko (their talks!)

some development (“Spin chain case” etc) yet to appear,
also with Kolya Semenyakin ...
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Tau Functions of Integrable Systems

NOT quite true ...

Actually:
@ only “traces of integrability” — from CLUSTER integrable systems;
@ lead to g-difference equations: more simple than differential;
@ discrete flows, but from “normal” Hamiltonian systems;

@ the main issue — SOLUTIONS (in the following talk of Misha Bershtein),
coming from 5d supersymmetric gauge theories and topological strings...

Integrable systems — too simple for that ...

DEAUTONOMIZATION!
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Integrability

Many faces of INTEGRABILITY:

@ Dubrovin-Krichever-Novikov: algebraic curve ¥ and two meromorphic
differentials (dE, dW) with fixed periods;
o Flat co-ordinates: a = ¢, EdW
or = ¢ EdW (1)
Oa B
@ Integrability ensured by the Riemann bilinear identities (e.g. symmetricity of
the period matrix Tj; = aa 33 of X).
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Application

Seiberg-Witten integrable systems (from SUSY gauge theories):

@ Pure gauge theories = Toda chains with g = Lie(G) of the gauge group;
o Lax representation: L € g ® K(X), algebraic curve

det(L(u) —A) =0 ()

with differentials of two functions E = A\, W = logp, i.,e. T C C x C*.

o “Relativization” (4d — 5d) or “trigonometrization”: symmetric situation
E =log\ W =logu for ¥ C C* x C*. Lax operator g" = exp(L)’ € G:
co-extended loop group.
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Cluster integrable system

a la Goncharov-Kenyon and/or Fock-AM:

@ Defined by any convex NP A C Z? C R? for a curve ¥ C C* x C*

fa(\u)= D Aufp=0. (3)

(a,b)eA

@ Realized on a Poisson X-cluster variety X', dim X = 2Area(A). Poisson

structure
2Area(A)

{xi,xj} = ejixix;, {xi} € ((CX) . 4)
is encoded in a quiver Q, with € = #arrows(i — j).
@ Integrability: Pick’s formula

2Area(A) —1=(B—3)+2g (5)
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Quivers

Q of the “Painlevé cluster varieties” (with their g-Painlevé names), come from
&% A
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Newton polygons

A with a single internal point and 3 < B < 9 boundary points:

poo OO

8c

Sibo b

Here X2 fa(\, 1) = X (o pyen Aubf, , =0 is always a torus g = 1.
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Example

NP (up to SA(2,Z)-tranform):
1
) = > Nubfy=A+ T +p+ o +u=0 (6)
(a,p)eA A H

spectral curve for relativistic affine 2-particle Toda chain at H(X) = u
(5d pure SU(2) gauge theory).

Remark: renormalizations of A, u and fa fix 3 of coefficients {f, 5} in the
equation.
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Example

X-cluster Poisson variety with (mutation class of) quiver Q:

encoding logarithmically constant Poisson bracket

{xi,x} = epxixs, i, j=1,...,|Q (7)
with the skew-symmetric matrix

€jj = —€jj = #arrows (i — j) = £2 (8)

Obviously g = x1x0x3x4 and z = xyx3 are in the center of Poisson algebra.
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GK definition: the dimer partition function on a bipartite graph

gives rise (for ¢ = 1!) to an integrable system with a 5d SW spectral curve
ZdimerN fA :>\+%+M+i+H(;)
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Example

Teabudb i a;
sngbudbnahus

bipartite graph = chains = loops
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Example

rudbusbudb:
sngbudb s

bipartite graph = chains = loops
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Partition function and curve

A € GL(1) connection on a graph. Weights of configuration D:

W(D):(_)Q(D) H Aedge

edgesc D

D — Dy is a combination of closed loops: 9(D — Dy) = 0.

Parametrization of the connection (integrals over elementary closed loops):

I A=x, II A=A I A==

e€dFace; e€A—cycle ec€B—cycle

Important: ¢ =[], x;= [] Ae=1, since T2 = 0.
ecoT?

Partition function:

_12 W(D) Zdlmer /\ ,u,x) Z 2\ bf:ab

(a,b)er
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Poisson structure

Poisson quiver Q: 4

is defined by

e intersection form in H;(X) of dual surface ¥ to T?: Darboux co-ordinates;

@ Poisson quiver Q: cluster variables.

Involution: {f, } — {Z, Fi} so that

{Z.xi} =0, {Hi,H} =0 9)
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Mutations

Cluster mutations on X-cluster variety:
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Mutations

Cluster mutations on X-cluster variety:

Mutation pq

A.Marshakov Cluster integrable systems, deautonomization ... September 3, 2018 15/29



Mutations

Cluster mutations on X-cluster variety:

"

Mutation ji; Reverse all incoming
and outgoing arrows
x;=1/x
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Cluster mutations on X-cluster variety:

_ _

Mutation 41 Reverse all incoming Complete cycles through
and outgoing arrows mutation vertex
X1 =1/x xp = x4(1 + x1)?

x5y =x(1+ 1/x1)72

15 /29
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Mutations

Cluster mutations on X-cluster variety:

_ _
Mutation 41 Reverse all incoming Complete cycles through
and outgoing arrows mutation vertex
X1 =1/x xp = x4(1 + x1)?

x5y =x(1+ 1/x1)72

Formulas: 11 € = —ein, ifi=jor k=, e ep+ lotadal  ihepwise.
j ) ) 3

)

sene\ €0
e —1 . . SgNEjj H H VAEN I Y RN N
[ o X)X Xj > X (1—|—Xj ) , I FE . {x/,x} = €l x!x;
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Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous

inversions of edges, that preserve quiver Go D Ga (discrete flows of IS).
Example — the flow T:

X2 X3
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Cluster automorphisms

All combinations of mutations, permutations of vertices and simultaneous

inversions of edges, that preserve quiver Go D Ga (discrete flows of IS).
Example — the flow T:

1/X1 X4(1+X1)2

1/X1 X4(11++7><3X711)2 X2(11++7x1{31)2 1/X3
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Deautonomization

For g =1 the flow T

_ 14+ x _
. 2 1 1
T b)) sl o)

preserves Hamiltonian H = /x1x; + Ve Xl +z 1/X1
Let x1x0x3x4 = g # 1 (no integrable system!)

X1+ z _
T :(x1,x,2,q) — (Xz();H)27X1 1a qz, q)

Casimir z as “time” x; = x;(2), T : x;(2) = x;(gz), satisfying

xa(azbalgiz) = (X”*)

x1(z)+1

or g-Painlevé lll3 equation P(Agl)/)_
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Remark:

@ In addition to non-autonomous parameter g one may add quantum
deformation p:
K% = p PR,
just quantizing the X-cluster variety.

@ Quantum mutations
. a1 ~1/€il ~1/|€il Asgne sgnej .
wio K&, KT e X 1+ p i , T F£ ]
@ Quantum g-Painlevé equations, e.g. quantum g-Painlevé Ill5:

Xi(z) + pz
)?1(2) +p ’
f(2)%(q712) = p*#u(g  2)%(q2).

51(q712)? f1(qz)? =

@ Important since SOLUTION still exists!
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For the tau-functions x;(z) = z%/2 3E gz one gets bilinear (non-autonomous!)
Hirota equations

m1(qz)m1(q7 z) = 71(2)? + 2/ 13(2)?
73(q2)73(q7*2) = 73(2)* + 2'/*1(2)°

“Generic phenomenon”: for the Toda family (YV:k-geometry)

7(42) 75 (a7 '2) = 7i(2)* + 2/ V7 (qk/ “’2) Tj-1 (ka/ ’Vz) ., JEZ/NZ

@ generated by Toda discrete flows;

@ are solved in terms of (dual) Nekrasov functions: “Kiev formulas” (talk by
M.Bershtein).
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Toda family

YNk polygons with 0 < k < N: B = 4 boundary points, hyperelliptic curves.

(N-k,1)

(0,0) (N,0)

o

Quivers for YN:k theories can be glued from blocks of three types 0, 1, -1,
respectively. N =Ny + No+ N_1, k=N, — N_;.
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Toda discrete flow
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Toda discrete flow
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Differential limit

In
7 (q2) 7 (¢7'2) = 75(2)* + 2V/N7ja (qk/NZ) i1 <q—k/NZ)
take g = expR, z = R?Nz send R — 0 (5D — 4D):

Tj+1Tj—1 .
(Dogz)?log 7 = 2N 5= j € Z/NZ,
J
for any k. From isomonodromic tau-function (talk of P.Gavrylenko!) one gets

2 4. .
d”o; 1% — P19 _ g®i—di-1
dr? r dr

for N = 2 — radial sinh-Gordon equation (well-known form of Plll3): for
¢; = logTj/Tj_1, r=2N 27,
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Lax representation

Poisson submanifolds in CA;/AAdﬁ (via co-extension G?): for any cyclically reduced
u=sj...5;N" s; € (W x W) - the “Lax map” (Fock & AM)

Xty x> EpHy () - EjH (0)AN)* = g(x M) T,
E,' =LC; = exp(e,-), F,' = F; = exp(f,-)
H,'(X) = H,'(X) TX, I;é 0

here H;(x) = x [h,e] =[h, f]=0fori#j, and

TX _ Xka/a)\, Tq _ H TX,‘ — q>\8/3>\

1

in terms of the Chevalley generators.
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Integrable situation

qg=1, T, =id (cf. with GK, where this is due to 9T? = 0).

Lax operator g(x; \) Tq = g(x; ) € GCcGlisa (A\-dependent) matrix

det(g(x; A) + 1) = fa(A, p) = 0 (10)

gives the spectral curve equation and generates integrals of motion.

The Poisson structure coinsides with restriction of r-matrix Poisson bracket on G
(Fock & Goncharov), and this is almost immediate proof of integrability.
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g-isomonodromic deformation

Diagonalization of the Lax operator g(x; \) T,

@ integrable case: standard spectral parameter dependent Lax matrix, enough
integrals of motion only for g = 1;

@ how “to diagonalize” for g # 17

The linear system (g+ € B+ C G)
g TN =v(N),  g+(\g-(N)e(aA) = »(N).
Isomonodromic transformation () = g (A)¥’'()), then
g-(Ng+ (gAY (gr) = ¥'(N).

hence
g'(A\) =g-(Ng:(g)) = gL (Ng (V).

is g-Schlesinger equation, generating discrete flow T : x — x’.
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e g-difference equation (arising from cluster integrable systems) are more
transparent, than differential ones;

@ the corresponding tau-function (not of integrable systems!) satisfy simple
Hirota equations, and ... do have solutions;

@ there is g-isomonodromic system, following from Poisson structure on
co-extended loop groups.
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Directions of the generalization

4 boundary points, internal points on one line Non-autonomous

discrete Hirota
equations

One
internal [? General Newton polygons]
point

g-difference
Painlevé

equations
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Thank you for your attention! |




